跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/11/30 01:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮美玲
研究生(外文):My-Linh Nguyen
論文名稱:二進制鎳( II)和苯酚的吸附交聯殼聚醣珠改性釀酒酵母
論文名稱(外文):Biosorption of Binary Nickel(II) and Phenol Using Crosslinked Chitosan Beads Modified with Saccharomyces cerevisiae
指導教授:莊瑞鑫莊瑞鑫引用關係
指導教授(外文):Ruey-Shin Juang
口試委員:王大銘黃駿
口試委員(外文):Da-Ming WangChun Huang
口試日期:June 26, 2015
學位類別:博士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:103
語文別:英文
論文頁數:88
中文關鍵詞:二元吸附,交聯殼聚醣;苯酚;鎳(II) ;多元等溫線,組氨酸,釀酒酵母;多元等溫線組氨酸釀酒酵母苯酚;鎳(II交聯殼聚醣二元吸附
外文關鍵詞:Binary biosorptionCrosslinked chitosan; Phenol; Nickel(II); Multicomponent isothermsHistidineSaccharomyces CerevisiaeBinary biosorptionCrosslinked chitosanPhenolNickel(IIMulticomponent isothermsSaccharomyces Cerevisiae
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
修改與組氨酸和釀酒酵母(SC-HIS-CCBS)戊二醛交聯殼聚醣珠作為應用鎳(II)的水溶液中增強吸附生物吸附劑新。對SC-HIS-的CCB的特點是掃描電子顯微鏡(SEM)和傅里葉變換紅外光譜(FTIR)分析。各種參數,如pH,接觸時間,和生物吸附劑的量,在Ni(II)的吸附的影響。的最適pH被發現是6.0。等溫線符合Freundlich方程很好,雖然可以用Langmuir方程來描述。偽二級動力學模型能更好地按照相反的偽一級動力學模型吸附過程。鎳(II)吸附的熱力學參數,包括吉布斯自由能變(ΔG),焓變(△H)和熵變(ΔS),分別計算。負ΔG值標示在SC-HIS-城市商業銀行的鎳(II)吸附的自發性。
改良的組氨酸和利用戊二醛釀酒酵母作為交聯劑(SC-HIS-CCBS)苯酚的吸附脫乙酰殼多醣珠的能力進行了研究。 SC-HIS-的CCB的表面用掃描電子顯微鏡(SEM)和傅里葉變換紅外光譜(FTIR)分析。使用批處理吸附實驗的SC-HIS-的CCB通過改變接觸時間,溶液的pH值(2.0-7.0),以及初始酚濃度(25-250毫克的L-1),然後執行。等溫線和動力學數據進行擬合方程適用於包括朗繆爾,Freundlich吸附,假一階和偽二階方程。分別計算苯酚的吸附在SC-HIS-城市商業銀行熱力學參數。用NaOH溶液中進行從裝入的SC-HIS-的CCB解吸苯酚。 28.4毫克G-1苯酚對SC-HIS-城市商業銀行的吸附能力,在pH值2.0和313 K,由Langmuir方程確定,表明這種改性殼聚醣生物吸附劑的有前途的潛力。
苯酚和Ni(Ⅱ)的從上修飾組氨酸和釀酒酵母(SC-HIS-CCBS)戊二醛交聯的聚氨基葡糖​​珠的二進制方案的吸附的影響。以4.0的優化pH值下進行分批吸附。這兩個溶質的吸附之間的協同效應,觀察;即,苯酚和Ni(Ⅱ)的平衡吸附在第二組分的存在相比於相應的單系統增加。它表明,在二元系統中得到的吸附等溫線,可以很好裝有改性Langmuir模型。
Glutaraldehyde-crosslinked chitosan beads modified with histidine and Saccharomyces cerevisiae (SC-HIS-CCBs) were applied as new biosorbents for enhanced adsorption of Ni (II) from aqueous solutions. The SC-HIS-CCBs were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. The effects of various parameters, such as pH, contact time, and amount of biosorbent, on Ni (II) biosorption were investigated. The optimal pH was found to be 6.0. Isotherm data fit the Freundlich equation well, although they could be described by the Langmuir equation. The pseudo-second-order kinetic model could better follow the biosorption process in contrast to the pseudo-first-order kinetic model. The thermodynamic parameters of Ni (II) biosorption, including Gibbs free energy change (ΔG), enthalpy change (ΔH), and entropy change (ΔS), were calculated. The negative ΔG value indicated the spontaneous nature of Ni (II) biosorption on the SC-HIS-CCBs.
The ability of chitosan beads modified with histidine and Saccharomyces cerevisiae using glutaraldehyde as a crosslinking agent (SC-HIS-CCBs) for the biosorption of phenol was studied. The surface of SC-HIS-CCBs was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. Batch biosorption experiments using the SC-HIS-CCBs were then performed by varying contact time, solution pH (2.0-7.0), and initial phenol concentration (25-250 mg L-1). The isotherm and kinetic data were fitted by suitable equations including the Langmuir, Freundlich, pseudo-first-order, and pseudo-second-order equations. Thermodynamic parameters of phenol biosorption on the SC-HIS-CCBs were calculated. Desorption of phenol from the loaded SC-HIS-CCBs was performed with NaOH solution. The biosorption capacity of phenol of 28.4 mg g-1 on the SC-HIS-CCBs at pH 2.0 and 313 K, determined by the Langmuir equation, indicated the promising potential of such modified chitosan biosorbents.
The biosorption of phenol and Ni (II) from binary solutions on glutaraldehyde-crosslinked chitosan beads modified with histidine and Saccharomyces cerevisiae (SC-HIS-CCBs) was investigated. Batch biosorption was performed at an optimized pH of 4.0. Synergy between the biosorption of both solutes was observed; that is, the equilibrium biosorption of phenol and Ni(II) increased in the presence of the second component compared to the corresponding single systems. It was shown that the biosorption isotherms obtained in binary systems could be well fitted with the modified Langmuir model.

