(54.236.58.220) 您好!臺灣時間:2021/03/05 06:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏悅
研究生(外文):Po-Yue Chen
論文名稱:石墨烯於氮化銦薄膜太陽能電池之應用研究
論文名稱(外文):Preparation of graphene and its application on indium nitride thin-film solar cells
指導教授:蒲念文蒲念文引用關係
指導教授(外文):Nen-Wen Pu
口試委員:柯文政李大青
口試委員(外文):Wen-Cheng KeTa-Ching Li
口試日期:2015-01-20
學位類別:碩士
校院名稱:元智大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:103
語文別:中文
論文頁數:64
中文關鍵詞:石墨烯低壓化學氣象沉積法氧化鋅摻鋁透明導電膜氮化銦氮化鎵薄膜太陽能電池
外文關鍵詞:grapheneLPCVDAZOtransparent conductive filmindium nitridegallium nitridethin film solar cells.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中我們利用銅為觸媒,以低壓化學氣相沉積法(low-pressure chemical vapor deposition, LPCVD),有效的成長乾淨且均勻的單層石墨烯薄膜,並探討通甲烷時間、氫氣流量、銅箔在爐管中的位置、不同的降溫方式、銅箔前處理、以及層數對石墨烯片電阻影響,研究各種不同的成長條件對於石墨烯薄膜的影響,並以拉曼光譜儀分析石墨烯、四點探針量測片電阻、紫外線/可見光分光光譜儀量測光穿透度並探討成長機制。
我們在此低壓系統中觀察出,氫氣有助於石墨烯之合成,氫氣流量較大會形成層數較多的石墨烯薄膜;銅箔位置對於石墨烯層數與品質很具影響力,進氣端之銅箔有薄膜不均與缺陷過大的問題,雖然自然降溫可以稍稍減輕這問題,但因製程時間過長,我們還是以快速降溫為主;最後,前處理能使石墨烯薄膜連續性提高進而優化石墨烯片電阻。所以我們最後參數定在甲烷15 sccm、氫氣15 sccm下通碳源時間5分鐘,並在沉積前對銅箔進行前處理,及成長完成後使用快速降溫,如此能長出品質最好的單層石墨烯,光穿透達96%以上,片電阻在1.5 kΩ/sq左右。
另一方面,將石墨烯運用至氮化銦薄膜太陽能電池作為透明導電膜電極,並與AZO作為透明導電膜電極的樣本做比較,雖然石墨烯片電阻與光穿透度皆比AZO優秀,但是效率量出來之後AZO之轉換效率ηe = 0.38%,比石墨烯0.15%要高。在參數Voc與FF幾乎差不多的情況下,兩個樣本最大的差別就是AZO之Jsc = 0.74 A/cm^2,而石墨烯為0.30 A/cm^2,推測的可能原因為:(1)石墨烯轉印過程中薄膜之損傷造成片電阻升高;(2)PMMA每次去除的結果都不盡相同,殘留愈多也會造成石墨烯片電阻升高;(3)石墨烯功函數相較AZO之下,與InN較不匹配,故石墨烯與InN之歐姆接觸比AZO差。這些情況造成石墨烯串聯電阻RS比AZO大,而使得其Jsc較AZO來的低,進而影響效率。不過,至少證明石墨烯在以濺鍍系統沉積之氮化銦薄膜太陽能電池上做透明導電膜電極是可行的。

