跳到主要內容

臺灣博碩士論文加值系統

(100.24.118.144) 您好!臺灣時間:2022/12/06 05:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊竣崴
研究生(外文):Jiun-Wei Yang
論文名稱:具有電感放大技術之交換式直流/直流降壓轉換器設計與實現
論文名稱(外文):Design and Implementation of Switching DC/DC Buck Converter With Inductance amplification technology
指導教授:陳超群陳超群引用關係
指導教授(外文):Chao-Chyun Chen
口試委員:莊基男楊湰頡林韋名
口試委員(外文):Ji-Nan JuangLung-Jie YangWei-Ming Lin
口試日期:2015-07-27
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:103
語文別:中文
論文頁數:85
中文關鍵詞:直流/直流降壓轉換器電感放大電壓控制模式
外文關鍵詞:Buck converterInductance amplificationVoltage control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出了一個具有電感放大技術之交換式直流/直流降壓轉換器,透過本論文所提出的電感放大技術,使得降壓直流轉換器輸出漣波不會因為電感感值變小而增加。除此之外,本論文還一併討論關於降壓轉換器的結構。
本論文所提之電感放大技術,已透過標準的0.18um 1P6M CMOS製程來模擬與實現在一電壓控制模式的降壓直流/直流降壓轉換器中,晶片的核心電路的面積為0.55mm2。在降壓轉換器中若透過使用電感放大技術模擬,採用(2.2uH+0.2uH)的電感器與傳統使用4.7uH電感器的交換式直流/直流降壓轉換器相比,其電壓漣波與電流漣波皆是相同的。當電路輸入直流電壓為1.8V時,輸出電壓範圍為0.54到1.8V。當切換頻率為1MHz且負載電流在50mA至500mA時,可採用電感放大技術的降壓直流/直流轉換器可提供穩定的輸出1.2V,且其輸出漣波為1.33mV。

In this thesis, an inductance amplification technique for switching-mode buck converter is presented. By the proposed inductance amplification technique, the ripples of the output voltage are not increased even if the inductor of the buck converter is decreased. Meanwhile, the architectures of the buck converters are also discussed in this thesis.
The inductance amplification technique in this thesis has been fabricated in a standard 018um 1P6M COMS process with core area of 0.55 mm2. For buck converter with proposed inductance amplification technique, the voltage and current ripples from 2.4uH (2.2uH+0.2uH) inductor has same amount as conventional buck converter with 4.7uH inductor. When the line voltage is set to 1.8V, the range of the regulated output is from 0.54V to 1.8V. When the switching frequency of the buck converter is set to 1MHz with load current ranging from 50mA to 500mA, the buck converter with proposed inductance amplification technique can generate regulated output voltage of 1.2V with voltage ripples of 1.33mV.

摘要iii
ABSTRACTiv
誌謝v
目錄vi
表目錄viii
圖目錄ix
第一章 緒論1
1.1研究動機1
1.2 研究背景與簡介2
1.3 論文架構3
第二章 直流/直流穩壓器概論4
2.1 直流/直流穩壓器種類4
2.1.1 線性穩壓器(Linear Regulator)4
2.1.2 切換式穩壓器(Switching Regulator)6
2.1.3 切換式電容穩壓器(Switching Capacitance Regulator)7
2.2 隔離與非隔離式直流/直流降壓轉換器9
2.2.1 非隔離式直流/直流降壓轉換器9
2.2.2 隔離式直流/直流降壓轉換器9
2.3 切換式轉換器種類10
2.3.1降壓型轉換器(Buck Converter)11
2.3.1.1 非同步降壓型轉換器 (Asynchronous Buck Converter)11
2.3.1.2 同步降壓型轉換器(Synchronous Buck Converter)18
2.3.2 升壓型轉換器(Boost Converter)19
2.3.3 升降壓型轉換器(Buck/Boost Converter)21
2.4控制電路模式與電路調變模式23
2.4.1 脈波寬度調變 (Pulse Width Modulation, PWM)23
2.4.2 電壓控制模式 (Voltage Mode Control, VMC)24
2.4.3 脈波頻率調變 (Pulse Frequency Modulation, PFM)25
2.4.4電流控制模式 (Current Mode Control, CMC)27
2.4.5控制電路模式與電路調變模式的比較28
2.4.6脈波頻率調變與脈波寬度調變的比較29
2.5補償器的分類29
2.5.1 PI Type 補償器31
2.5.2 PI Type2 補償器32
2.5.3 PI Type3 補償器34
2.6 切換式穩壓器規格定義與說明36
2.6.1 輸入電壓(Input Voltage)36
2.6.2 輸出漣波電壓(Output Voltage Ripple) 37
2.6.3 輸入電壓調節率(Line Regulation)37
2.6.4 負載電壓調節率(Load Regulation)37
2.6.5 功率損失(Power Loss)37
2.6.6 功率轉換效率(Power Efficiency)39
2.6.7 暫態響應(Transient Response)39
2.6.8 電磁干擾(Electromagnetic Interference, EMI)41
第三章 具有電感放大電壓模式降壓型切換式穩壓器設計42
3.1 電感相關技術原理42
3.2 系統架構45
3.3 系統小訊號分析48
3.3.1 傳統降壓轉換器轉移函數分析49
3.3.2 降壓轉換器轉移函數分析54
3.3.3 脈衝寬度調變分析57
3.3.4 補償器分析58
3.4 理想系統模擬59
第四章 系統電路設計與模擬61
4.1功率電晶體(Power MOSFET)61
4.2遲滯比較器(Hysteresis Comparator)62
4.3 誤差放大器(Error Amplifier)67
4.4 鋸齒波產生器 (Ramp Generator)69
4.5脈波寬度產生器(Pulse Width Generator)71
4.6 緩啟動電路(Soft Start)72
4.7非重疊電路與緩衝器電路(Non-overlap and Buffer Circuit)74
4.8 完整系統模擬 76
4.8.1系統暫態模擬(Transient Response)76
4.8.2系統線性調節率(Line Regulation)79
4.8.3系統負載調節率(Load Regulation)80
4.8.4功率轉換效率(Power Efficiency)81
5.1 晶片佈局 82
第六章 結論83
6.1 結論83
6.2 未來研究與改進83
參考文獻84

