跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 19:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏健宇
研究生(外文):Chien-Yu Yen
論文名稱:苯基或己烷基之異氰酸酯改質氧化石墨烯/聚-(3羥基丁酸酯)複合膜材之特性
論文名稱(外文):Characteristics of phenyl- or hexyl- isocyanate modified graphene oxide/poly(3-hydroxybutyrate) composite membranes
指導教授:孫一明
指導教授(外文):Yi-Ming Sun
口試委員:胡蒨傑洪信國
口試委員(外文):Chien-Chieh HuShin-Guo Hong
口試日期:2015-07-02
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:103
語文別:中文
論文頁數:92
中文關鍵詞:聚(3-羟基丁酸酯)氧化石墨烯表面改質
外文關鍵詞:poly(3-hydroxybutyrate)graphene oxidesurface modification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以不同官能基之異氰酸酯 (isocyanate) 進行氧化石墨烯(graphene oxide, GO) 之表面改質,以提高GO在疏水性高分子中之分散性;進一步再將改質之GO添加於生物可分解高分子-聚(3-羟基丁酸酯) (poly 3-hydroxybutyrate, PHB) 中,觀察不同官能基之異氰酸酯的改質GO對PHB高分子膜材的影響,並對此複合膜材進行基本性質與氣體傳輸性質之探討。
隨著添加改質之GO含量增加,PHB複合膜材之結晶度、Tg以及Tmc都有隨之提高,即代表改質之GO在高分子複合膜中不僅扮演著成核劑的角色,同時也與高分子之間有相互作用,限制了高分子鏈的移動性。由於GO本身即有良好的機械性質與熱穩定性,添加後其加固作用的影響,使膜材整體機械性質與熱穩定性提高。
當添加改質GO的量增加,PHB複合膜材的結晶度提高,造成不透氣區域增加,且GO本身即為不透氣材料,因此氣體分子的擴散途徑大幅增加,使氣體分子更不容易通過,滲透係數降低。

Two kinds of functionalized graphene oxide were prepared by surface treatment of graphene oxide with phenyl- or hexyl- isocyanate. These isocyanate-treated GO (iGO) can improve the dispersion and compatibility of GO in hydrophobic polymer-poly(3-hydroxybutyrate). The dispersion of these iGO in chloroform was very well after the surface treatment. The results of X-ray diffraction (XRD) indicated that the d-spacing of iGO is significant increased after the isocyanate surface treatment. In order to investigate the different effects of two kinds of iGO in gas transport properties in PHB, phenyl-GO/PHB and hexyl-GO/PHB composite membranes were prepared, respectively. The crystallinity of both phenyl-GO/PHB and hexyl-GO/PHB composite membranes was increased with increased content of two kinds of iGO by the observation of XRD results. Furthermore, the results of DSC indicate that the melt-crystallization temperature (Tmc) of the PHB/iGO composite membranes was shifted to higher temperatures than that of neat PHB. The change of Tmc indicated that introduction of iGOs played a dominant role in accelerating the crystallization of PHB due to the nucleation effect. The permeability of PHB/iGO composite membranes was significant reduced with only 0.5 wt% iGO. This result indicated the effect of increase of the distance of pathway, crystallinity by introducing of iGO and . The mechanical properties of the composite membranes increased with the content of iGO due to the reinforcement effect.
