(3.236.228.250) 您好!臺灣時間:2021/04/17 08:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃名江
研究生(外文):Huang, Ming-Jiang
論文名稱:Stern層和溫度對二氧化矽奈米粒子電動行為的影響
論文名稱(外文):Influences of the Stern Layer and Temperature on the Electrokinetics of Silica Nanoparticles
指導教授:葉禮賢
指導教授(外文):Yeh, Li-Hsien
口試委員:葉禮賢周宗翰徐治平
口試委員(外文):Yeh, Li-HsienChou, Tzung-HanHsu, Jyh-Ping
口試日期:2014-07-22
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:101
中文關鍵詞:電泳界面電位表面電位Stern層電荷可調節Stern layer表面電容值電雙層
外文關鍵詞:ElectrophoresisZeta PotentialSurface PotentialCharge RegulationStern Layer CapacitanceElectric Double Layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
電雙層中Stern 層以及擴散層對膠體奈米粒子的表面帶電性質以及電動行為扮演很重要的角色。儘管電雙層對於奈米粒子電動行為的影響很重要,但相關文獻仍然探討的不多。因此本研究利用數值模擬的方法探討Stern layer效應對二氧化矽奈米粒子在含有多種離子的水溶液中之表面帶電性質以及電動行為的影響。此外,由於焦耳熱效應對奈米粒子在電泳裝置中電動力學行為影響,以及裝置在低溫時會降低奈米粒子通過奈米孔道速度的理由,因此考慮溶液溫度影響範圍從278.15至318.15 K。本研究所提出的方程式模組藉由文獻中二氧化矽奈米粒子表面帶電性質的實驗數據得到驗證。本研究獲得的結果顯示,如果溶液在低pH時,考慮Stern 層效應,溶液溫度對二氧化矽奈米粒子的界面電位和表面電荷密度影響是不顯著的,但是溶液在高pH時影響是顯著的。然而,溶液在中pH,二氧化矽奈米粒子的電泳遷移率的影響是顯著的,如果溶液在高pH,二氧化矽奈米粒子的界面電位較高,電雙層極化效應明顯,而降低了奈米粒子電泳遷移率。研究結果也指出,Stern 層效應會降低奈米粒子的界面電位,但是溶液在高pH以及高離子濃度的形況下對於奈米粒子表面帶電性質以及遷移率的影響是顯著的,並且在溶液溫度較高時對於奈米粒子表面帶電性質以及遷移率的影響也是顯著的。而忽略Stern 層效應會導致奈米粒子界面電位、表面電荷密度以及電泳遷移率的結果不正確,其結果分別相差大約為72.96 %、77.53 %以及72.74 %。
Electric double layers, including the Stern layer and the diffusive layer, of colloidal nanoparticles play an essential role on their surface charge properties and, accordingly, the electrokinetic behavior. However, in spite of their significance, the influence of the Stern layer on the electrokinetic behavior of nanoparticles is still poorly understood. In this study, the Stern layer effect on the surface charge properties and the electrophoretic behavior of silica nanoparticles in aqueous solution containing multiple ionic species is numerically investigated. In addition, the influence of the solution temperature ranging from 278.15 to 318.15 K, another key factor on the electrokinetic behaviors of nanoparticles in the electrophoresis apparatus due to the Joule heating effect and the reason to slow down the translocation velocity of nanoparticles through a nanopore, is conducted. The model proposed is validated by the experimental data of the surface charge property of silica nanoparticles available in the literature. Results obtained show that taking the Stern layer effect into account, the influence of temperature on the surface charged properties, including the zeta potential and the charge density, of a silica nanoparticle is insignificant if pH is low, but becomes significant if pH is high. However, that influence on the electrophoretic mobility of a silica nanoparticle is remarkable if pH is medium, but unremarkable if pH is high due to the significant double layer polarization (DLP) effect, which reduces the electrical driving force and the particle mobility when its zeta potential is sufficiently high at high pH. The Stern layer effect, capable of reducing its zeta potential, on the surface charged properties and the mobility of a silica particle is significant if pH and/or the salt concentration are high, but only significant on the surface charged properties of a silica particle if the solution temperature is high. Neglecting the Stern layer effect may result in an incorrect estimation of the zeta potential, surface charge density, and electrophoretic mobility to an order of ca. 72.96, 77.53, and 72.74 %, respectively.