ACKNOWLEDGEMENTS 3
ABSTRACT 4
TABLE OF CONTENTS 5
LIST OF TABLES 7
LIST OF FIGURES 8
ABBREVIATIONS 10
!UNEXPECTED END OF FORMULA
1.1 Nickel from aqueous solution and removal methods 11
1.2 Phenol from aqueous solution and removal methods 11
1.3 Treatment of phenol and Nickel (II) in binary solutions: 18
1.4 Biosorption method for wastewater treatment 19
1.4.1 Application biosorption for removal heavy metals 19
1.4.2 Application biosorption for removal phenols and phenolic compounds 20
1.5 Chitosan 23
1.5.1 Raw chitosan 24
1.5.2 Chitosan modification 25
1.5.2.1 Physical modifications 25
1.5.2.2 Chemical modifications 26
1.6 Saccharomyces cerevisae 29
1.7 Histidine 30
1.8 Objectives 30
CHAPTER 2. MATERIALS AND METHODS 31
2.1 Chemicals 31
2.2 Microorganism and culture condition 31
2.3. Instrumentation 31
2.4. Preparation of biosorbent 32
2.5. Characterization of CB and SC-HIS-CCB 33
2.6. Biosorption studies 33
2.6.1 Equilibrium modeling 34
2.6.2 Adsorption kinetics 36
2.6.3 Determination of thermodynamic parameters 36
2.7 Batch desorption tests 37
2.7.1 Nickel (II) desorption test 37
2.7.2 Phenol desorption test 37
CHAPTER 3. RESULTS AND DISCUSSION 38
3.1 Single biosorption of Nickel (II) 38
3.1.1 Characterization of CB, S.C-HIS-CCB and nickel sorbed S.C-HIS-CCB 38
3.1.2. Effect of initial pH on Ni(II) biosorption 40
3.1.3. Effect of biosorbent dose on Ni(II) biosorption 41
3.1.4. Biosorption equilibrium modeling 42
3.1.5. Determination of the thermodynamic parameters 46
3.1.6. Biosorption kinetics 48
3.1.7. Desorption studies 50
3.2 Single biosorption of Phenol 50
3.2.1 Characterization of CB, S.C-HIS-CCBs and phenol sorbed S.C-HIS-CCBs 50
3.2.2 Effect of contact time on phenol biosorption 52
3.2.3. Effect of initial pH on phenol biosorption 53
3.2.4. Biosorption kinetics 53
3.2.5. Biosorption equilibrium modeling 55
3.2.6. Determination of thermodynamic parameters 57
3.2.7. Desorption studies 58
3.3 Simultaneous biosorption of Ni (II) and phenol 59
3.3.1 Characterization of S.C-HIS-CCBs, Ni (II) sorbed S.C-HIS-CCBs ,phenol sorbed S.C-HIS-CCBs and Ni (II) - phenol sorbed S.C-HIS-CCBs. 59
3.3.2. Effect of initial pH on simultaneous biosorption of Ni(II) and phenol 60
3.3.3. Kinetics of simultaneous biosorption of Ni(II) and phenol 61
3.3.4 Isotherms for simultaneous biosorption of Ni(II) and phenol 62
3.3.5. Application of multicomponent adsorption isotherms 64
3.3.6 Synergy mechanism……………………………………………………………………67
CHAPTER 4 CONCLUSIONS 68
REFERENCES 70
BIOLOGY……………………………………………………………………………………….87

1. J. Wang, C. Chen, Biosorption of heavy metals by Saccharomyces cerevisiae: A review, Biotechnol. Adv., 24 (2006) 427-451.
2. J. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv., 27 (2009) 195-226.
3. A. Eser, V. N#westeur061#ket Tirtom, T. Aydemir, S. Becerik, A. Din#westeur040#er, Removal of nickel(II) ions by histidine modified chitosan beads, Chem .Eng.J, 210 (2012) 590-596.
4. V. Padmavathy, P. Vasudevan, S.C. Dhingra, Thermal and spectroscopic studies on sorption of nickel(II) ion on protonated baker’s yeast, Chemosphere, 52 (2003) 1807-1817.
5. V. Padmavathy, Biosorption of nickel(II) ions by baker’s yeast: Kinetic, thermodynamic and desorption studies, Bioresour. Technol., 99 (2008) 3100-3109.
6. V. Coman, B. Robotin, P. Ilea, Nickel recovery/removal from industrial wastes: A review, Resources, Conservation and Recycling, 73 (2013) 229-238.
7. I. Alom#westeur034#, M.A. Mart#westeur046#n-Lara, I.L. Rodr#westeur046#guez, G. Bl#westeur034#zquez, M. Calero, Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse, J.Taiwan Inst.Chem.Eng, 43 (2012) 275-281.
8. A. Engl, B. Kunz, Biosorption of heavy metals by Saccharomyces cerevisiae: Effects of nutrient conditions, J.Chem .Tech&; Biotech, 63 (1995) 257-261.
9. U. Farooq, J.A. Kozinski, M.A. Khan, M. Athar, Biosorption of heavy metal ions using wheat based biosorbents – A review of the recent literature, Bioresour. Technol., 101 (2010) 5043-5053.
10. M. Gavrilescu, Removal of Heavy Metals from the Environment by Biosorption, Eng.Life Sci, 4 (2004) 219-232.
11. B. #westeur023#zkaya, Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models, J.Hazard.Mater, 129 (2006) 158-163.
12. S.K. Nadavala, K. Swayampakula, V.M. Boddu, K. Abburi, Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads, J. Hazard. Mater., 162 (2009) 482-489.
13. T. Saitoh, K. Asano, M. Hiraide, Removal of phenols in water using chitosan-conjugated thermo-responsive polymers, J. Hazard. Mater., 185 (2011) 1369-1373.