摘要 I
Abstract II
目錄 III
表目錄 V
圖目錄 VI
第一章 緒論 1
1.1包裝材料 1
1.2生物可降解之高分子(Biodegradable polymers) 2
1.3聚(3-羥基丁酯) (Poly(3-hydroxybutyrate, PHB) 3
1.4奈米複合材料(Nanocomposite) 5
1.5氧化石墨烯(Graphene Oxide) 7
1.6表面改質(Surface modification) 8
1.7研究目的與範疇 10
第二章 研究原理與方法 16
2.1薄膜簡介 16
2.2 氣體滲透理論 16
2.1.1 擬穩態法 (Pseudo-steady-state method) 18
2.1.2時間滯留法 (Time-lag method) 20
2.1.3 影響氣體滲透的因素 22
2.1.4氣體滲透實驗 26
2.3蒸氣吸附 (Vapor sorption) 27
2.2.1吸附等溫曲線 28
2.2.2影響吸附的因素 31
2.2.3吸附動力學 32
2.4奈米複合材料 34
第三章 實驗方法 37
3.1實驗藥品 37
3.2實驗設備與器材 38
3.3表面改質氧化石墨烯製備 39
3.3.1氧化石墨烯 (Graphene oxide) 39
3.3.2溶劑除水 40
3.3.3表面改質氧化石墨烯 (Surface modified graphene oxide) 41
3.4膜材製備 42
3.4.1聚(3-羥基丁酯)膜材製備 42
3.4.2奈米複合膜材製備 43
3.5 X光繞射儀 44
3.6示差掃描熱分析 46
3.7熱重分析儀 48
3.8氣體滲透實驗 49
第四章 結果與討論 51
4.1表面改質氧化石墨烯 51
4.2複合膜材特性 56
4.2.1高分子材料之結晶行為 56
4.2.2高分子材料之熱穩定性 58
4.2.3機械性質 58
4.3氣體傳輸 60
4.3.1氧氣傳輸性質 60
4.3.2氣體傳輸模式 64
第五章 結論 86
參考文獻 88

[1] A. Arora, G.W. Padua, Review: nanocomposites in food packaging, Journal of food science, 75 (2010) R43-49.
[2] H.M.C.d. Azeredo, Nanocomposites for food packaging applications, Food Research International, 42 (2009) 1240-1253.
[3] J.-W. Rhim, H.-M. Park, C.-S. Ha, Bio-nanocomposites for food packaging applications, Progress in Polymer Science, 38 (2013) 1629-1652.
[4] M. Lemoigne, Produits de deshydration et de polymerisation de l'acide β-oxybutyric, Bull. Soc. Chim. Biol., 8 (1926) 770-782.
[5] P.J. Hocking, R.H. Marchessault, M.R. Timmins, R.W. Lenz, R.C. Fuller, Enzymatic Degradation of Single Crystals of Bacterial and Synthetic Poly(β-hydroxybutyrate), Macromolecules, 29 (1996) 2472-2478.
[6] H. Hajiali, M. Hosseinalipour, S. Karbasi, H.R. Rezaie, Mechanical Property of Poly (3-hydroxybutyrate)/Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering, in: C.T. Lim, J.C.H. Goh (Eds.) 6th World Congress of Biomechanics (WCB 2010). August 1-6, 2010 Singapore, Springer Berlin Heidelberg, 2010, pp. 1238-1241.
[7] M. Shah, M.I. Naseer, M.H. Choi, M.O. Kim, S.C. Yoon, Amphiphilic PHA-mPEG copolymeric nanocontainers for drug delivery: Preparation, characterization and in vitro evaluation, International Journal of Pharmaceutics, 400 (2010) 165-175.
[8] K. Sudesh, H. Abe, Y. Doi, Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters, Progress in Polymer Science, 25 (2000) 1503-1555.
[9] P. Bordes, E. Hablot, E. Pollet, L. Av#westeur042#rous, Effect of clay organomodifiers on degradation of polyhydroxyalkanoates, Polymer Degradation and Stability, 94 (2009) 789-796.
[10] M. Erceg, T. Kovačić, I. Klarić, Poly(3-hydroxybutyrate) nanocomposites: Isothermal degradation and kinetic analysis, Thermochimica Acta, 485 (2009) 26-32.
[11] X. Jing, Z. Qiu, Crystallization Kinetics and Thermal Property of Biodegradable Poly(3-hydroxybutyrate)/Graphene Oxide Nanocomposites, Journal of Nanoscience and Nanotechnology, 12 (2012) 7314-7321.
[12] X. Jing, Z. Qiu, Effect of Low Thermally Reduced Graphene Loadings on the Crystallization Kinetics and Morphology of Biodegradable Poly(3-hydroxybutyrate), Industrial &; Engineering Chemistry Research, 51 (2012) 13686-13691.
[13] C. Xu, Z. Qiu, Crystallization behavior and thermal property of biodegradable poly(3-hydroxybutyrate)/multi-walled carbon nanotubes nanocomposite, Polymers for Advanced Technologies, 22 (2011) 538-544.