中文摘要 i
Abstract ii
誌謝… iv
目錄… v
表目錄 vii
圖目錄 ix
符號說明 xiii
第一章 緒論 1
1.1 膠體系統 1
1.2 電雙層 4
1.3 電動力學現象 7
1.4 電泳理論 10
1.5 研究動機 12
第二章 理論分析 15
2.1 實驗系統與基本假設 15
2.2 電動力學之主控方程式 17
2.3 平衡系統與擾動系統 19
2.4 奈米粒子電泳遷移率的計算 25
2.5 溫度相關物化性質 26
第三章 結果與討論 29
3.1 溫度效應在不同溶液pH下對二氧化矽奈米粒子表面帶電性質的影響…… 32
3.2 溫度效應在不同溶液pH下對二氧化矽奈米粒子電泳行為的影響 33
3.3 溫度效應在不同溶液離子濃度下對二氧化矽奈米粒子表面帶電性質的影響…. 34
3.4 溫度效應在不同溶液離子濃度下對二氧化矽奈米粒子電泳行為的影響…… 34
3.5 Stern layer效應對二氧化矽奈米粒子表面帶電性質的影響 35
3.6 Stern layer效應對二氧化矽奈米粒子電泳行為的影響 38
第四章 結論 41
參考文獻 74
1.Hsu, J. P.; Hsu, W. C.; Chang, Y. I. Effects of Fixed-Charge Distribution and pH on the Electrophoretic Mobility of Biological Cells. Colloid Polym. Sci. 1994, 272, 251-260.
2.Hsu, C.; Lo, T. W.; Lee, D. J.; Hsu, J. P. Electrophoresis of a Charge-Regulated Zwitterionic Particle: Influence of Temperature and Bulk Salt Concentration. Langmuir 2013, 29, 2427-2433.
3.Hsu, J. P.; Tai, Y. H.; Yeh, L. H.; Tseng, S. Importance of Temperature Effect on the Electrophoretic Behavior of Charge-Regulated Particles. Langmuir 2011, 28, 1013-1019.
4.Hunter, R. J. Foundations of Colloid Science. Oxford University Press: New York: 2001.
5.Masliyah, J. H. Electrokinetic Transport Phenomena. Alberta, Oil Sands Technology and Research Authority: 1994; Vol. 12.
6.張有義. 布朗運動對奈米膠體膠凝與吸附行為影響的探討. 2011.
7.von Helmholtz, H. Studies of Electric Boundary Layers. Annu. Rev. Phys. Chem. 1897, 7, 337-387.
8.von Smoluchowski, M. Versuch Einer Mathematischen Theorie der Koagulationetik Kolloider Losungen. Z. Phys. Chem. 1918, 92, 129-168.
9.Huckel, E. Die Kataphorese der Kugel. Physikalische Zeitschrift 1924, 25, 204-210.
10.Henry, D. C. The Cataphoresis of Suspended Particles, Part 1. The Equation of Cataphoresis. Proc. R. Soc. A-Math. Phys. Eng. Sci. 1931, 106-129.
11.Overbook, J. T. G. Theory of the Relaxation Effect in Electrophoresis Kolloid-Beihefte 1943, 54, 287-364.
12.Booth, F. The Cataphoresis of Spherical Solid Non-Conducting Particles in a Symmetrical Electrolyte. Proc. R. Soc. A-Math. Phys. Eng. Sci. 1950, 203, 514-533.
13.Wiersema, P. H. Calculation of the Electrophoretic Mobility of a Spherical Colloid Particle J. Colloid Interface Sci. 1966, 22, 78-99.
