跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 23:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林柏村
研究生(外文):Bo-Tsun Lin
論文名稱:不同姿勢下使用不同手勢點擊行動裝置之表現量測
論文名稱(外文):The Measurement of Tapping Performance on Mobile Devices Using Various Gestures under Different Postures
指導教授:林瑞豐林瑞豐引用關係
指導教授(外文):Jui-Feng Lin
口試委員:孫天龍林承哲
口試委員(外文):Tien-Lung SunCheng-Jhe Lin
口試日期:2015-7-23
學位類別:碩士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
畢業學年度:103
語文別:中文
論文頁數:194
中文關鍵詞:智慧型行動裝置彈道式移動方法觸控式螢幕瞄準移動點擊表現
外文關鍵詞:Smart mobile deviceBallistic movement methodTouchscreenAiming movementTapping performance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了提升使用者在操作手機時的點擊表現與滿意度,軟體開發者必須要了解產品使用者在點擊觸控螢幕時「時間」與「準確度」的表現。過去相關研究探討速度與準確度的綜合表現而設計按鍵大小,但受限於研究方法的使用,無法針對點擊的「時間」與「準確度」表現做各別討論。Aguilera (2015)與薛沂禾(2013)為了克服此限制,使用彈道式移動方法量測不同手勢、姿勢與環境下點擊不同尺寸智慧型行動裝置的「時間」與「準確度」表現。雖然受限於實驗設備的限制,兩個研究無法驗證兩種彈道式移動模型的有效性,但發現不同的環境下所產生的點擊移動時間與誤差皆不相同,在單手拇指點擊下,點擊移動時間與X軸和Y軸變異誤差在走路情況下皆大於乘坐在火車時(Aguilera, 2015),而在坐姿情況下,單手拇指點擊的移動時間與X軸和Y軸變異誤差皆大於非慣用手握持慣用手食指點擊(薛沂禾, 2013)。
為了克服彈道式移動距離不準確的限制,並量測兩個研究中未量測到的靜態站姿與坐姿下不同手勢的點擊表現,本研究利用動作補捉系統與彈道式移動方法量測使用智慧型行動裝置時,在不同身體姿勢下,利用不同手勢點擊不同尺寸螢幕對「時間」與「準確度」所產生的差異,並驗證兩種彈道式移動模型的有效性。
本實驗分成前測實驗與正式實驗,前測實驗目的為確定實驗設計的可行性。正式實驗招募十二位受測者在實驗中點擊自行開發的手機應用程式,並利用Motion Capture Systems記錄點擊目標點時手指的移動距離。自變項為兩種身體姿勢、六種操作手勢、四種行動裝置尺寸。依變項為執行彈道式移動所花費的時間、水平軸向(X軸)與垂直軸向(Y軸)的變異誤差與常數誤差。
實驗結果顯示:(1)彈道式移動時間在站姿下與點擊螢幕中間區域做為起始點的位置點擊時間為最短。在點擊10.1吋平板電腦移動時間最長而點及4.7吋智慧型手機時移動時間最短。此外,手機直拿操作下,螢幕左上及右下點擊時間為最長;手機橫拿操作時,螢幕中上與中下方點擊時間最長。(2)變異誤差在手指點擊起始點位置誤差最小。在點擊10.1吋平板電腦時變異誤差最大而點擊4.7吋智慧型手機時變異誤差最小。此外,單手食指或拇指在手機直拿下操作,點擊螢幕邊緣左右兩側X軸變異誤差最大;雙手橫拿雙拇指點擊時點,點擊螢幕中間X軸變異誤差最大。Y軸變異誤差在手機直拿單手食指或拇指操作時,螢幕上方與下方誤差最大;雙手橫拿雙指點擊時,左下與右下誤差最大。(3)從常數誤差圖中得知,受測者在點擊螢幕邊緣時,常數誤差較大且會有朝內的傾向,靠近手指擺放位置常數誤差較小。(4)彈道式移動時間模型能有效描述移動時間與距離平方根之間的線性關係;然而基於移動距離的差異性低以及其他未控制變因(如移動方向),彈道式移動變異模型對於資料的描述能力偏低。
本研究結果與先前研究(Aguilera, 2015;薛沂禾, 2013)做整合得知,點擊移動時間最長的情況下為行走中,而站姿所花費時間最短。在單手拇指操作下,移動時間與變異誤差皆高於單手食指點擊。在雙手拇指點擊下,靠近雙手拇指擺放位置移動時間與變異誤差最小,螢幕中間與上下方雙手拇指較難點擊到的區域所產生的時間與誤差越大。智慧型手機與平板電腦隨著尺寸增加,移動時間與變異誤差跟著增加。上述結果與研究中所量測的四種點擊表現資料可作為智慧型行動裝置的按鍵設計依據。

關鍵詞:智慧型行動裝置、彈道式移動方法、觸控式螢幕、瞄準移動、點擊表現

To increase user satisfaction and tapping performance while using touchscreen cell phones. Developers have been devoted to study the tapping performance when users interacting with a cell phone. Several studies have assessed and given suggestions for designing appropriate button sizes. However, due the limitation of method used, these studies had difficulty to reveal the individual performance of movement speed and accuracy. To overcome the limitation, Aguilera (2015) and薛沂禾 (2013) applied the ballistic movement method to measure tapping performance in terms of movement time and accuracy under different conditions with varied body postures, hand gestures and mobile devices with different sizes. Although, due to the unavalable information of movement distance, two study could not validate the application of the ballistic movement time and variability models, their results showed that tapping movement time and tapping error are differnet in different environment. In handedness finger tapping, the movement time and variable errors were greater in walking situation than those measured when sitting on train (Aguilera, 2015). In sitting situation, the movement time and variable errors were greater in handedness thumb tapping than those measured when handedness finger tapping (薛沂禾, 2013).