In this study we used copper foils as the catalyst to grow low-defect and uniform graphene films by low-pressure chemical vapor deposition (LPCVD). The effects of the following process parameters on the properties and sheet resistance of graphene will be discussed: the carbon source feeding time, hydrogen flow rate, location of the copper foil in furnace, cooling method, copper foil pre-treatment, and times of repetitive graphene transfer. Raman spectroscopy, optical microscopy, four-point probe, and UV/Visible spectrometer were utilized to characterize the graphene specimens.
We observed the following facts in this low-pressure system: (1) Hydrogen promotes the synthesis of graphene—larger hydrogen flow rates led to larger numbers of layers. (2) The location of copper foil in furnace strongly affected the number of layers and the quality of graphene—the graphene grown on the copper foil closest to the gas inlet was the most uneven and had the highest defect density. The method of natural cooling could minimize this problem, but the process took too long. So we decided to adopt the rapid cooling method and forsake the specimen nearest the gas inlet. (3) The pre-treatment of copper foils before CVD effectively improved the continuity of graphene film and decreased the sheet resistance. So we finally set the optimized parameters as follows: the flow rates of methane and hydrogen were both 15 sccm; the carbon source feeding time was 5 min; copper foil pre-treatment before CVD and rapid cooling after CVD were adopted. High-quality single-layer graphene specimens with optical transmittance (at 550 nm) higher than 96% and sheet resistance lower than 1.5 kΩ/sq were obtained using the aforementioned process parameters.
In the second part, we used the graphene films to make transparent conductive film electrodes on indium nitride thin-film solar cells, and compared their performances with those devices using AZO transparent conductive film electrodes. Although graphene exhibited lower sheet resistance and higher transmittance, the conversion efficiency of graphene devices (ηe) is lower than that of the AZO counterparts (0.15% vs. 0.38%). Given that the open-circuit voltage (Voc) and the fill factor (FF) for the two type of devices were almost the same and the only difference was in the short-circuit current density (Jsc, 0.74 and 0.30 A / cm^2 for AZO and graphene devices, respectively), we think there were three possible reasons: (1) Graphene was damaged during the transfer process, causing an increase in the sheet resistance. (2) The residual PMMA increased graphene’s sheet resistance. (3) The work function of InN might match better with AZO than with graphene, resulting in a worse ohmic contact at the graphene-InN interface. These possible problems led to a higher series resistance (Rs) in the graphene devices, and thus lower Jsc and conversion efficiency. However, we have proven at least that graphene can be used as the transparent electrode on indium nitride thin-film solar cells.

目錄

書名頁 i
論文口試委員審定書 ii
授權書 iii
摘要 iii
Abstract iv
誌謝 vii
目錄 x
表目錄 xiii
圖目錄 xiv

一、緒論 1
1.1前言 1
1.2 研究動機 3

二、文獻回顧 5
2.1石墨烯的特性 5
2.2石墨烯的製備方法 6
2.2.1 膠帶剝離法 6
2.2.2 碳化矽表面熱裂解磊晶法[22] 7
2.2.3 氧化石墨烯化學還原法 7
2.2.4 超臨界流體法 8
2.2.5 化學氣相沉積法 9
2.3石墨烯轉印方法 9

三、研究方法與設備 11
3.1實驗流程圖 11
3.2實驗檢測設備介紹 12
3.2.1低壓化學氣相沉積系統 12
3.2.2拉曼光譜特性檢測 13
3.2.3薄膜電性量測 14
3.2.4薄膜透光率分析 16
3.2.5射頻濺鍍系統 17
3.2.6電子束蒸鍍機 18
3.2.7 I-V特性曲線量測 19
3.2.8太陽能光源模擬器 20
3.3石墨烯透明導電膜製作 21
3.3.1成長觸媒前處理 21
3.3.2低壓氣相沉積法(LPCVD)成長石墨烯 21
3.3.3石墨烯蝕刻及轉印步驟 25
3.4氮化銦薄膜太陽能電池元件製作 27
3.4.1以射頻濺鍍系統濺鍍氮化銦 27
3.4.2以射頻濺鍍系統濺鍍AZO 27
3.4.3 Ni/Au電極製作 28
3.4.4石墨烯用於氮化銦薄膜太陽能電池之透明導電電極 28

四、實驗結果與討論 29
4.1 石墨烯之製備與特性研究 29
4.1.1 通入碳源的時間對於石墨烯之影響 29
4.1.2氫氣流量對石墨烯之影響 34
4.1.3石墨烯試片位置(A、B、C)比較 36
4.1.4降溫方式對於化學氣相沉積法石墨烯之影響 39
4.1.5 銅箔前處理對低壓化學氣相沉積法石墨烯之影響 42
4.1.6石墨烯層數對片電阻之影響 44
4.2氮化銦薄膜太陽能電池之製備 46
4.2.1氮化銦薄膜製備過程轉變 46
4.2.2透明導電膜電極之比較 47
4.2.3 AZO與石墨烯透明導電膜電極比較 51