14.O'Brien, R. W., White, L. R. Electrophoresis Mobility of a Spherical Colloidal Particle. J. Chem. Soc., Faraday Trans. 2 1978, 74, 1607-1626.
15.Fonslow, B. R.; Bowser, M. T. Free-Flow Electrophoresis on an Anodic Bonded Glass Microchip. Anal. Chem. 2005, 77, 5706-5710.
16.Knox, J.; McCormack, K. Temperature Effects in Capillary Electrophoresis. 1: Internal Capillary Temperature and Effect Upon Performance. Chromatographia 1994, 38, 207-214.
17.Petersen, N. J.; Nikolajsen, R. P.; Mogensen, K. B.; Kutter, J. P. Effect of Joule Heating on Efficiency and Performance for Microchip‐Based and Capillary‐Based Electrophoretic Separation Systems: A Closer Look. Electrophoresis 2004, 25, 253-269.
18.Tang, G.; Yang, C.; Chai, J.; Gong, H. Joule Heating Effect on Electroosmotic Flow and Mass Species Transport in a Microcapillary. Int. J. Heat Mass Transf. 2004, 47, 215-227.
19.Xuan, X. Joule Heating in Electrokinetic Flow. Electrophoresis 2008, 29, 33-43.
20.Cross, R. F.; Cao, J. Salt Effects in Capillary Zone Electrophoresis: II. Mechanisms of Electrophoretic Mobility Modification Due to Joule Heating at High Buffer Concentrations. J. Chromatogr. A 1998, 809, 159-171.
21.Rodriguez-Santiago, V.; Fedkin, M. V.; Lvov, S. N. Electrophoresis System for High Temperature Mobility Measurements of Nanosize Particles. Rev. Sci. Instrum. 2008, 79, 093302.
22.Patel, K. H.; Evenhuis, C. J.; Cherney, L. T.; Krylov, S. N. Simplified Universal Method for Determining Electrolyte Temperatures in a Capillary Electrophoresis Instrument with Forced-Air Cooling. Electrophoresis 2012, 33, 1079-1085.
23.Evenhuis, C. J.; Haddad, P. R. Joule Heating Effects and the Experimental Determination of Temperature During CE. Electrophoresis 2009, 30, 897-909.
24.Musheev, M. U.; Filiptsev, Y.; Krylov, S. N. Temperature Difference between the Cooled and the Noncooled Parts of an Electrolyte in Capillary Electrophoresis. Anal. Chem. 2010, 82, 8692-8695.
25.Kale, A.; Patel, S.; Qian, S. Z.; Hu, G. Q.; Xuan, X. C. Joule Heating Effects on Reservoir-Based Dielectrophoresis. Electrophoresis 2014, 35, 721-727.
26.Kale, A.; Patel, S.; Hu, G.; Xuan, X. Numerical Modeling of Joule Heating Effects in Insulator-Based Dielectrophoresis Microdevices. Electrophoresis 2013, 34, 674-683.
27.Hawkins, B. G.; Kirby, B. J. Electrothermal Flow Effects in Insulating (Electrodeless) Dielectrophoresis Systems. Electrophoresis 2010, 31, 3622-3633.
28.Gao, J.; Sin, M. L. Y.; Liu, T.; Gau, V.; Liao, J. C.; Wong, P. K. Hybrid Electrokinetic Manipulation in High-Conductivity Media. Lab Chip 2011, 11, 1770-1775.
29.Gallo-Villanueva, R. C.; Sano, M. B.; Lapizco-Encinas, B. H.; Davalos, R. V. Joule Heating Effects on Particle Immobilization in Insulator-Based Dielectrophoretic Devices. Electrophoresis 2014, 35, 352-361.
30.Chaurey, V.; Rohani, A.; Su, Y. H.; Liao, K. T.; Chou, C. F.; Swami, N. S. Scaling Down Constriction-Based (Electrodeless) Dielectrophoresis Devices for Trapping Nanoscale Bioparticles in Physiological Media of High-Conductivity. Electrophoresis 2013, 34, 1097-1104.