14. S.-H. Lin, R.-S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review, J.Environ.Manage, 90 (2009) 1336-1349.
15. Y. Alen, S. Nakajima, T. Nitoda, N. Baba, H. Kanzaki, K. Kawazu, Two antinematodal phenolics from Knema hookeriana, a Sumatran rainforest plant, Zeitschrift fur Naturforschung. C, J. of biosci, 55 (2000) 300-303.
16. R. Aravindhan, J.R. Rao, B.U. Nair, Application of a chemically modified green macro alga as a biosorbent for phenol removal, J.Environ.Manage, 90 (2009) 1877-1883.
17. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: A short review of recent developments, J.Hazard.Mater, 160 (2008) 265-288.
18. M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: A review, Advances in Colloid and Interface Science, 143 (2008) 48-67.
19. Y. Sağ, T. Kutsal, The simultaneous biosorption process of lead(II) and nickel(II) on Rhizopus arrhizus, Process Biochem, 32 (1997) 591-597.
20. Z. Aksu, D. Akpinar, E. Kabasakal, B. K#westeur055#se, Simultaneous biosorption of phenol and nickel(II) from binary mixtures onto dried aerobic activated sludge, Process Biochem, 35 (1999) 301-308.
21. Z. Aksu, D. Akpınar, Modelling of simultaneous biosorption of phenol and nickel(II) onto dried aerobic activated sludge, Sep.Pur .Techno, 21 (2000) 87-99.
22. Z. Aksu, #westeur029#. A#westeur040#ıkel, E. Kabasakal, S. Tezer, Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge, Wat Res., 36 (2002) 3063-3073.
23. W.S. Wan Ngah, L.C. Teong, M.A.K.M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: A review, Carbohydrate Polymers, 83 (2011) 1446-1456.
24. F.-C. Wu, R.-L. Tseng, R.-S. Juang, A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals, J.Environ.Manage, 91 (2010) 798-806.
25. W.S.W. Ngah, S. Fatinathan, Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads, Chem.Eng.J, 143 (2008) 62-72.
26. Y. Vijaya, S.R. Popuri, V.M. Boddu, A. Krishnaiah, Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption, Carbohydrate Polymers, 72 (2008) 261-271.
27. I.M.N. Vold, K.M. V#westeur038#rum, E. Guibal, O. Smidsr#westeur057#d, Binding of ions to chitosan—selectivity studies, Carbohydrate Polymers, 54 (2003) 471-477.
28. J. Abdullah, M. Ahmad, N. Karuppiah, L.Y. Heng, H. Sidek, Immobilization of tyrosinase in chitosan film for an optical detection of phenol, Sensors and Actuators B: Chemical, 114 (2006) 604-609.
29. O.A.C. Monteiro Jr, C. Airoldi, Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system, Int. J. Biol. Macromol., 26 (1999) 119-128.
30. N.V. Suc, H.T.Y. Ly, Lead (II) removal from aqueous solution by chitosan flake modified with citric acid via crosslinking with glutaraldehyde, Journal of Chemical Technology &; Biotechnology, (2013) 1641-1649.
31. M. Rinaudo, Chitin and chitosan: Properties and applications, Progress in Polymer Science, 31 (2006) 603-632.
32. T.S. Anirudhan, S. Rijith, Glutaraldehyde cross-linked epoxyaminated chitosan as an adsorbent for the removal and recovery of copper(II) from aqueous media, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 351 (2009) 52-59.
33. M.M. Beppu, E.J. Arruda, R.S. Vieira, N.N. Santos, Adsorption of Cu(II) on porous chitosan membranes functionalized with histidine, Journal of Membrane Science, 240 (2004) 227-235.
34. M.M. Beppu, R.S. Vieira, C.G. Aimoli, C.C. Santana, Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption, Journal of Membrane Science, 301 (2007) 126-130.
35. R. Laus, T.G. Costa, B. Szpoganicz, V.T. F#westeur034#vere, Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent, J. Hazard. Mater., 183 (2010) 233-241.
36. R. Laus, V.T. de F#westeur034#vere, Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin–triphosphate, Bioresour. Technol., 102 (2011) 8769-8776.
37. J.D. Merrifield, W.G. Davids, J.D. MacRae, A. Amirbahman, Uptake of mercury by thiol-grafted chitosan gel beads, Water research, 38 (2004) 3132-3138.
38. J.-M. Li, X.-G. Meng, C.-W. Hu, J. Du, Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan, Bioresour. Technol., 100 (2009) 1168-1173.
39. S.-I. Park, I.S. Kwak, S.W. Won, Y.-S. Yun, Glutaraldehyde-crosslinked chitosan beads for sorptive separation of Au(III) and Pd(II): Opening a way to design reduction-coupled selectivity-tunable sorbents for separation of precious metals, J. Hazard. Mater., 248–249 (2013) 211-218.
40. D.-J. Seo, Y.-H. Jang, R.-D. Park, W.-J. Jung, Immobilization of chitinases from Streptomyces griseus and Paenibacillus illinoisensis on chitosan beads, Carbohydrate Polymers, 88 (2012) 391-394.
41. E. Soares, H.V.M. Soares, Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review, Environ Sci Pollut Res, 19 (2012) 1066-1083.
42. S. Vinopal, T. Ruml, P. Kotrba, Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae, International Biodeterioration &; Biodegradation, 60 (2007) 96-102.
43. Z. Aksu, Application of biosorption for the removal of organic pollutants: a review, Process Biochem, 40 (2005) 997-1026.
44. H. Bağ, M. Lale, A.R. T#westeur061#rker, Determination of iron and nickel by flame atomic absorption spectrophotometry after preconcentration on Saccharomyces cerevisiae immobilized sepiolite, Talanta, 47 (1998) 689-696.