[1]Y. K. Ramadass, “Energy processing circuits for low-power applications,” Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, Jun. 2009.
[2]TI, ”智慧型手機電源管理系統的設計,” 零組件雜誌, 2004 年 6 月號
[3]National Semiconductor, “Power” High-Performance Analog Seminar 2007
[4]G. A. Rincon-Mora and P. E. Allen, “A low-voltage, low quiescent current, Low drop-out regulator,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp.36-44, Jan.1998.
[5]R. W. Erickson and D. Maksimovic, Fundamentals of power electronics, 2nd edition, John Wiley, New York, 1950.
[6] E. Bayer, H. Sehmeller, “Charge pump with active cycle regulation-closing the gap between linearand skip modes,” IEEE Power Electronics Specialists Conference, pp. 1497-1502, June. 2000.
[7]P. Favrat, P. Deval, and M.J. Declercq. “A high-efficiency cmos voltage doubler, ” IEEE Journal of Solid-State Circuits, 33(3):410 –416, mar 1998.15
[8]M.-H. Huang, P.-C. Fan, and K.-H. Chen, “Low-ripple and dual-phase charge pump circuit regulated by switched-capacitor-based bandgap reference,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1161–1172, Apr. 2009.
[9]V. Yousefzadeh and D. Maksimovic, “Sensorless optimization of dead times inDC-DC converters with synchronous rectifiers,” IEEE Trans. on Power Electron., vol. 21, no. 4, pp. 994-1002, July 2006.
[10]M. X. Lu, B. H. Hwang, J. J. Chen, Y.S. Hwang, “A sub-1V voltage-mode DC-DC buck converter using PWM control technique,” IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), pp.1-4, Dec. 2010.
[11]Marian K. Kazimierczuk, “Pulse-width Modulated DC-DC Power Converters”, Edition, Wiley.
[12]J. Xiao, A.V. Peterchev, J. Zhang, and S.R. Sanders, "A 4-uA quiescent-currentdual
Mode digitally controlled buck converter IC for cellular phone applications,"IEEE J. Solid-StateCircuits, vol. 39, no. 12, pp. 2342-2348, Dec. 2004
[13]Madhuravasal Vijayaraghavan G., “Extreme temperature switch mode power supply based on vee-square control using silicon carbide, silicon on sapphire, hybrid technology”, Doctoral Thesis, Oklahoma State University, 2009
[14]Zhuo Bi, Wenbin Xia, “Modeling and Simulation of Dual-Mode DC/DC Buck Converter”, Second IEEE International Conference on Computer Modeling and Simulation, (ICCMS), pp. 371 - 375, Jan 2010.
[15]R.B. Ridley et al., “A more accurate current-mode control model,” Ridley Engineering Inc, 2001.
[16] H. Dean Venable, “Optimum Feedback Amplifier Design for Control Systems,” Venable Technical Paper.
[17]Sipex Corp., “Selecting Appropriate Compensation: Type-II or Type-III”, Application Note ANP18, Dec 2006.
[18]C. H. Ahn and M. G. Allen, “Micromachined planar inductors on silicon wafers for MEMS applications,” IEEE Trans. Ind. Electron., vol. 45, pp. 866–876, June 1998.
[19]A. Makharia, and G. A. Rincon-Mora, “Integrating Power Inductor onto the IC-SOC Implementation of Inductor Multiplier for DC-DC Converters,” IEEE IECON’03, Vol.1, pp.556-561, Nov. 2003.
[20]R.D.Middlebrook,“Small-signal modeling of pulse-width modulated switched-
mode power converters,” Proc. IEEE, vol. 76, no. 4, pp. 343–354, Apr. 1988.
[21] B. E. Taylor, Power MOSFET Design, New York: Wiley, 1993
[22] A. Yoo , M. Chang , O. Trescases and W. Ng "High-performance low-voltage power mosfets with hybrid waffle layout structure in a 0.25 μm standard CMOS process", Proc. 20th Int. Symp. Power Semicond. Devices &; IC's,pp.95 -98, May 18–22 2008
[23]D.-J. Allstot, “A precision variable-supply CMOS comparator,” IEEE J.Solid-State Circuits, vol. SC-17, no. 12, pp. 1080–1087, Dec.1982.
[24]B. Razavi, Design of Analog CMOS Integrated Circuits. New York :McGraw- Hill,2001
[25]C. F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Jan. 2004.
[26]W.-R. Liou, M.-L. Yeh, and Y. L. Kuo, “A high efficiency dual-mode buck converter IC for portable applications,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 667–677, Mar. 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top