(3.235.108.188) 您好!臺灣時間:2021/02/25 07:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡碩庭
研究生(外文):Shuo-Ting Tsai
論文名稱:應用整體式分類技術於CT影像之肺結節偵測
論文名稱(外文):Lung nodule detection using ensemble classifier in CT images
指導教授:李建誠李建誠引用關係
指導教授(外文):Chien-Cheng Lee
口試委員:鄭旭詠黃春融
口試委員(外文):Hsu-Yung ChengChun-Rong Huang
口試日期:2014-8-14
學位類別:碩士
校院名稱:元智大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:103
語文別:中文
論文頁數:61
中文關鍵詞:肺結節斷層掃描整體式分類
外文關鍵詞:lung nodulecomputed tomographyensemble classifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肺癌是癌症死因之首,主要原因是因為多數肺癌患者被檢測出肺癌時,已是第三期或末期階段;肺結節是肺部微小的異常組織,有可能是惡性組織即肺癌早期病灶;因此,肺結節偵測能夠達成早期發現早期治療的目標。本研究提出一套應用整體式分類技術於CT影像之肺結節偵測系統來提供放射科醫師評估的第二意見;本系統包含肺部區域分割、候選肺結節偵測與候選肺結節分類等步驟;在肺部區域分割中,本研究應用自適應二值化演算法,由原始斷層掃描分割肺部區域,並藉由分析邊界結構來修正肺部邊界;在候選肺結節步驟中,本研究先利用自適應二值化演算法找出可疑區域,隨後藉由分析連續影像的連通元件來初步偵測候選肺結節,再藉由初步偵測結果的分析來結合成更完整的候選肺結節;最後,在候選肺結節分類中,本研究透過自組織映射網路挑選訓練樣本並結合整體式分類技術來進行分類,最後達到100% Sensitivity與86.0717% Specificity。
Lung cancer death rate is the highest because most people diagnosed cancer in the third or last stage. Lung nodule is the abnormal growth tissue, and it may become a malignant tumor. Therefore, lung nodule detection is one of the method for early cancer discovery. This paper presents a method for lung nodule detection in CT images based on the ensemble classifier. This lung nodule computer aided detection system includes lung parenchyma segmentation, nodule candidate detection, and nodule candidate classification. First, the system uses the image intensity to apply an adaptive thresholding algorithm for the lung parenchyma segmentation, and the lung region boundary will be fixed by the contour analysis method. Second, the system finds the region of interest using an adaptive thresholding algorithm, and lung nodule are roughly detected by the connected component analysis. In order to obtain the complete 3D structure, the system merges the rough detection results if they conformed the merging condition. Finally, the system applies a self-organizing map algorithm to select the negative samples for the training data, and applies an ensemble classifier to recognize the nodule candidates. The experiment result shows the sensitivity is 100% and the specificity is 86.017%.
目錄
書名頁 II
審定書 III
中文摘要 IV
英文摘要 V
誌謝 VII
目錄 VIII
第一章、 序論 1
1.1 研究背景 1
1.2 研究目標與貢獻 3
1.3 論文架構 3
第二章、 文獻探討 4
2.1 肺部區域分割相關研究 4
2.2 候選肺結節偵測相關研究 7
2.3 候選肺結節分類相關研究 10
第三章、 研究方法 15
3.1 肺結節偵測流程 15
3.2 肺部區域影像分割 16
3.2.1斷層掃描介紹與肺部區域分割 17
3.2.2肺部區域邊界修正 22
3.3 候選肺結節偵測 24
3.3.1候選肺結節初步偵測 24
3.3.2候選肺結節結合 26
3.4 候選肺結節分類 27
3.4.1特徵擷取 28
3.4.2Negative訓練樣本挑選 30
3.4.3整體式分類器 34
3.4.3.1 多層感知器 35
3.4.3.2 支援向量機 38
3.4.3.3AdaBoost 40
3.4.3.4 整體式分類器 40
第四章、 實驗結果 43
4.1 資料來源 43
4.2 肺結節偵測效能評估方式 45
4.3 實驗流程 46
4.3.1肺部區域分割與候選肺結節偵測結果 47
4.3.2候選肺結節標記與分類 50
4.4 肺結節偵測結果與分類結果 51
第五章、 結論與未來展望 57
參考文獻 58

[1] World Health Organization: cancer key facts. Available: http://www.who.int/mediacentre/factsheets/fs297/en/
[2] R. Siegel, D. Naishadham, and A. Jemal, "Cancer statistics, 2012," CA Cancer Journal for Clinicians, vol. 62, pp. 10-29, 2012.