45. M.D. Machado, E.V. Soares, H.M.V.M. Soares, Selective recovery of copper, nickel and zinc from ashes produced from Saccharomyces cerevisiae contaminated biomass used in the treatment of real electroplating effluents, J. Hazard. Mater., 184 (2010) 357-363.
46. M.B. Desta, Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw (Eragrostis tef) Agricultural Waste, Journal of Thermodynamics, 2013 (2013) 6.
47. O. Hamdaoui, E. Naffrechoux, Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters, J.Hazard.Mater, 147 (2007) 381-394.
48. W.S.W. Ngah, S. Fatinathan, Chitosan flakes and chitosan–GLA beads for adsorption of p-nitrophenol in aqueous solution, Colloids and Surfaces A: Physi.Eng Aspects, 277 (2006) 214-222.
49. V.C. Srivastava, I.D. Mall, I.M. Mishra, Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash, J. Chem. Eng, 117 (2006) 79-91.
50. S.R. Popuri, Y. Vijaya, V.M. Boddu, K. Abburi, Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads, Bioresour. Technol., 100 (2009) 194-199.
51. L. Cui, G. Wu, T.-s. Jeong, Adsorption performance of nickel and cadmium ions onto brewer's yeast, The Canadian. J. Chem. Eng, 88 (2010) 109-115.
52. Y. G#westeur055#ksungur, S. #westeur029#ren, U. G#westeur061#ven#westeur040#, Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass, Bioresour. Technol., 96 (2005) 103-109.
53. A. Ghaee, M. Shariaty-Niassar, J. Barzin, A. Zarghan, Adsorption of copper and nickel ions on macroporous chitosan membrane: Equilibrium study, Appl. Surf. Sci., 258 (2012) 7732-7743.
54. F. Yang, H. Liu, J. Qu, J. Paul Chen, Preparation and characterization of chitosan encapsulated Sargassum sp. biosorbent for nickel ions sorption, Bioresour. Technol., 102 (2011) 2821-2828.
55. M.M. Montazer-Rahmati, P. Rabbani, A. Abdolali, A.R. Keshtkar, Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae, J. Hazard. Mater., 185 (2011) 401-407.
56. T. Akar, Z. Kaynak, S. Ulusoy, D. Yuvaci, G. Ozsari, S.T. Akar, Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: Biosorption characteristics in batch and dynamic flow mode, J. Hazard. Mater., 163 (2009) 1134-1141.
57. M. Amini, H. Younesi, N. Bahramifar, Biosorption of nickel(II) from aqueous solution by Aspergillus niger: Response surface methodology and isotherm study, Chemosphere, 75 (2009) 1483-1491.
58. G. Pigatto, A. Lodi, E. Finocchio, M.S.A. Palma, A. Converti, Chitin as biosorbent for phenol removal from aqueous solution: Equilibrium, kinetic and thermodynamic studies, Chem. Eng and Process: Process Intensification.
59. N.T. Abdel-Ghani, G.A. El-Chaghaby, F.S. Helal, Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes, J. Ad. Res, 6 (2015) 405-415.
60. U.A. Guler, M. Sarioglu, Single and binary biosorption of Cu(II), Ni(II) and methylene blue by raw and pretreated Spirogyra sp.: Equilibrium and kinetic modeling, Chem.Environ.Chem.Eng, 1 (2013) 369-377.
61. M. Zafar, I. Abbas, R. Nadeem, M. Sheikh, M. Ghauri, Removal of Nickel onto Alkali Treated Rice Bran, Water, Air, Soil Pollut., 197 (2009) 361-370.
62. Wu, Feng-Chin,Tseng, Ru-Ling,Juang, Ruey-Shin A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals J.Environ.Manage 91( 2010) 798–806.
63. Calace N, Nardi E, Petronio BM, Pietroletti M. Adsorption of phenols by papermill sludges. Environ Pollut 2002;118:315–9.
64. Rao JR, Viraraghavan T. Biosorption of phenol from an aqueous solution by Aspergillus niger biomass. Bioresour Technol 2002;85:165–71.
65. Kennedy KJ, Lu J, Mohn WW. Biosorption of chlorophenols to anaerobic granular sludge. Water Res 1992;26:1085–92.
67. Bell JP, Tsezos M. Removal of hazardous organic pollutants by adsorption on microbial biomass. Water Sci Technol 1987;19:409– 16.
68. Tsezos M, Bell JP. Comparison of the biosorption and desorption of hazardous organic pollutants by live and dead biomass. Water Res 1989;23:561–8.
69. Logan BE, Alleman BC, Amy GL, Gilbertson RL. Adsorption and removal of pentachlorophenol by white rot fungi in batch culture. Water Res 1994;28:1533–8.
70. Jacobsen BN, Arvin E, Reinders M. Factors affecting sorption of pentachlorophenol to suspended microbial biomass. Water Res 1996;30:13–20.
71. Brandt S, Zeng A-P, Deckwer W-D. Adsorption and desorption of pentachlorophenol on cells of Mycobacterium chlorophenolicum PCP-1. Biotechnol Bioeng 1997;55:480–9.
72. Daughney CJ, Fein JB. Sorption of 2,4,6-trichlorophenol by Bacillus subtilis. Environ Sci Technol 1998;32:749–52.
73. Aksu Z, Yener J. Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge. Process Biochem 1998;33:49–655.
74. Benoit P, Barriuso E, Calvet R. Biosorption characterization of herbicides, 2,4-D and atrazine, and two chlorophenols on fungal mycelium. Chemosphere 1998;37:1271–82.
75. Jianlong W, Yi Q, Horan N, Stentiford E. Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass. Bioresour Technol 2000;75:157–61.
76. Aksu Z, Akpinar D. Modelling of simultaneous biosorption of phenol and nickel(II) onto dried aerobic activated sludge. Sep Purif Technol 2000;21:87–99.
77. Aksu Z, Akpinar D. Competitive biosorption of phenol and chromium(VI) from binary mixtures onto dried anaerobic activated sludge. Biochem Eng J 2001;7:183–93.