31.Chaurey, V.; Polanco, C.; Chou, C. F.; Swami, N. S. Floating-Electrode Enhanced Constriction Dielectrophoresis for Biomolecular Trapping in Physiological Media of High Conductivity. Biomicrofluidics 2012, 6.
32.Seyrek, E.; Dubin, P. L.; Newkome, G. R. Effect of Electric Field on the Mobility of Carboxyl-Terminated Dendrimers. J. Phys. Chem. B 2004, 108, 10168-10171.
33.Wang, C. K.; Tsao, H. K. Temperature-Insensitive Electrokinetic Behavior in Capillary Zone Electrophoresis. J. Phys. Chem. B 2004, 108, 17685-17693.
34.Tang, G. Y.; Yang, C.; Gong, H. Q.; Chai, J. C.; Lam, Y. C. Numerical Simulation of Joule Heating Effect on Sample Band Transport in Capillary Electrophoresis. Anal. Chim. Acta 2006, 561, 138-149.
35.Xuan, X. C.; Li, D. Q. Analytical Study of Joule Heating Effects on Electrokinetic Transportation in Capillary Electrophoresis. J. Chromatogr. A 2005, 1064, 227-237.
36.Evenhuis, C. J.; Hruska, V.; Guijt, R. M.; Macka, M.; Gaš, B.; Marriott, P. J.; Haddad, P. R. Reliable Electrophoretic Mobilities Free from Joule Heating Effects Using CE. Electrophoresis 2007, 28, 3759-3766.
37.Hsu, J. P.; Chen, Z. S. Electrophoresis of a Sphere Along the Axis of a Cylindrical Pore: Effects of Double-Layer Polarization and Electroosmotic Flow. Langmuir 2007, 23, 6198-6204.
38.Chih, M. H.; Lee, E.; Hsu, J. P. Electrophoresis of a Sphere Normal to a Plane at Arbitrary Electrical Potential and Double Layer Thickness. J. Colloid Interface Sci. 2002, 248, 383-388.
39.Ennis, J.; Anderson, J. L. Boundary Effects on Electrophoretic Motion of Spherical Particles for Thick Double Layers and Low Zeta Potential. J. Colloid Interface Sci. 1997, 185, 497-514.
40.Chu, J. W.; Lin, W. H.; Lee, E.; Hsu, J. P. Electrophoresis of a Sphere in a Spherical Cavity at Arbitrary Electrical Potentials. Langmuir 2001, 17, 6289-6297.
41.Qian, S.; Wang, A.; Afonien, J. K. Electrophoretic Motion of a Spherical Particle in a Converging-Diverging Nanotube. J. Colloid Interface Sci. 2006, 303, 579-592.
42.Zydney, A. L. Boundary Effects on the Electrophoretic Motion of a Charged-Particle in a Spherical Cavity. J. Colloid Interface Sci. 1995, 169, 476-485.
43.Chiang, C. P.; Lee, E.; He, Y. Y.; Hsu, J. P. Electrophoresis of a Spherical Dispersion of Polyelectrolytes in a Salt-Free Solution. J. Phys. Chem. B 2006, 110, 1490-1498.
44.Cheng, W. L.; He, Y. Y.; Lee, E. Electrophoresis of a Soft Particle Normal to a Plane. J. Colloid Interface Sci. 2009, 335, 130-139.
45.Hsu, J. P.; Huang, S. W.; Hsieh, T. S.; Young, T. H.; Hu, W. W. Electrophoretic Behavior of Cerebellar Granule Neurons. Electrophoresis 2002, 23, 2001-2006.
46.Hsu, J. P.; Hsieh, T. S.; Young, T. H.; Tseng, S. Electrophoresis of Biological Cells: Charge‐Regulation and Multivalent Counterions Association Model. Electrophoresis 2003, 24, 1338-1346.
47.Yeh, L. H.; Zhang, M.; Qian, S.; Hsu, J. P. Regulating DNA Translocation Through Functionalized Soft Nanopores. Nanoscale 2012, 4, 2685-2693.