[3] J. H. M. Austin, N. L. M#westeur061#ller, P. J. Friedman, D. M. Hansell, D. P. Naidich, M. Remy-Jardin, et al., "Glossary of terms for CT of the lungs: Recommendations of the Nomenclature Committee of the Fleischner Society," Radiology, vol. 200, pp. 327-331, 1996.
[4] P. B. Bach, J. N. Mirkin, T. K. Oliver, C. G. Azzoli, D. A. Berry, O. W. Brawley, et al., "Benefits and harms of CT screening for lung cancer: A systematic review," JAMA - Journal of the American Medical Association, vol. 307, pp. 2418-2429, 2012.
[5] D. S. Elizabeth, H. K. Nehemiah, C. S. Retmin Raj, and A. Kannan, "Computer-aided diagnosis of lung cancer based on analysis of the significant slice of chest computed tomography image," IET Image Processing, vol. 6, pp. 697-705, 2012.
[6] S. L. A. Lee, A. Z. Kouzani, and E. J. Hu, "Automated detection of lung nodules in computed tomography images: A review," Machine Vision and Applications, vol. 23, pp. 151-163, 2012.
[7] A. Retico, P. Delogu, M. E. Fantacci, I. Gori, and A. Preite Martinez, "Lung nodule detection in low-dose and thin-slice computed tomography," Computers in Biology and Medicine, vol. 38, pp. 525-534, 2008.
[8] K. Nakagomi, A. Shimizu, H. Kobatake, M. Yakami, K. Fujimoto, and K. Togashi, "Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume," Medical Image Analysis, vol. 17, pp. 62-77, 2013.
[9] S. Magalh#westeur036#es Barros Netto, A. Corrĉa Silva, R. Acatauass#westeur059# Nunes, and M. Gattass, "Automatic segmentation of lung nodules with growing neural gas and support vector machine," Computers in Biology and Medicine, vol. 42, pp. 1110-1121, 2012.
[10] W. J. Choi and T. S. Choi, "Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor," Computer Methods and Programs in Biomedicine, vol. 113, pp. 37-54, 2014.
[11] M. S. Brown, M. F. McNitt-Gray, N. J. Mankovich, J. G. Goldin, J. Hiller, L. S. Wilson, et al., "Method for segmenting chest CT image data using an anatomical model: Preliminary results," IEEE Transactions on Medical Imaging, vol. 16, pp. 828-839, 1997.
[12] M. S. Brown, M. F. McNitt-Gray, J. G. Goldin, R. D. Suh, J. W. Sayre, and D. R. Aberle, "Patient-specific models for lung nodule detection and surveillance in CT images," IEEE Transactions on Medical Imaging, vol. 20, pp. 1242-1250, 2001.
[13] X. Ye, X. Lin, J. Dehmeshki, G. Slabaugh, and G. Beddoe, "Shape-based computer-aided detection of lung nodules in thoracic CT images," IEEE Transactions on Biomedical Engineering, vol. 56, pp. 1810-1820, 2009.
[14] W. J. Choi and T. S. Choi, "Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images," Information Sciences, vol. 212, pp. 57-78, 2012.
[15] A. Retico, M. E. Fantacci, I. Gori, P. Kasae, B. Golosio, A. Piccioli, et al., "Pleural nodule identification in low-dose and thin-slice lung computed tomography," Computers in Biology and Medicine, vol. 39, pp. 1137-1144, 2009.