78. Wang W, Zhang X, Wang D. Adsorption of p-chlorophenol by biofilm components. Water Res 2002;36:551–60.
79. Karim K, Gupta SK. Biosorption of nitrophenols on anaerobic granular sludge. Environ Technol 2002;23:1379–84.
80. G.A.F. Roberts, Chitin Chemistry, MacMillan, London, UK,1992, 350p.
81. D. Knorr, Dye Binding Properties of Chitin and Chitosan.J. Food Sci. 48 (1983) 36.
82. G.G. Maghami, G.A.F. Roberts, Makromol. Colorimetric Determination of Chitosan .Chem. 189 (1988) 2239.
83. H. Yoshida, A. Okamoto, T. Kataoka, Adsorption of Congo Red from Aqueous Solution Using CTAB-Kaolin from Bechar AlgeriaChem. Eng. Sci. 48 (1993) 2267.
84. G. Gibbs, J.M. Tobin, E. Guibal, Reactive and basic dyes removal by sorption onto chitosan derivatives J. Appl. Polym. Sci. 90 (2003) 1073.
85. N. Jha, L. Iyengar, A.V.S. Prabhakara Rao, Removal of Cadmium Using Chitosan. J. Environ. Eng.114 (1988) 962.
86. M. Gonzalez-Davila, J.M. Santana-Casiano, F.J. Millero, Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method.J .Colloid Interf. Sci. 137 (1990) 102.
87. O.A.C.J. Monteiro, C. Airoldi, Some Thermodynamic Data on Copper-Chitin and Copper-Chitosan Biopolymer Interactions.J. Colloid Interf. Sci. 212(1999) 212.
88. M.S. Dzul Erosa, T.I. Saucedo Medina, R. Navarro Mendoza,M. Avila Rodriguez, E. Guibal, Advanced Separations by Specialized Sorbents.Hydrometallurgy 61 (2001)157.
89. B. Benguella, H. Benaissa, Comparative Cadmium Adsorption from Water by Nanochitosan and Chitosan Colloids Surf. A: Physicochem.Eng. Aspects 201 (2002) 142.
90. R. Maruca, B.J. Suder, J.P. Wightman, Interaction of heavy metals with chitin and chitosan. III. ChromiumJ. Appl. Polym. Sci.27 (1982) 4827.
91. K.J. V#westeur038#rum, M.W. Antohonsen, H. Grasdalen, O. Smidsr#westeur057#d, Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. spectroscopy.Carbohydr. Res. 211 (1991) 17.
92. K.J. V#westeur038#rum, B. Egelandsdal, M.R. Ellekj#westeur039#r, Compilation of analytical methods to characterize and determine chitosan, and main applications of the polymer in food active packagingCarbohydr.Polym. 28 (1995) 187.
93. M.H. Ott#westeur057#y, K.J. V#westeur038#rum, O. Smidsr#westeur057#d, Polysaccharides: Structural Diversity and Functional Versatility. Carbohydr. Polym.29 (1996) 17.
94. M.L. Duarte, M.C. Ferreira, M.R. Marv#westeur036#o, J. Rocha, An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopyInt. J.Biol. Macromol. 31 (2002) 1.
95. K. Ogawa, T. Yui, Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological. Biosci. Biotech. Biochem. 57 (1993)1466.
96. K. Okuyama, K. Noguchi, T. Miyazawa, T. Yui, K. Ogawa, Structural diversity of chitosan and its complexes. Macromolecules 30 (1997) 5849.
97. C. Milot, J. McBrien, S. Allen, E. Guibal, Influence of physicochemical and structural characteristics of chitosan flakes on molybdate sorption .J. Appl. Polym.Sci. 68 (1998) 571.
98. G.L. Rorrer, T.-Y. Hsien, J.D. Way, Preparation of Chitosan-graft-poly(vinyl acetate) Copolymers and Their Adsorption of Copper Ion. Ind. Eng. Chem. Res.32 (1993) 2170.
99. E. Guibal, C. Milot, J.M. Tobin, Fundamentals and Applications of Anion Separations Ind. Eng. Chem. Res. 37(1998) 1454.
100. E. Guibal, C. Milot, J. Roussy, Sorption Processes and Pollution: Conventional and Non-conventional Sorbents .Wat. Environ. Res. 71 (1999)10.
101. E. Piron; M. Accominotti and A. Domard, Interaction between chitosan and uranyl ions role of physical and physicochemical parameters on the kinetics of sorption. Langmuir, (1997), 13: (6), 1653–1658
102. E. Piron, A. Domard, Interaction between chitosan and uranyl ions. Part 1. Role of physicochemical parameters, Int. J. Biol. Macromol. 21 (1997) 327.
103. G. McKay, H.S. Blair, S. Grant, Desorption of copper from a copper-chitosan complex, J. Appl. Polym. Sci. 40(1987) 63.
104. I.M. van der Lubben, J.C. Verhoef, G. Borchard, H.E.Junginger, in: R.A.A. Muzzarelli (Ed.), Chitosan per os fromDietary Supplement to Drug Carrier, ATEC, Grottammare,Italy, 2000, pp. 15–126.
105. T. Mitani, C. Nakajima, I.E. Sungkono, H. Ishii, Effects of ionic strength on the adsorption of heavy metals by swollen chitosan beads, J. Environ.Sci. Health Part A 30 (1995) 669.
106. T.-Y. Hsien, G.L. Rorrer, Effects of acylation and crosslinking on the material properties and cadmium ion adsorption capacity of porous chitosan Beads, Sep. Sci. Technol. 30 (1995) 2455.
107. Y. Kawamura, H. Yoshida, S. Asai, H. Tanibe, Recovery of HgCl 2 using polyaminated highly porous chitosan beads: effect of salt and acid J. Chem.Eng. Jpn. 31 (1998) 1.