五、結論 56

六、未來展望 58

參考文獻 59


[1]http://www.solartech.com.tw/tw/rd_product_roadmap4.html
[2]Chen, et al., “A mechanical Assessment of Flexible Optoelectronic Devices.” Thin Solid Films, Vol. 394, 201-205, (2001)
[3]Lee, et al, “Metal Diffusion fromElectrodes inOrganicLight-Emitting Diodes.” Appl PhysLett, Vol.75,1404-1406, (1999)
[4]Kim, et al, ”Transparent Conducting Aluminum-Doped Zinc OxideThin Films for Organic Light-Emitting Devices.” Appl PhysLett, Vol.76,259-261, ( 2000)
[5]Cui, et al., “Indium Tin Oxide Alternatives-HighWork Function Transparent Conducting Oxides as Anodesfor Organic Light-Emitting Diodes.”Adv. Mater., Vol.13,1476-1480, (2001)
[6]Pode.,et al, “TransparentConducting Metal Electrode for Top Emission OrganicLight-Emitting Devices: CaAg double layer.” Appl. Phys. Lett., Vol.84,4614-4616, (2004)
[7]Li.,et al, ”Organic Light-Emitting Diodes Having Carbon NanotubeAnodes.” Nano Lett., Vol.6,2472-2477,(2006)
[8]Zhang.,et al, “Transparent, Conductive, and FlexibleCarbon Nanotube Films and Their Application in OrganicLight-Emitting Diodes.” Nano Lett., Vol.6,1880-1886, (2006)
[9]Lee; Peumans, P. Unpublished.
[10]Kang, et al., “Nanoimprinted SemitransparentMetal Electrodes and Their Application in Organic Light-Emitting Diodes.” Adv. Mater., Vol.19,1391-1396, (2007)
[11]洪偉修教授.”世界上最薄的材料--石墨烯” 98康熹化學報報 (康熹文化事業股份有限公司). 2009-11, 11月號
[12]Lee, C. et al.. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. (2008)
[13]Nair, R. R. et al.. Fine Structure Constant Defines Visual Transparency of Graphene. Science. (2008)
[14]Balandin, A. A. et al. "Superior thermal conductivity of single-layer
graphene". Nano Lett. 8, 902-907, 2008
[15]Kim, K. S. et al. "Large-scale pattern growth of graphene films for stretchable transparent electrodes". Nature 457, 706-710, 2009.
[16]Bae, S. et al. "Roll-to-roll production of 30-inch graphene films for transparent electrodes". Nature Nanotech. 5, 574-578, 2010.
[17]Kawano, T.; Kawaguchi, M.; Okamoto, Y.; Enomoto, H.; Bando, H.Preparation of layered B/C/N thin films on nickel single crystal by LPCVD. Solid State Sci. 2002, 4 (11-12), 1521–1527.
[18]Casiraghi.,et al, “Rayleigh Imaging of Graphene and Graphene Layers.” Nano Lett, Vol. 7, 2711-2717, (2007)
[19]Blake.,et al,”Making graphene visible.” Appl Phys Lett. Vol. 91, 063124, (2007).
[20]Abergel.,et al, “Visibility of graphene flakes on a dielectric substrate. Appl Phys Lett, Vol. 91, 063125, (2007).
[21]Ni., et al, “Graphene Thickness Determination Using Reflection and Contrast Spectroscopy.” Nano Lett, Vol. 7, 2758, (2007)
[22]Forbeaux.,et al,“Heteroepitaxial graphite on H-SiC(0001):
Interface formation through conduction-band electronic structure.” Am Phys Soc, Vol. 58, 396-406, (1998)
[23]V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, "High-throughput solution processing of large-scale graphene," Nat Nano, vol. 4, pp. 25-29, 2009.
[24]Stankovich.,et al, ”Graphene-based composite materials” Nature, Vol. 442, 282-286, (2006)
[25]Pu.,et al, “Productionoffew-layergrapheneby supercritical CO2exfoliation of graphite,” Mater Lett, Vol.63, 1987-1989, (2009)
[26]沈曾民,新型碳材料,化學工業出版社,第184-202頁, (2003)
[27]Obraztsov.,et al., “Chemical vapor deposition of thin graphite films of nanometer thickness.” Carbon, Vol. 45, 2017-2021, (2007)
[28]Yu.,et al, “Graphene segregated on Ni surfaces and transferred to insulators.” Appl Phys Lett, Vol. 93, 113103, (2008)