To provide movement distance information and measured tapping conditions that were not measured, this study aimed at using a motion capture systems and the ballistic movement method to measure tapping performances in terms of moving time and accuracy under different conditions of body postures, hand gestures and mobile devices with different sizes and to validate the application of the two ballistic movement models.
This study was divided into a pilot study and a formal study. The pilot study aimed at testing the initial experimental design. In the formal study, twelve participants were recruited to perform ballistic movements on mobile devices. A motion capture system (OptiTrack Flex 3) was applied to record the trajectory of finger movement while tapping. Independent variables were two postures, six kinds of gestures to handle devices, and four sizes of devices. Dependent variables were the ballistic movement time, constant errors and variable errors both measured in horizontal and vertical direction.
Several results reported by this study. First of all, the ballistic movement time varied according to postures, gestures and sizes. The ballistic movement time was less when tapping at the starting point area and when standing. It was greatest when tapping 10.1 inch tablet and shortest when tapping 4.7 inch cell phone. Furthermore, it was greater when tapping at the upper left and lower right areas of the screen in a portrait mode, and when tapping at the upper center and lower center of the screen in a landscape model. Second, the endpoint variable errors varied according to postures, gestures and sizes as well. The variable errors were less when tapping at the starting point area. It was greatest when tapping 10.1 inch tablet and shortest when tapping 4.7 inch cell phone. Furthermore, using handedness finger and thumb variable error of horizontal direction was greater when tapping at left and right edge of the screen in a portrait mode, and using two thumbs when tapping at center of the screen in a landscape model. When using handedness finger and thumb, the variable error of vertical direction was greater when tapping at upper and lower of the screen in a portrait mode, and when tapping at the left lower and right lower of the screen in a landscape model. Third, the constant error was greater when tapping at the edges of touchscreen, and the direction tendency to toward center of the screen. Finally, although the ballistic moving time model could describe the linear relationship between the moving time and root mean square of distance, due to low variation of moving distance and other non-control variables (like moving directions) the ballistic movement variable model had lower prediction of the data.