108. W.S. Wan Ngah, C.S. Endud, R. Mayanar, Removal of copper(II) ions from aqueous solution onto chitosan and cross-linkedchitosan beads, React. Funct.Polym. 50 (2002) 181.
109. R.A.A. Muzzarelli, F. Tanfani, M. Emanuelli, S. Gentile, The chelation of cupric ions by chitosan membranes [Callinectes sapidus, blue crab shell], J.Appl. Biochem. 2 (1980) 380.
110. Z. Modrzejewska, W. Kaminski, Separation of Cr(VI) on chitosan membranes, Ind. Eng. Chem. Res. 38 (1999) 4946.
111. X.P. Wang, Z.Q. Shen, Studies on the effects of copper salts on the separation performance of chitosan membranes, Polym. Int. 49 (2000) 1426.
112. F.-L. Mi, S.-S. Shyu, Y.-B. Wu, S.-T. Lee, J.-Y. Shyong, R.-N. Huang, Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressingBiomaterials 22 (2001) 165.
113. E.B. Denkbas, M. Odabasi, Chitosan microspheres and sponges: preparation and characterizatio, J. Appl. Polym. Sci. 76 (2000)1637.
114. M. Amaike, Y. Senoo, H. Yamamoto, Sphere, Honeycomb, Regularly Spaced Droplet and Fiber Structures of Polyion Complexes of Chitosan and Gellan, Macromol. Rapid Commun. 19 (1998) 287.
115. O.C. Agboh, Y. Quin, Chitin and chitosan fibers, Polym. Adv. Technol. 8 (1997) 355.
116. T. Vincent, E. Guibal, Non-dispersive liquid extraction of Cr (VI) by TBP/Aliquat 336 using chitosan-made hollow fibers, Solvent Extr. Ion Exch. 18 (2000)1241.
117. T. Vincent, E. Guibal, Cr(VI) extraction using Aliquat 336 in a hollow fiber module made of chitosan, Ind. Eng. Chem. Res. 40 (2001) 1406.
118. M.A. Ruiz, A.M. Sastre, E. Guibal, Carbohydrates in Sustainable Development ISep. Sci. Technol. 37 (2002) 2143.
119. K. Inoue, H. Hirakawa, Y. Ishikawa, T. Yamaguchi, J. Nagata, K. Ohto, K. Yoshizuka, Adsorption of metal ions on gallium(III)-templated oxine type of chemically modified chitosan, Sep. Sci. Technol. 31 (1996) 2273.
121. Y. Baba, K. Masaaki, Y. Kawano, Synthesis of a chitosan derivative recognizing planar metal ion and its selective adsorption equilibria of copper(II) over iron(III) React. Funct. Polym. 36 (1998) 167.
122. T.W. Tan, X.J. He, W.X. Du, Adsorption behaviour of metal ions on imprinted chitosan resins, J. Chem. Tech. Biotechnol. 76 (2001) 191.
123. Z. Cao, H. Ge, S. Lai, Studies on synthesis and adsorption properties of chitosan cross linked by glutaraldehyde and Cu (II) as template under microwave irradiation, Eur. Polym. J. 37 (2001) 2141.
124. K. Kurita, Controlled functionalisation of the polysaccharide chitin, Prog. Polym. Sci. 26 (2001) 1921.
125. K. Inoue, Y. Baba, Inoue K, Baba Y. Adsorptive separation behavior of chitosan and chemically modified chitosan for metal ions. I. Adsorption of metal ions on chitosan, J. Ion Exch. 8 (1997) 115.
126. K. Inoue, K. Yoshizuka, Y. Baba, Environmental Application of Chitosan Resins for the Treatment of Water and Wastewater: A ReviewJ. Ion Exch. 8 (1997) 180.
127.Y. Baba, K. Inoue, J. Ion Exch. 8 (1997) 227.
128. K. Inoue, K. Ohto, Y. Baba, Adsorptive separation behavior of chitosan and ... complexane type of chemically modified chitosan, J. Ion Exch. 9 (1998) 115.
129. T. Becker, M. Schlaak, H. Strasdeit, Adsorption of nickel(II), zinc(II) and cadmium(II) by new chitosan derivatives, React. Funct. Polym.44 (2000) 289.
130. G.K. Moore, G.A.F. Roberts, Preparation and reactiviy of Schiff's base derivatives of chitosan, Int. J. Biol. Macromol. 3 (1981) 337.
131. T.-Y. Hsien, G.L. Rorrer, Heterogeneous cross-linking of chitosan gel beads: kinetics, modeling, and influence on cadmium ion adsorption capacity, Ind. Eng. Chem. Res. 36 (1997)3631.
132. O.A.C.J. Monteiro, C. Airoldi, Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system.Int. J. Biol. Macromol. 26 (1999) 119.
133. F.-L. Mi, C.-Y. Kuan, S.-S. Shyu, S.-T. Lee, S.-F. Chang, The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release, Carbohydr. Polym. 41 (2000) 389.
134. M. Ruiz, A.M. Sastre, E. Guibal, Palladium sorption on glutaraldehyde-crosslinked chitosan, React. Funct. Polym. 45 (2000) 155.
135. D. Capitani, A.A. De Angelis, V. Crescenzi, G. Masci, A.L.Segre, N.M.R. study, of a novel chitosan-based hydrogel, Carbohydr. Polym. 45 (2001) 245.
136. G. Paradossi, F. Cavalieri, V. Crescenzi, NMR proton relaxation study of a chitosan — cyclodextrin networ, Carbohydr. Res.300 (1997) 77. E. Guibal / Separation and Purification Technology 38 (2004) 43–74 71
137. V. Crescenzi, G. Paradossi, P. Desideri, M. Dentini, F. Cavalieri, E. Amici, R. Lisi, Polym. Gels Ntwk. 5 (1997) 225.