[14] D.G. Miloaga, H.-A.A. Hosein, M. Misra, L.T. Drzal, Crystallization of poly(3-hydroxybutyrate) by exfoliated graphite nanoplatelets, Journal of Applied Polymer Science, 106 (2007) 2548-2558.
[15] L. He, H. Wang, G. Xia, J. Sun, R. Song, Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications, Applied Surface Science, 314 (2014) 510-515.
[16] J. Yang, L. Bai, G. Feng, X. Yang, M. Lv, C.a. Zhang, H. Hu, X. Wang, Thermal Reduced Graphene Based Poly(ethylene vinyl alcohol) Nanocomposites: Enhanced Mechanical Properties, Gas Barrier, Water Resistance, and Thermal Stability, Industrial &; Engineering Chemistry Research, 52 (2013) 16745-16754.
[17] H.-D. Huang, P.-G. Ren, J.-Z. Xu, L. Xu, G.-J. Zhong, B.S. Hsiao, Z.-M. Li, Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets, Journal of Membrane Science, 464 (2014) 110-118.
[18] T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Recent advances in graphene based polymer composites, Progress in Polymer Science, 35 (2010) 1350-1375.
[19] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, Journal of the American Chemical Society, 80 (1958) 1339-1339.
[20] S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon, 44 (2006) 3342-3347.
[21] H.J. Salavagione, G. Martínez, Importance of Covalent Linkages in the Preparation of Effective Reduced Graphene Oxide−Poly(vinyl chloride) Nanocomposites, Macromolecules, 44 (2011) 2685-2692.
[22] J. Yang, J. Zheng, R. Hu, F. Chen, P. Fan, M. Zhong, Effect of surface modification of graphite oxide on the morphological, thermal, and mechanical properties of polyurea/graphite oxide composites, Journal of Applied Polymer Science, 131 (2014) n/a-n/a.
[23] H.-D. Huang, P.-G. Ren, J. Chen, W.-Q. Zhang, X. Ji, Z.-M. Li, High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films, Journal of Membrane Science, 409–410 (2012) 156-163.
[24] H.M. Kim, J.K. Lee, H.S. Lee, Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites, Thin Solid Films, 519 (2011) 7766-7771.
[25] T. DeV Naylor, The synthesis, characterization, reaction, and applications, in G. Allen and J. C. Bevington (Ed's.), Comprehensive Polymer Science, Dergman Press, New York, Chap.20 (1989).
[26] P.M. Budd, N.B. McKeown, D. Fritsch, Free volume and intrinsic microporosity in polymers, Journal of Materials Chemistry, 15 (2005) 1977-1986.
[27] T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Ultrapermeable, reverse-selective nanocomposite membranes, Science, 296 (2002) 519-522.
[28] D.H. Weinkauf, D.R. Paul, "Effects of structural order on barrier properties" in Barrier polymers and structure, W. J. Koros (Eds), ACS symposium series 423, ACS, Washington, DC chap.3 (1989) chap.3.
[29] M. Hedenqvist, U.W. Gedde, Diffusion of small-molecule penetrants in semicrystalline polymers, Prog. Polym. Sci., 21 (1996) 299-333.
[30] A.A. Natu, E.A. Lofgren, S.A. Jabarin, Effect of morphology on barrier properties of poly(ethylene terephthalate), Polym. Eng. Sci., 45 (2005) 400-409.
[31] R.H. Somani, L. Yang, L. Zhu, B.S. Hsiao, Flow-induced shish-kebab precursor structures in entangled polymer melts, Polymer, 46 (2005) 8587-8623.
[32] F. Xianshe, R.Y.M. Huang, Estimation of activation energy for permeation in pervaporation processes, Journal of Membrane Science, 118 (1996) 127-131.
[33] A.H. Windle, "CaseⅡSorption", polymer Permeability, in: J. Comyn.(Ed.), Elservier, London, Chap.3 (1988).
[34] C.E. Roger, Physics and Chemistry of the Organic Solid State, Fox, D., M. M. Labes, and A.Weissberger, Eds., Vol Ⅱ, Wiley Interscience, New York, Chap 6 (1965).
[35] H. Liu, T. Kuila, N.H. Kim, B.-C. Ku, J.H. Lee, In situ synthesis of the reduced graphene oxide–polyethyleneimine composite and its gas barrier properties, Journal of Materials Chemistry A, 1 (2013) 3739.
