|
[1] BostonDynamics , USA, www.bostondynamics.com [2] Kawasaki,Japan, http://www.digitaltrends.com/cool-tech/need-to-lift-something-try-wearing-a-kawasaki-robotic-exoskeleton/#!21zcq [3] Tesla Motors, USA, http://www.teslamotors.com/ [4] Segway, USA, http://www.segway.com/ [5] Robot Wheel, http://e-info.org.tw/node/74408 [6] Branded Hiriko, hhttp://e-info.org.tw/node/74408 [7] LITMOTORS, http://litmotors.com/ [8] Whei-Min Lin, Chih-Ming Hong, Chiung-Hsing Chen, “Neural-Network-Based MPPT Control of a Stand-Alone Hybrid Power Generation System” IEEE Trans. Power Electron., Vol. 26, No. 12, Dec. 2011 [9] E. Kayacan, O. Cigdem, and O. Kaynak, “Sliding Mode Control Approach for Online Learning as Applied to Type-2 Fuzzy Neural Networks and Its Experimental Evaluation,” IEEE Trans. Ind. Electron., Vol. 59, No. 9, pp. 3510-3520, Sep. 2012. [10] M. Manceur, N. Essounbouli, and A. Hamzaoui, “Second-Order Sliding Fuzzy Interval Type-2 Control for an Uncertain System with Real Application,” IEEE Trans. Fuzzy Syst., Vol. 20, No. 2, pp. 262-275, Apr. 2012. [11] C. –S. Chen, “Supervisory Adaptive Tracking Control of Robot Manipulators Using Interval Type-2 TSK Fuzzy Logic System,” IET Control Theory., Vol. 5, No. 15, pp. 1796-1807, Oct. 2011. [12] C. S. Chen, “Supervisory Interval Type-2 TSK Neural Fuzzy Network Control for Linear Microstepping Motor Drives With Uncertainty Observer,” IEEE Trans. Power Electron., Vol. 26, No. 7, pp. 2049-2064, Jul. 2011. [13] M. Biglarbegian, W. Melek, and J. M. Mendel, “Design of Novel Interval Type-2 Fuzzy Controllers for Modular and Reconfigurable Robots Theory and Experiments,” IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1371-1387, Apr. 2011. [14] M. Tripathy, and S. Mishra, “Interval Type-2-Based Thyristor Controlled Series Capacitor to Improve Power System Stability,” IET Gener. Transm. Distrib., Vol. 5, No. 2, pp. 209-222, Feb. 2011. [15] Ming-Feng Yeh; Cheng-Hung Tsai; ”Standalone CMAC Control System With Online Learning Ability” IEEE Trans Syst Man Cybern B, Vol. 40, No. 1, Feb. 2010 [16] S. Barkat, A. Tlem#westeur040#ani, and H. Nouri, “Noninteracting Adaptive Control of PMSM Using Interval Type-2 Fuzzy Logic Systems,” IEEE Trans. Fuzzy Syst., Vol. 19, No. 5, pp. 925-936, Oct. 2011. [17] Ching-Hung Lee, Feng-Yu Chang, and Chih-Min Lin, “An Efficient Interval Type-2 Fuzzy CMAC for Chaos Time-Series Prediction and Synchronization,” IEEE Trans Cybern., Vol. 44, No. 3, pp. 329-341, Mar. 2014. [18] N. N. Karnik, J. M. Mendel, and Q. Liang, “Type-2 Fuzzy Logic Systems,” IEEE Trans. Fuzzy Syst., Vol. 7, No. 6, pp. 643-658, Dec. 1999. [19] KING NIGHT MOTOR CO., LTD. http://www.kingright.com.tw/ [20] 蔡文儒撰「全方位球型機器人之設計與實現:使用具強健性之模糊監督控制器」中原大學電機工程研究所,碩士論文,2009年(邱智煇、涂世雄指導)。 [21] SILICON LABS, http://www.silabs.com/Pages/default.aspx [22] 張培仁、楊興明,機器人系統設計與計算,中國科技技術大學出版社. [23] 林俊賢撰「輪型機器人之設計與實現:使用適應性步階迴歸小腦模型控制器」元智大學電機工程研究所,碩士論文,2011年(邱智煇指導)。 [24] F.-J. Lin; L.-T. Teng; H. Chu; ” Modified Elman neural network controller with improved particle swarm optimisation for linear synchronous motor drive” Published in IET Electric Power Applications Received on 28th August 2007 Revised on 11th December 2007 [25] 林明宏撰「強健性小腦模型控制器之設計與應用」清雲科技大學電子工程系碩士班,2006年(彭椏富指導) [26] C. -M. Lin and Y. -F. Peng,” Adaptive CMAC-Based Supervisory Control for Uncertain Nonlinear Systems” IEEE Trans. Syst. Man Cybern., Vol. 34, No. 2, Apr. 2004 [27] Ya-Fu Peng; Chun-Fei Hsu; Chih-Min Lin; Chi-Jui Kao; ”Robust CMAC Backstepping Longitudinal Control of Vehicle Platoons ”Proceedings of the 2004 IEEE International Conference on Networking, Sensing B Control Taipei, 'Taiwan. Mar. 21-23, 2004. [28] L. A. Zadeh, “The Concept of a Linguistic Variable and its Application to Approximate Reasoning—I,” Information Science, Vol. 8, No. 3, pp.199-249, Jul. 1975. [29] J. M. Mendel, “Type-2 Fuzzy Sets and Systems: An Overview,” IEEE Comp. Int. Mag., Vol. 2, No. 1, pp. 20-29, Feb. 2007. [30] 陳俊佑撰「仿Type-2模糊控制器之應用於電動獨輪車」元智大學電機工程研究所,碩士論文,2013年(邱智煇指導)。 [31] J. M. Mendel and R. I. John, “Type-2 Fuzzy Sets Made Simple,” IEEE Trans. Fuzzy Syst., Vol. 10, No. 2, pp. 117-127, Apr. 2002. [32] H. J. Wu, Y. L. Su, and S. J. Lee, “A Fast Method for Computing the Centroid of a Type-2 Fuzzy Set,” IEEE Trans. Syst. Man., Cybern. B, Cybern., Vol. 42, No. 3, pp. 764-777, Jun. 2012. [33] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Information Sciences, 132(1-4):195-220, 2001. [34] F. Liu, “An efficient Centroid type-reduction strategy for general type-2 fuzzy logic system,” Information Sciences, 178(9):2224-2236, 2008. [35] 蘇耀瓏撰「一個第二型模糊集合降階的改良式演算法」國立中山大學電機工程研究所,碩士論文,2010年(李錫智指導)。 [36] J. M. Mendel, R. I. John, and F. Liu, “Interval Type-2 Fuzzy Logic Systems Made Simple,” IEEE Trans. Fuzzy Syst., Vol. 14, No.6, pp. 808-821, Dec. 2006. [37] D. Wu, “Approaches for Reducing the Computational Cost of Interval Type-2 Fuzzy Logic Systems: Overview and Comparisons,” IEEE Trans. Fuzzy Syst., Vol. 21, No. 1, pp. 80-99, Feb. 2013. [38] 周明鴻撰「電動獨輪車載具之設計與實現」元智大學電機工程研究所,碩士論文,2011年(邱智煇指導)。 [39] J.J.E.Slotine,W.Li, ”Applied nonlinear control”(Prentice-Hall New Jersey,1991) [40] K.J.Astrom,B.Wittenmark, ”Adaptive control”(Addison-Wesley,New York,1995) [41] J. M. Mendel, R. I. John, and F. Liu, “Interval Type-2 Fuzzy Logic Systems Made Simple,” IEEE Trans. Fuzzy Syst., Vol. 14, No.6, pp. 808-821, Dec. 2006. [42] John T. (Terry) Rickard, Janet Aisbett, and Greg Gibbon, “Fuzzy Subsethood for Fuzzy Sets of Type-2 and Generalized Type-n,” IEEE Trans. Fuzzy Syst., pp. 50-60, Feb. 2009. [43] Haoyang Wu, Yuyuan Wu, and Jinping Luo, “Interval Type-2 Fuzzy Logic Systems Made Simple,” IEEE Trans. Fuzzy Syst., Vol. 17, No.2, pp. 301-315, Apr. 2009. [44] Chi-Yuan Yeh, Wen-Hau Roger Jeng, and Shie-Jue Lee, “An Enhanced Type-Reduction Algorithm for Type-2 Fuzzy Sets,” IEEE Trans. Fuzzy Syst., Vol. 19, No.2, pp. 227-240, Apr. 2011. [45] Miguel Pagola, Carlos Lopez-Molina, Javier Fernandez, Edurne Barrenechea, and Humberto Bustince, “Interval Type-2 Fuzzy Sets Constructed From Several Membership Functions: Application to the Fuzzy Thresholding Algorithm,” IEEE Trans. Fuzzy Syst., Vol. 21, No.2, pp. 230-243, Apr. 2013. [46] Chih-Min Lin, Hsin-Yi Li, “TSK Fuzzy CMAC-Based Robust Adaptive Backstepping Control for Uncertain Nonlinear Systems,” IEEE Trans. Fuzzy Syst., Vol. 20, No.6, pp. 1147-1154, Dec. 2012. [47] S.-Y. Wang C.-L. Tseng S.-C. Chien, “Adaptive fuzzy cerebellar model articulation control for switched reluctance motor drive,” IET Electr. Vol. 6, Iss.3, pp. 190-202, Apr. 2012. [48] Chih-Min Lin and Hsin-Yi Li, “A Novel Adaptive Wavelet Fuzzy Cerebellar Model Articulation Control System Design for Voice Coil Motors,” IEEE Trans. Ind. Electron., Vol. 59, No.4, pp. 2024-2033, Apr. 2012. [49] Ming-Feng Yeh and Cheng-Hung Tsai, “Standalone CMAC Control System With Online Learning Ability,” IEEE Trans. Syst. Man Cybern. B, Vol. 40, No.1, pp. 43-53, Feb. 2010. [50] Ming-Feng Yeh and Cheng-Hung Tsai, “Adaptive Filter Design Using Recurrent Cerebellar Model Articulation Controller,” IEEE Trans. Neural Netw., Vol. 19, No.7, pp. 1149-1157, Jul. 2010. [51] Chun-Ming Wen and Ming-Yang Cheng, “Development of a Recurrent Fuzzy CMAC With Adjustable Input Space Quantization and Self-Tuning Learning Rate for Control of a Dual-Axis Piezoelectric Actuated Micromotion Stage,” IEEE Trans. Ind. Electron., Vol. 60, No.11, pp. 5105-5115, Nov. 2013. [52] Ya-Fu Peng, Rong-Jong Wai, and Chih-Min Lin,“Implementation of LLCC-Resonant Driving Circuit and Adaptive CMAC Neural Network Control for Linear Piezoelectric Ceramic Motor,” IEEE Trans. Ind. Electron., Vol. 51, No.1, pp. 35-48, Feb. 2004.
|