138. Y. Kawamura, M. Mitsushashi, H. Tanibe, H. Yoshida, Adsorption of metal–ions on polyaminated highly porous chitosan chelating resin, Ind. Eng. Chem. Res. 32 (1993) 386.
139. Y. Kawamura, H. Yoshida, S. Asai, H. Tanibe, Breakthrough curve for adsorption of mercury (II) on polyaminated hightly porous chitosan beads Wat. Sci.Technol. 35 (1997) 97.
140. R.-S. Juang, C.-Y. Ju, Equilibrium sorption of copper (II)-ethylendiaminetetraacetic acid chelates onto cross-linked, polyaminated chitosan beads, Ind. Eng. Chem. Res. 36 (1997) 5403.
141. R.-S. Juang, C.-Y. Ju, Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan.Ind. Eng. Chem. Res. 37 (1998) 3463.
142. K. Inoue, Y. Baba, K. Yoshizuka, Application of chitin and chitosan Bull. Chem. Soc. Jpn. 66 (1993) 2915.
143. K. Ohga, Y. Kurauchi, H. Yanase, Adsorption behavior of Mercury onto clossliking chitosan. Bull. Chem. Soc. Jpn. 60 (1987) 444.
144. F.-L. Mi, S.-S. Shyu, S.-T. Lee, T.-B. Wong, Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method.J. Polym. Sci. Part B. Polym. Phys. 37 (1999) 1551.
145. S.-T. Lee, F.-L. Mi, Y.-J. Shen, S.-S. Shyu, Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing.Polymer 42 (2001) 1879.
146. K. Kurita, Y. Koyama, A. Taniguchi, Application of chitin and chitosan in adsorption heavy metal J. Appl. Polym. Sci. 31 (1986) 1169.
147. K. Kurita, Y. Koyama, A. Taniguchi, Studies on chitin. J. Appl. Polym. Sci.31 (1986) 1951.
148. M. Ruiz, A.M. Sastre, E. Guibal, Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use. React. Funct. Polym. 45 (2000) 155.
149. M. Ruiz, A.M. Sastre, E. Guibal, Palladium sorption on glutaraldehyde-crosslinked chitosan.Sep. Sci. Technol. 37 (2002) 2385.
150. K. Sreenivasan, Calcium ion modulates protein release from chitosan-hyaluronic acid poly electrolyte gel. J. Appl. Polym. Sci. 69 (1998) 1051.
151. T. Tojima, H. Katsura, M. Nishiki, S. Tokura, N. Sakairi, Preparation of an α‐cyclodextrin–linked chitosan derivative via reductive amination strategy Carbohydr. Polym. 40 (1999) 17.
152. P.L. Lopez-de Alba, B. Urbina, J.C. Alvarado, G.A. Andreu, J.A. Lopez, J. Radioanal. Nucl. 1 K.R. Holme, L.D. Hall, Can. J. Chem. 69 (1991) 585.
153. R.A.A. Muzzarelli, F. Tanfani, N-(o-carboxybenzyl) chitosan, N-carboxymethyl chitosan and dithiocarbamate chitosan: new chelating derivatives of chitosanPure Appl. Chem. 54 (1982) 2141.
154. S. Tokura, S.-I. Nishimura, N. Nishi, Studies on Chitin IX. Specific Binding of Calcium Ions by Carboxymethyl-Chitin.Polymer J. 15 (1983) 597.
155. R.A.A. Muzzarelli, The removal of trace metal ions from industrial waters, nuclear effluents and drinking water with the aid of cross-linked carboxymethyl chitosan Carbohydr. Polym. 8 (1988) 1.
156. L.-G. Tang, D.N.-S. Hon, Chelation of chitosan derivatives with zinc ions. II. Association complexes of Zn2+ onto O,N-carboxymethyl chitosan.J. Appl. Polym. Sci. 79 (2001) 1476.
157. W.S. Wan Ngah, K.H. Liang, Adsorption of Gold(III) Ions onto Chitosan and N-Carboxymethyl Chitosan:  Equilibrium Studies.Ind. Eng. Chem. Res. 38 (1999) 1411.
158. R.A.A. Muzzarelli, F. Tanfani, M. Emanuelli, Glutamate glucan and aminogluconate glucan: new chelating polyapholytes obtained from chitosan Carbohydr. Polym. 4 (1984) 137.
159. R.A.A. Muzzarelli, F. Tanfani, M. Emanuelli, The chelating ability of aminoacid glucans and sugar acid glucans. in chitin in nature and technology biotechnol. bioeng. 27 (1985) 1115.
160. R.A.A. Muzzarelli, Chemically modified chitosans.Carbohydr. Polym. 5 (1985) 85.
161. R.A.A. Muzzarelli, A. Zattoni, Chitin and chitosan.Int. J. Biol. Macromol. 8 (1986) 137.
162. I. Saucedo, E. Guibal, C. Roulph, P. Le Cloirec, Mass transfer and equilibrium studies for the sorption of chromium ions onto chitinEnviron. Technol. 13 (1992) 1101.
163. M. Gomez-Guill#westeur042#n, A. Gomez-Sanchez, M.-E. Martin- Zamora, Carbohydr. Res. 233 (1992) 255.
164. M. Gomez-Guill#westeur042#n, A. Gomez-Sanchez, M.-E. Martin- Zamora, Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Carbohydr. Res. 258 (1994) 313.
165. T. Seo, T. Iijima, in: C.G. Gebelein (Ed.), Circular Dichroism Induced by the Helical Conformations of Acylated Chitosan Derivatives Bearing Cinnamate ChromophoresBiotech and Polymers, Plenum Press, NY, 1991, pp. 215–227.
166. Y. Shigemasa, H. Usui, M. Morimoto, H. Saimoto, Y. Okamoto, S. Minami, H. Sahiwa, Synthesis and Physicochemical Characterization of Chitin Derivatives.Carbohydr. Polym. 39 (1999) 237.
