跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊年順
研究生(外文):Nian-Shun Zhuang
論文名稱:新穎鎂基儲氫罐性能研究
論文名稱(外文):Development of high performance Mg-based hydrogen storage canisters
指導教授:沈家傑
指導教授(外文):Chia-Chieh Shen
口試委員:伍員鵬李其源
口試委員(外文):Yuan-Pang WuChi-Yuan Lee
口試日期:2015-07-28
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:103
語文別:中文
論文頁數:69
中文關鍵詞:銅泡棉儲氫罐質子交換膜燃料電池流量法
外文關鍵詞:MgCu foamHydrogen storage canisterPEMFCFlow method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究評估自製一套新穎高性能儲氫罐連結質子交換膜燃料電池發電之可行性研究。儲氫罐內填充銅泡棉熱傳元件以提升其吸放氫性能,而儲氫罐填充材料分成商用LaNi5基及自備鎂基等兩種,以流量法來評估儲氫罐的吸放氫性能,前者儲氫罐吸氫定流速控制在100、300及500 ml/min,而後者儲氫罐吸氫定流速為100及500 ml/min,商用LaNi5基儲氫罐所量測的實驗數據將作為自備鎂基儲氫罐研發之參考依據。以氫脆法製備20 g 的LaNi5基粉體填充於儲氫罐內,在定流速500 ml/min的條件,LaNi5基儲氫罐在室溫10分鐘內之吸氫量為2995 ml (1.2 wt%),而放氫量接近2904 ml (1.2 wt%)。此儲氫罐連結質子交換膜燃料電池發電結果顯示,儲氫罐在定流速25 ml/min釋氫及燃料電池在定電壓0.5 V之操作條件,電池輸出的電流約0.8 A,氫能轉換為電能的平均效率約10%。另外,以機械球磨法製備鎂基儲氫材料,在手套箱環境裝填約4.2 g奈米級粉體於儲氫罐內,在定流速500 ml/min的條件,室溫5分鐘之吸氫量為1194 ml (2.3 wt%),當溫度增加至100℃及300℃時,7分鐘的吸氫量分別可達至2070 ml (4.0 wt%)及2280 ml(4.4 wt%);以溫度100℃吸氫為例,鎂基儲氫罐在360℃加熱條件,儲氫罐仍以定流速25 ml/min釋氫及燃料電池在定電壓0.5 V之操作條件,電池輸出的電流約0.8 A,氫能轉換為電能的平均效率約10%。相對於其他文獻報導,本研究自備鎂基儲氫罐能夠在中低溫即可吸入大量氫氣,所儲存的氫氣並能供應至燃料電池發電,此中低溫的新穎吸氫節能操作技術優勢預期能應用在定置型發電系統。
This study evaluates the performances of the novel Mg-based canisters coupled to power the proton exchange membrane fuel cells (PEMFC). Home-made Mg-based powders (~4g) were inserted into a stainless steel reactor equipped with a Cu foam to enhance the heat transfer during hydrogenation and dehydrogenation. Commercial H-pulverized LaNi5-based powders (20g) were also tested in the same reactor for comparison. The hydriding performances of Mg-based and LaNi5-based canisters were measured in the fixed H2-flows from 100 to 500 ml/min, while the dehydriding performances of them were tested in a fixed H2-flow of 25 ml/min. First, the LaNi5-based canister absorbed hydrogen amount of 2995 ml (equivalent to 1.2 wt%) within 10 min at room temperature, and desorbed 2904 ml (equivalent to 1.2 wt%) at same temperature. A PEMFC (MEA area = 7.3 cm2) was powered by a constant H2 flow of 25 ml/min released from the H-charged LaNi5-based canister, and a constant air flow of 120 ml/min. The PEMFC results in a test period of 80 min showed that the output current was 0.8 A in a mode of fixed voltage of 0.5 V, producing an average conversion of H2 energy into electricity of 10%. On the other hand, the Mg-based canister absorbed hydrogen amount of 1194 ml (2.3 wt%) within 5 min at room temperature in a fixed H2 flow of 500 ml/min. When the hydrogenation temperature increased to 100 and 300oC, the amounts of hydrogen absorption increased to 2070 (4.0 wt%) and 2280 ml (4.4 wt%), respectively. At hydrogenation temperature of 100oC, for example, the H content stored in the Mg-based canister released at a constant H2 flow of 25 ml/min at 360oC to power a PEMFC. The resulting output current was 0.8 A in a mode of fixed voltage of 0.5 V. The average conversion of H2 energy into electricity was same to 10% obtained in the case of LaNi5-based canister. Compared to literature reports, the Mg-based canister developed in this study exhibited a unique advantage of hydrogenation ability at room-mild temperatures. It was expected that this H2 canister may have potential in applications in the field of on-site power generations.