[29]Reina.,et al, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition.” Nano Lett, Vol. 9, 30-35, (2009)
[30]Kim.,et al, ”Large-scale pattern growth of raphene films for stretchable transparent electrodes.” Nature, Vol. 457, 706-710, (2009)
[31]Sutter.,et al. ”Epitaxial graphene on ruthenium.”Nature Mater, Vol. 7,406-411, (2008)
[32]Coraux.,et al, “Structural Coherency of Graphene on Ir(111).” Nano Lett,Vol. 8, 565-570, (2008)
[33]N'Diaye.,et al, ”Structureofepitaxialgraphene on Ir(111). “New J. Phys,Vol. 10, 043033, (2008).
[34]Li, et al., “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils.”Science, Vol. 324,1312 , (2009)
[35]Bae, et al., “Roll-to-roll production of 30-inch graphene films
for transparent electrodes.” Nature Nanotech,Vol. 5, 574-578, (2010)
[36]黃淑娟,”新碳材時代-從奈米碳管到石墨烯”工業材料雜誌,第291卷,3月,第093-103頁, (2011)
[37]黃承均,”石墨烯材料發展與運用趨勢”工業材料雜誌,第304卷,4月,第063-074頁, (2012)
[38]Xuesong Li, Yanwu Zhu, Weiwei Cai, Mark Borysiak, Boyang Han, David Chen, Richard D. Piner, Luigi Colombo, and Rodney S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes.” Nano Letter 9(12), 4359-4363(2009).
[39]Charton.,et al, ”Optical Properties of Thin Ag Films Deposited by Magnetron Sputtering.“ Surf Coat Technol, Vol. 174-175, 181–186, (2003)
[40]Madden, H. H.; Kuppers, J.; Ertl, G. “Interaction of carbon monoxide with (110) nickel surfaces.” J. Chem. Phys. 1973, 58 (8), 3401–3410.
[41]鄭碩方,“製備銅催化化學氣相沉積石墨烯與其氨氣摻雜之奈米帶電性研究”,國立清華大學電子工程研究所碩士論文,新竹,第97頁, (2011)
[42]方偉權,工研院材化所“超高電容器電極薄膜材料應用及其製作技術”,工業材料雜誌257期,表二,(2008)
[43]Ferrari.,et al,“Raman Spectrum of GrapheneandGraphene Layers.”PhysRevLett,Vol. 97, 187401, (2006)
[44]Ferrar.,et al,”Raman spectroscopy of graphene and graphite: Disorder,electron-phononcoupling,doping andnonadiabatic effects. “Solid State Comm,Vol. 143, 47-57, (2007)
[45]Ni., et al, “Graphene Thickness Determination Using Reflection and Contrast Spectroscopy.” Nano Lett, Vol. 7, 2758, (2007)
[46]Vlassiouk.,et al, ” Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene.” ACS Nano, Vol. 5, 6069, (2011)
[47]黃浩平,“氧化鋅鋁/氮氧化銦奈米粒/P 型氮化鎵異質結構之
光電特性研究”,元智大學先進能源碩士學位學程碩士論文,
(2014)
[48]劉泰良,“石墨烯之製備及其在有機發光二極體陽極之應用”,
元智大學光電工程研究所碩士論文,(2013)
[49]黃政緯,“石墨烯之製備及改善潤濕性於高分子有機發光二極體
之應用”,元智大學光電工程研究所碩士論文,(2014)
[50]M. Himmerlich, S. Krischok., et al,“Morphology and surface electronic structure of MBE grown InN.”Journal of Crystal Growth Volume 306, Issue 1, 1 August 2007, Pages 6–11
[51]陳俊太、許千樹,“Applications of Nanostructures in Organic Polymer Solar Cells”,國立交通大學應用化學系,(原文發表於 TCIA臺灣化學科技產業會刊第十期 2012 March)
[52]Lin., et al. “Graphene Annealing: How Clean Can It Be?” Nano
Lett, Vol. 12, 414-419, (2012)
[53]http://www.sogi.com.tw/mobile/articles-手機王2011年智慧型手機市場回顧
[54]http://nanolab.usc.edu/research/graphene.htm,“GRAPHENE SYNTHESIS, TRANSFER AND APPLICATIONS”
[55]Wu.,et al. “Organic light-emitting diodes on solution-processed graphene transparent electrodes.” ACS Nano, Vol. 4, 43-48, (2009).
[56]http://www.materialsnet.com.tw/DocPrint.aspx?id=10267 ,“工業材料雜誌第304期”
[57]Sukang Bae, Hyeongkeun Kim., et al, “Roll-to-roll production of 30-inch graphene films for transparent electrodes” Nature Nanotechnology 5, 574–578 (2010).
[58]Martin A. Green, “Solar Cells Operating Prinicples, Technology
and System Applications” Lecture 9
[59]王宗武,“石墨烯透明導電層於P型氮化鎵薄膜之電性研究”,
元智大學機械工程學系碩士論文,(2014)

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