167. C. Peng, Y. Wang, Y. Tang, Synthesis of crosslinked chitosan-crown ethers and evaluation of these products as adsorbents for metal ions.J. Appl. Polym. Sci. 70 (1998) 501.
168. S. Tan, Y. Wang, C. Peng, Y. Tang, Synthesis and adsorption properties for metal ions of crosslinked chitosan acetate crown ethers J. Appl. Polym. Sci. 71 (1999) 2069.
169. Z. Yang, Y. Wang, Y. Tang, Preparation and adsorption properties of metal ions of crosslinked chitosan azacrown ethers.J. Appl. Polym. Sci. 74 (1999) 3053.
170. K. Inoue, K. Yoshizuka, Y. Baba (Eds.), New developments in ion exchange. Materials, fundamentals, and applications, in: Proceedings of the International Conference on Ion Exchange, ICIE’91, Tokyo, Japan, Kodansha, Ltd., 1991, pp. 543–548.
171. K. Inoue, K. Yoshizuka, Y. Baba, in: C. Gebelein, C. Carraher (Eds.), Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method. Biotechnology and Bioactive Polymers, Plenum Press, New York, 1994, pp. 35–41.
172. K. Inoue, K. Ohto, K. Yoshizuka, R. Shinbaru, K. Kina, Bunseki Kagaku .Ion Exchange and Solvent Extraction: A Series of Advances.44 (1995) 283.
173. S. Nagib, K. Inoue, T. Yamaguchi, T. Tamaru, Ion Exchange and Solvent Extraction: A Series of Advances.Hydrometallurgy 51 (1999) 73.
174. Y. Baba, H. Hirakawa, Highly Selective Separation and Recovery of Metal Ions Using Highly-Functionalized Chitosan Derivatives. Chem. Lett. (1992) 1905.
175. C.A. Rodrigues, M.C.M. Laranjeira, V.T. de Favere, E. Stadler, Novel methods for synthesis and sorption properties of N,O -(2,3-dihydroxy)propylchitosan. Polymer 39 (1998) 5121.
176. D.W. Kang, H.R. Choi, D.K. Kweon, Stability constants of amidoximated chitosan-g-poly(acrylonitrile) copolymer for heavy metal ions.J. Appl. Polym. Sci. 73 (1999) 469.
177. T. Sakaguchi, T. Horikoshi, A. Nakajima, Nippon Nogeigaku Kaishi. Studies on the accumulation of heavy metal elements in biological systems53 (1979) 149.
178. N. Nishi, A. Ebina, S.-I. Nishimura, A. Tsutsumi, O. Hasegawa, S. Tokura, Preparation, characterization, bioactive and metal uptake studies of alginate/phosphorylated chitin blend filmsInt. J. Biol. Macromol. 8 (1986) 311.
179. N. Nishi, Y. Maekita, S.-I. Nishimura, O. Hasegawa, S. Tokura, Sorption Processes and Pollution: Conventional and Non-conventional Sorbents . Int. J. Biol. Macromol. 9 (1987) 109.
180. K.S. Choi, H.S. Ahn, Small-angle x-ray scattering station 4C2 BL of pohang accelerator laboratory for advance in Korean polymer science.Polym. Korea 14 (1990) 516.
181. A. Heras, N.M. Rodriguez, V.M. Ramos, E. Agullo, N-methylene phosphonic chitosan: a novel soluble derivative .Carbohydr. Polym. 44 (2001) 1.
182. V.M. Ramos, N.M. Rodriguez, M.S. Rodriguez, A. Heras, E. Agullo, Synthesis and antimicrobial activity of α-aminophosphonates containing chitosan moiety. Carbohydr. Polym. 51 (2003) 425.
183. W. Arg#westeur061#elles-Monal, C. Peniche-Covas, Angew. Preparation and characterization of a mercaptan derivative of chitosan for the removal of mercury from brinesMacromol. Chem. 207 (1993) 1.
184. C. Ni, Y. Xu, Studies on syntheses and properties of chelating resins based on chitosan.J. Appl. Polym. Sci. 59 (1996) 499.
185. E. Guibal, T. Vincent, R. Navarro Mendoza, Synthesis and characterization of a thiourea derivative of chitosan for platinum recovery.J. Appl. Polym. Sci. 75 (2000) 119.
186. T. Asakawa, K. Inoue, T. Tanaka, Kagaku, Kogaku Ronbunshu .Solvent Extraction of Some Metal Ions with Lipophilic Chitosan Chemically Modified with Functional Groups of Dithiocarbamate.Chem.Letter 26 (2000) 321.
187. G. C#westeur034#rdenas, P. Orlando, T. Edelio, Synthesis and applications of chitosan mercaptanes as heavy metal retention agent. Int. J. Biol. Macromol. 28 (2001) 167.
188. E. Guibal, N. Van Offenberg Sweeney, T. Vincent, J.M. Tobin, Sulfur derivatives of chitosan for palladium sorption.React. Funct. Polym. 50 (2002) 149.
189. M. Ruiz, A.M. Sastre, E. Guibal, Sorption Processes and Pollution: Conventional and Non-conventional Sorbents Solvent Extr. Ion Exch. 21 (2003) 307.
190. R.A.A. Muzzarelli, F. Tanfani, S. Gentile, M. Emanuelli, Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and ApplicationsCarbohydr. Res. 104 (1982) 235.
191. M. Weltrowski, B. Martel, M. Morcellet, Chitin and chitosan: Chemistry, properties and applications J. Appl. Polym. Sci. 59 (1996) 647.
192. K. Kondo, S. Nakagawa, M. Matsumoto, T. Yamashita, I. Furukawa, Impregnation of chelating agent 3,3-bis-N,N bis-(carboxymethyl)aminomethyl-o-cresolsulfonephthalein in biopolymer chitosan. Adsorption equilibrium of Cu(II) in aqueous medium J. Chem. Eng. J. 30 (1997) 846.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top