[36] E. Dunkerley, D. Schmidt, Effects of Composition, Orientation and Temperature on the O2 Permeability of Model Polymer/Clay Nanocomposites, Macromolecules, 43 (2010) 10536-10544.
[37] O.C. Compton, S. Kim, C. Pierre, J.M. Torkelson, S.T. Nguyen, Crumpled Graphene Nanosheets as Highly Effective Barrier Property Enhancers, Adv. Mater., 22 (2010) 4759-4763.
[38] J. Vermant, M.J. Solomon, Flow-induced structure in colloidal suspensions, Journal of Physics: Condensed Matter, 17 (2005) R187.
[39] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature, 442 (2006) 282-286.
[40] H. Liu, T. Kuila, N.H. Kim, B.-C. Ku, J.H. Lee, In situ synthesis of the reduced graphene oxide-polyethyleneimine composite and its gas barrier properties, Journal of Materials Chemistry A, 1 (2013) 3739-3746.
[41] Y.G. Seol, T.Q. Trung, O.-J. Yoon, I.-Y. Sohn, N.-E. Lee, Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes, Journal of Materials Chemistry, 22 (2012) 23759.
[42] J.S. Park, L. Yu, C.S. Lee, K. Shin, J.H. Han, Liquid-phase exfoliation of expanded graphites into graphene nanoplatelets using amphiphilic organic molecules, Journal of colloid and interface science, 417 (2014) 379-384.
[43] X. She, T. Liu, N. Wu, X. Xu, J. Li, D. Yang, R. Frost, Spectrum analysis of the reduction degree of two-step reduced graphene oxide (GO) and the polymer/r-GO composites, Materials Chemistry and Physics, 143 (2013) 240-246.
[44] M.E. Jacox, Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules. Supplement B, Journal of Physical and Chemical Reference Data, 32 (2003) 1-441.
[45] L.-B. Zhang, J.-Q. Wang, H.-G. Wang, Y. Xu, Z.-F. Wang, Z.-P. Li, Y.-J. Mi, S.-R. Yang, Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites, Composites Part A: Applied Science and Manufacturing, 43 (2012) 1537-1545.
[46] V. Sridhar, Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites, Express Polymer Letters, 7 (2013) 320-328.
[47] H.-Y. Yu, Z.-Y. Qin, B. Sun, X.-G. Yang, J.-M. Yao, Reinforcement of transparent poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by incorporation of functionalized carbon nanotubes as a novel bionanocomposite for food packaging, Composites Science and Technology, 94 (2014) 96-104.
[48] A.M. Diez-Pascual, A.L. Diez-Vicente, Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties, International journal of molecular sciences, 15 (2014) 10950-10973.
[49] C.-L. Lai, J.-T. Chen, Y.-J. Fu, W.-R. Liu, Y.-R. Zhong, S.-H. Huang, W.-S. Hung, S.J. Lue, C.-C. Hu, K.-R. Lee, Bio-inspired cross-linking with borate for enhancing gas-barrier properties of poly(vinyl alcohol)/graphene oxide composite films, Carbon, 82 (2015) 513-522.
[50] D. Lee, M.-C. Choi, C.-S. Ha, Polynorbornene dicarboximide/amine functionalized graphene hybrids for potential oxygen barrier films, Journal of Polymer Science Part A: Polymer Chemistry, 50 (2012) 1611-1621.
[51] I.H. Tseng, M.H. Tsai, C.W. Chung, Flexible and transparent polyimide films containing two-dimensional alumina nanosheets templated by graphene oxide for improved barrier property, ACS Applied Materials and Interfaces, 6 (2014) 13098-13105.
[52] I.H. Tseng, Y.-F. Liao, J.-C. Chiang, M.-H. Tsai, Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property, Materials Chemistry and Physics, 136 (2012) 247-253.
[53] J. Jin, R. Rafiq, Y.Q. Gill, M. Song, Preparation and characterization of high performance of graphene/nylon nanocomposites, European Polymer Journal, 49 (2013) 2617-2626.
[54] H.-D. Huang, P.-G. Ren, J. Chen, W.-Q. Zhang, X. Ji, Z.-M. Li, High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films, Journal of Membrane Science, 409-410 (2012) 156-163.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top