48.Plesa, C.; Kowalczyk, S. W.; Zinsmeester, R.; Grosberg, A. Y.; Rabin, Y.; Dekker, C. Fast Translocation of Proteins through Solid State Nanopores. Nano Lett. 2013, 13, 658-663.
49.Kowalczyk, S. W.; Wells, D. B.; Aksimentiev, A.; Dekker, C. Slowing Down DNA Translocation Through a Nanopore in Lithium Chloride. Nano Lett. 2012, 12, 1038-1044.
50.Dekker, C. Solid-State Nanopores. Nat. Nanotechnol. 2007, 2, 209-215.
51.Schoch, R. B.; Han, J.; Renaud, P. Transport Phenomena in Nanofluidics. Rev. Mod. Phys. 2008, 80, 839-883.
52.Zhang, M.; Yeh, L. H.; Qian, S.; Hsu, J. P.; Joo, S. W. DNA Electrokinetic Translocation through a Nanopore: Local Permittivity Environment Effect. J. Phys. Chem. C 2012, 116, 4793-4801.
53.Hsu, J. P.; Tai, Y. H. Effect of Multiple Ionic Species on the Electrophoretic Behavior of a Charge-Regulated Particle. Langmuir 2010, 26, 16857-16864.
54.Hsu, J. P.; Huang, C. H.; Tseng, S. Influence of Temperature on the Gel Electrophoresis of a pH-Regulated, Zwitterionic Sphere. Soft Matter 2013, 9, 11534-11541.
55.Tseng, S.; Lo, T. W.; Hsu, C.; Fu, Y. K.; Hsu, J. P. Importance of Temperature on the Diffusiophoretic Behavior of a Charge-Regulated Zwitterionic Particle. Phys. Chem. Chem. Phys. 2013, 15, 7512-7519.
56.Kowalczyk, S. W.; Wells, D. B.; Aksimentiev, A.; Dekker, C. Slowing Down DNA Translocation through a Nanopore in Lithium Chloride. Nano Lett 2012, 12, 1038-1044.
57.Kawano, R.; Schibel, A. E. P.; Cauley, C.; White, H. S. Controlling the Translocation of Single-Stranded DNA through alpha-Hemolysin Ion Channels Using Viscosity. Langmuir 2009, 25, 1233-1237.
58.He, Y.; Tsutsui, M.; Fan, C.; Taniguchi, M.; Kawai, T. Controlling DNA Translocation through Gate Modulation of Nanopore Wall Surface Charges. ACS Nano 2011, 5, 5509-5518.
59.He, Y.; Tsutsui, M.; Fan, C.; Taniguchi, M.; Kawai, T. Gate Manipulation of DNA Capture into Nanopores. ACS Nano 2011, 5, 8391-8397.
60.Fologea, D.; Uplinger, J.; Thomas, B.; McNabb, D. S.; Li, J. L. Slowing DNA Translocation in a Solid-State Nanopore. Nano Lett. 2005, 5, 1734-1737.
61.de Zoysa, R. S. S.; Jayawardhana, D. A.; Zhao, Q.; Wang, D.; Armstrong, D. W.; Guan, X. Slowing DNA Translocation through Nanopores Using a Solution Containing Organic Salts. J. Phys. Chem. B 2009, 113, 13332-13336.
62.Chou, T. Enhancement of Charged Macromolecule Capture by Nanopores in a Salt Gradient. J. Chem. Phys. 2009, 131.
63.Ai, Y.; Zhang, M.; Joo, S. W.; Cheney, M. A.; Qian, S. Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores. J. Phys. Chem. C 2010, 114, 3883-3890.
64.Ai, Y.; Liu, J.; Zhang, B.; Qian, S. Field Effect Regulation of DNA Trans location through a Nanopore. Anal. Chem. 2010, 82, 8217-8225.
65.Yeh, L. H.; Zhang, M. K.; Joo, S. W.; Qian, S. Z. Slowing Down DNA Translocation through a Nanopore by Lowering Fluid Temperature. Electrophoresis 2012, 33, 3458-3465.