This study with studies of Aguilera (2015) and薛沂禾 (2013) showed that the movement time was greatest in walking situation and least in standing posture. The movement time and variable errors were greater in handedness thumb gesture than handedness finger. When tapping with two thumbs, movement time and variable errors were least toward starting points, the touchscreen center, upper and lower area. Movement time and variable errors increased with increased size of mobile devices. These results could be applied when designing appropriate buttons in various conditions.

Keywords: Smart mobile device, Ballistic movement method, Touchscreen, Aiming movement, Tapping performance.

目錄
第一章 緒論
1.1 研究背景
1.2 研究動機
1.3 研究目的
1.4 論文架構
第二章 文獻探討
2.1 智慧型行動裝置發展
2.2 行動裝置操作手勢
2.3 行動裝置點擊表現
2.4 彈道式移動模型
2.4.1. 彈道式移動時間模型
2.4.2. 彈道式移動變異模型
2.5 相關研究
2.6 小結
第三章 研究方法
3.1 前測實驗
3.1.1. 實驗規劃
3.1.2. 受測者
3.1.3. 實驗設備
3.1.4. 實驗流程
3.1.5. 自變項與應變項
3.2 正式實驗
3.2.1. 實驗規劃
3.2.2. 受測者
3.2.3. 實驗設備
3.2.4. 實驗流程
3.2.5. 自變項與依變項
第四章 實驗結果與分析
4.1 前測實驗結果
4.1.1. 彈道式移動時間模型
4.1.2. 彈道式移動變異模型
4.1.3. 彈道式移動點擊表現
4.1.4. 前測小結
4.2 正式實驗結果
4.2.1. 實驗組合一:站姿情況下,利用不同手勢操作不同行動裝置尺寸
4.2.2. 實驗組合二:坐姿下,使用不同手勢操作不同尺寸行動裝置
4.2.3. 實驗組合三:不同身體姿勢下使用不同手勢操作4.7吋行動裝置
4.2.4. 實驗組合四:不同身體姿勢下使用不同手勢操作不同尺寸行動置
4.2.5. 正式實驗小結
第五章 討論
5.1 正式實驗彈道式移動時間討論
5.2 正式實驗彈道式移動變異討論
5.3 相關研究討論
5.4 研究貢獻
5.5 實驗限制
第六章 結論與建議
6.1 結論
6.2 未來研究方向
第七章 參考文獻
Aguilera. (2015). The Measurement of Tapping Performance on Mobile Devices under Impairing Contexts of Use., 元智大學.
Aguilera, A. D. R. (2015). The Measurement of Tapping Performanceon Mobile Devices under Impairing Contexts of Use. 元智大學.
Beaton, R. J., &; Welman, N. (1985). Effects Of Touch Key Size And Separation On Menu-Selection Accuracy. SPIE SPIE 0526.
Euston, J. (2014). The Tides Turn for the Phablet’s Popularity.
Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology,, 47(6), 381-391.
Gan, &; Hoffmann. (1988). Geometrical conditions for ballistic and visually controlled movements. Ergonomics, 31(5), 829-839.
Gartner. (2013). Forecast: PCs, Ultramobiles and Mobile Phones, Worldwide, 2010-2017, 4Q13 Update.
Howarth, &; Beggs. (1985). The Control of Simple Movements by Multisensory Information: Springer Berlin Heidelberg.
Howarth, &; Beggs, W. D. A. (1971). The relationship between speed and accuracy of movement aimed at a target. Acta Psychologica, 3(35), 207–218.
Karlson, A. K., &; Bederson, B. B. (2006). Understanding Single-Handed Mobile Device Interaction.
Karlson, A. K., Bederson, B. B., &; Contreras-Vidal, J. L. (2008). Understanding One-Handed Use of Mobile Devices.
Kroemer, K. H. E. (2000). Ergonomics: How to Design for Ease and Efficiency.