書名頁 …………………………………………………………………..I
論文口試委員審定書…………………………………………………...II
授權書 …………………………………………………………………III
中文摘要………………………………………………………………..IV
英文摘要………………………………………………………………..VI
誌 謝 ………………………………………………………………..VIII
目 錄 ……………………………………………………………….. IV
表目錄 ………………………………………………………………... XII
圖目錄 ………………………………………………………………...XIII
第一章 前言……………………………………………………………..1
1.1 引言……………………………………………………………..1
1.2 燃料電池特點…………………………………………………..1
1.3 燃料電池種類…………………………………………………..2
1.4 金屬儲氫………………………………………………………..2
第二章 理論基礎與文獻回顧…………………………………………...5
2.1 儲氫合金………………………………………………………...5
2.2 儲氫合金吸放氫特性概述……………………………………...6
2.2.1 儲氫合金的吸放氫反應機制…………………………………...6
2.2.2 儲氫合金吸放氫熱力學性質…………………………………...6
2.2.3 壓力-組成-溫度曲線(PCI曲線)…………………………….7
2.3 研究動機與目的………………………………………………...8
第三章 實驗方法與流程………………………………………………...11
3.1 樣品處理及製備………………………………………………..11
3.1.1 銅泡棉清洗……………………………………………………..11
3.1.2 LaNi5基儲氫粉末製備與處理…………………………………12
3.1.3 鎂基儲氫粉末製備與處理……………………………………..13
3.2 儲氫材料氫化性質量測………………………………………..14
3.2.1 PCI 儀器介紹…………………………………………………..14
3.2.2 樣品活化與吸氫動力曲線量測………………………………..15
3.2.3 流量法評估儲氫罐性能………………………………………..16
3.3 燃料電池與儲氫罐連結測試…………………………………..18
3.3.1 儲氫罐與放氫設備組裝………………………………………..18
3.3.2 樣品活化與吸氫動力曲線量測………………………………..19
3.3.3 燃料電池發電測試……………………………………………..19
第四章 結果與討論……………………………………………………..32
4.1 自製燃料電池性能分析………………………………………..32
4.1.1 燃料電池極化性質分析………………………………………..32
4.1.2 H2鋼瓶連結燃料電池80分鐘發電…………………………...32
4.2 LaNi5基儲氫罐性能分析………………………………………33
4.2.1 LaNi5基儲氫材料氫化分析……………………………………33
4.2.2 吸放氫流速對LaNi5基儲氫罐之性能影響………………… 34
4.2.3 LaNi5基儲氫罐連結燃料電池發電前吸氫反應………………35
4.2.4 H2鋼瓶與LaNi5基儲氫罐連結燃料電池發性能比較………...35
4.3 鎂基儲氫罐性能分析……………………………………………..37
4.3.1鎂基儲氫罐氫化性質分析………………………….....................37
4.3.2吸放氫流速對鎂基儲氫罐之性能影響……………….................38
4.3.3 燃料電池-與鎂基儲氫罐連結測試前吸氫反應…………...........41
4.3.4鎂基儲氫罐結合燃料電池發電性能比較……………………41
第五章 結論………………………………………………………..….…65
第六章 未來展望………………………………………………………...66
參考文獻………………………………………………………………….67

1. 曲新生、陳發林,五南圖書出版股份有限公司,(2006, 4).
2. 本間 琢也,圖解燃料電池百科,全華科技股份有限公司,(2004,10).
3. 能源效益http://www.hk-phy.org/energy/commercial/cell_phy05_c.html
4. 陳軍, 新能源材料五南圖書出版股份有限公司, (2008, 3).
5. 吳坤洲, “機械合金法合成鎂基儲氫材料及氫化性質之研究”碩士論文,元智大學先進能源所,桃園,2013.
6 G. Sandrock, Panoramic overview of hydrogen storage alloys from a gas reaction point of view, Journal of Alloys and Compounds, 293 (1999) 877-888.
7. 胡子龍, 儲氫材料, 曉園出版社, 2006.
8. G. Capurso, F. Agresti, S. L. Russo, A. Maddalena, G. Principi, A. Cavallari, C. Guardamagna, Performance tests of a small hydrogen reactor based on Mg–Al pellets, Journal of alloys and compounds, 509 (2011) 646–649.
9. MCPHY, http://www.mcphy.com.
10. M. Verga, F. Armanasco, C. Guardamagna, C. Valli, A. BianChin, F. Agresti, S. Lo Russo, A. Maddalena, G. Principi, Scaling up effects of Mg hydride in a temperature and pressure-controlled hydrogen storage device, International Journal of Hydrogen Energy, 34 (2009) 4602–4610.
11. S. Garrier, A. Chaise, P. de Rango, P. Marty, B. Delhomme, D. FruChart, S. Miraglia, MgH2 intermediate scale tank tests under various experimental conditions, International Journal of Hydrogen Energy, 36 (2011) 9719–9726.
12. M.Y. Yan, F. Sun, X.P. Liu, J.H. Ye, H.P. Yuan, S.M. Wang, L.J. Jiang, Experimental study on hydrogen storage properties of Li–Mg–N–H based tank, Journal of Alloys and Compounds, 603 (2014) 19–22.

13. P. Muthukumar, M. Groll, Metal hydride based heating and cooling systems: A review, International journal of hydrogen energy 35 ( 2010 ) 3817–3831.
14 李政寬, 擴大反應面積對質子交換膜燃料電池操作在低相對濕度之製程研究探討”碩士論文, 元智大學機械研究所,桃園,2014.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top