66.Meller, A.; Branton, D. Single Molecule Measurements of DNA Transport through a Nanopore. Electrophoresis 2002, 23, 2583-2591.
67.Wanunu, M.; Sutin, J.; McNally, B.; Chow, A.; Meller, A. DNA Translocation Governed by Interactions with Solid-State Nanopores. Biophys. J. 2008, 95, 4716-4725.
68.Fologea, D.; Uplinger, J.; Thomas, B.; McNabb, D. S.; Li, J. Slowing DNA Translocation in a Solid-State Nanopore. Nano Lett. 2005, 5, 1734-1737.
69.Yeh, L. H.; Zhang, M.; Joo, S. W.; Qian, S. Slowing Down DNA Translocation through a Nanopore by Lowering Fluid temperature. Electrophoresis 2012, 33, 3458-3465.
70.Hunter, R. J. Zeta Potential in Colloid Science: Principles and Applications. Academic Press: 1988.
71.Behrens, S. H.; Borkovec, M. Electrostatic Interaction of Colloidal Surfaces with Variable Charge. J. Phys. Chem. B 1999, 103, 2918-2928.
72.Behrens, S. H.; Grier, D. G. The Charge of Glass and Silica Surfaces. J. Chem. Phys. 2001, 115, 6716-6721.
73.Hughes, C.; Yeh, L. H.; Qian, S. Field Effect Modulation of Surface Charge Property and Electroosmotic Flow in a Nanochannel: Stern Layer Effect. J. Phys. Chem. C 2013, 117, 9322-9331.
74.Malmberg, C.; Maryott, A. Dielectric Constant of Water from 0 to 1000 C. J. Res. Nat. Bur. Stand. 1956, 56, 2641.
75.Korson, L.; Drost-Hansen, W.; Millero, F. J. Viscosity of Water at Various Temperatures. J. Phys. Chem. 1969, 73, 34-39.
76.Bigg, P. H. Density of Water in SI Units Over the Range 0-40°C. Br. J. Appl. Phys 1967, 18, 521.
77.Hsu, J. P.; Yeh, L. H.; Ku, M. H. Evaluation of the Electric Force in Electrophoresis. J. Colloid Interface Sci. 2007, 305, 324-329.
78.Fraysse, F.; Pokrovsky, O. S.; Schott, J.; Meunier, J. D. Surface Properties, Solubility and Dissolution Kinetics of Bamboo Phytoliths. Geochim. Cosmochim. Acta 2006, 70, 1939-1951.
79.Miller, R. L.; Bradford, W. L.; Peters, N. E. Specific conductance: theoretical considerations and application to analytical quality control. US Government Printing Office: 1988.
80.FlexPDE, v. PDE Solutions, Spokane Valley, WA: 2004.
81.van der Heyden, F. H. J.; Stein, D.; Dekker, C. Streaming Currents in a Single Nanofluidic Channel. Phys. Rev. Lett. 2005, 95.
82.Andersen, M. B.; Frey, J.; Pennathur, S.; Bruus, H. Surface-Dependent Chemical Equilibrium Constants and Capacitances for Bare and 3-Cyanopropyldimethylchlorosilane Coated Silica Nanochannels. J. Colloid Interface Sci. 2011, 353, 301-310.
83.Wang, M.; Kang, Q.; Ben-Naim, E. Modeling of electrokinetic transport in silica nanofluidic channels. Anal. Chim. Acta 2010, 664, 158-164.
84.Kosmulski, M. The pH-Dependent Surface Charging and Points of Zero Charge: V. Update. J. Colloid Interface Sci. 2011, 353, 1-15.
85.Sonnefeld, J.; Löbbus, M.; Vogelsberger, W. Determination of Electric Double Layer Parameters for Spherical Silica Particles Under Application of the Triple Layer Model Using Surface Charge Density Data and Results of Electrokinetic Sonic Amplitude Measurements. Colloid Surf. A-Physicochem. Eng. Asp. 2001, 195, 215-225.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