Lee, M. W., Jung, E. S., &; Freivalds, A. (1997). High Touch: Ergonomics in a conceptual design process - Case studies of a remote controller and personal telephones. International Journal of Industrial Ergonomics, 239-248.
Lin, R. F., Chung, C.-W., Tsai, Y.-C., &; Huang, C.-Y. (2013). An Application of the Ballistic Movement Method for Evaluating Computer Mice. Paper presented at the 15th International Conference, HCI International 2013, Las Vegas, NV, USA, .
Lin, R. F., &; Drury, C. G. (2013). Verification of models for ballistic movement time and endpoint variability. Ergonomics, 56(4).
Meyer, D. E., Smith, J. E., &; Wright, C. E. (1982). Models for the speed and accuracy of aimed movements. 89(5), 449-482.
Parhi, P., Karlson, A. K., &; Bederson, B. B. (2006). Target Size Study for One-Handed Thumb Use on Small Touchscreen Devices. Proceedings of the 8th conference on Human-computer interaction with mobile devices and services, 203-210.
Park, Y. S., &; Han, S. H. (2010). Touch key design for one-handed thumb interaction with a mobile phone: Effects of touch key size and touch key location. International Journal of Industrial Ergonomics, 40, 68-76.
Park, Y. S., Han, S. H., Park, J., &; Cho, Y. (2008). Touch key design for target selection on a mobile phone. Paper presented at the MobileHCIHuman Computer Interaction with Mobile Devices and Services.
Pascarelli, E., &; Quilter, D. (1994). Repetitive Strain Injury: A Computer User's Guide.
Pascoe, J., Ryan, N., &; Morse, D. (2000). Using while moving: HCI issues in fieldwork environments. ACM Transactions on Computer-Human Interaction (TOCHI) - Special issue on human-computer interaction with mobile systems, 7(3), 417-437.
Perry, K. B., &; Hourcade, J. P. (2008). Evaluating One Handed Thumb Tapping on Mobile Touchscreen Devices. Paper presented at the Proceedings of Graphics Interface 2008.
Ray F. Lin, &; Drury, C. G. (2013). Verification of models for ballistic movement time and
endpoint variability. Ergonomics, 56(4), 623-636.
Ray F. Lin, &; Tsai, Y.-C. (2014). The use of ballistic movement as an additional method to assess
performance of computer mice. International Journal of Industrial Ergonomics, 45, 71-81.
Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., &; Jr., Q. (1979). Motor-output variability: A theory for the accuracy of rapid motor acts. 86(5), 415-451.
Vogel, D., &; Baudisch, P. (2007). Shift: A Technique for Operating Pen-Based Interfaces
Using Touch. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
Wobbrock, J. O., Myersb, B. A., &; Aung, H. H. (2008). The performance of hand postures in front- and back-of-device interaction for mobile computing. International Journal of Human-Computer Studies, 857-875.
丘和生. (2004). 以fitts law探討PDA螢幕圖示大小與配置方式對點選績效之影響. 明志技術學院.
林瑞豐. (2010). 彈道式移動時間模型與彈道式移動變異模型的驗證. Paper presented at the 人因工程學會年會暨學術研討會.
陳詩捷. (2002). 公共資訊站觸控式螢幕注音符號軟體鍵盤設計之研究. 大同大學.
黃郁雅. (2011). 智慧型手機觸控介面操作績效之研究. 國立臺北科技大學.
萬欣亭. (2009). 多點式觸控螢幕之手勢操作研究. 大同大學

資訊工業策進會. (2014). 2014年上半年消費者行為調查出爐.
薛沂禾. (2012). 使用不同手勢點擊觸控式手持行動裝置之表現. 元智大學.
薛沂禾. (2013). 使用不同手勢點擊觸控式手持行動裝置之表現. 元智大學.
謝奇憲. (2007). 中高齡者PDA點選操作績效之探討. 明志科技大學.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top