[16] M. N. Gurcan, B. Sahiner, N. Petrick, H. P. Chan, E. A. Kazerooni, P. N. Cascade, et al., "Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer-aided diagnosis system," Medical Physics, vol. 29, pp. 2552-2558, 2002.
[17] S. Sivakumar and C. Chandrasekar, "Lung nodule detection using fuzzy clustering and support vector machines," International Journal of Engineering and Technology, vol. 5, pp. 179-185, 2013.
[18] O. Osman, S. Ozekes, and O. N. Ucan, "Lung nodule diagnosis using 3D template matching," Computers in Biology and Medicine, vol. 37, pp. 1167-1172, 2007.
[19] Q. Li, S. Sone, and K. Doi, "Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans," Medical Physics, vol. 30, pp. 2040-2051, 2003.
[20] G. Luan, Y. Wei, and D. Xue, "Automated detection of suspected lung nodules in CT images using improved surface normal overlap algorithm," Journal of Computational Information Systems, vol. 8, pp. 5111-5118, 2012.
[21] M.-S. L. a. C.-K. T. G#westeur042#rard Medioni, A Computational Framework for Segmentation and Grouping vol. 1, 2000.
[22] A. Teramoto and H. Fujita, "Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter," International Journal of Computer Assisted Radiology and Surgery, vol. 8, pp. 193-205, 2013.
[23] J. R. F. da Silva Sousa, A. C. Silva, A. C. de Paiva, and R. A. Nunes, "Methodology for automatic detection of lung nodules in computerized tomography images," Computer Methods and Programs in Biomedicine, vol. 98, pp. 1-14, 2010.
[24] L. B#westeur055#r#westeur055#czky, L. Zhao, and K. P. Lee, "Feature subset selection for improving the performance of false positive reduction in lung nodule CAD," IEEE Transactions on Information Technology in Biomedicine, vol. 10, pp. 504-511, 2006.
[25] M. Antonelli, M. Cococcioni, B. Lazzerini, and F. Marcelloni, "Computer-aided detection of lung nodules based on decision fusion techniques," Pattern Analysis and Applications, vol. 14, pp. 295-310, 2011.
[26] M. C. Lee, L. Boroczky, K. Sungur-Stasik, A. D. Cann, A. C. Borczuk, S. M. Kawut, et al., "Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble construction," Artificial Intelligence in Medicine, vol. 50, pp. 43-53, 2010.
[27] T. G. Feeman, The Mathematics of Medical Imaging, 1 ed.: Springer-Verlag New York Inc., 2010.
[28] S. Hu, E. A. Hoffman, and J. M. Reinhardt, "Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images," IEEE Transactions on Medical Imaging, vol. 20, pp. 490-498, 2001.
[29] J. Dehmeshki, X. Ye, X. Lin, M. Valdivieso, and H. Amin, "Automated detection of lung nodules in CT images using shape-based genetic algorithm," Computerized Medical Imaging and Graphics, vol. 31, pp. 408-417, 2007.
[30] S. Suzuki and K. be, "Topological structural analysis of digitized binary images by border following," Computer Vision, Graphics and Image Processing, vol. 30, pp. 32-46, 1985.
[31] J. J. Su#westeur034#rez-Cuenca, P. G. Tahoces, M. Souto, M. J. Lado, M. Remy-Jardin, J. Remy, et al., "Application of the iris filter for automatic detection of pulmonary nodules on computed tomography images," Computers in Biology and Medicine, vol. 39, pp. 921-933, 2009.
[32] T. Kohonen, "Self-organized formation of topologically correct feature maps," Biological Cybernetics, vol. 43, pp. 59-69, 1982.
[33] R. A. Jacobs, "Methods for combining experts' probability assessments," Neural computation, vol. 7, pp. 867-888, 1995.
[34] L. Rokach, "Ensemble-based classifiers," Artificial Intelligence Review, vol. 33, pp. 1-39, 2010.
[35] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, pp. 273-297, 1995.
[36] Y. Freund and R. E. Schapire, "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting," Journal of Computer and System Sciences, vol. 55, pp. 119-139, 1997.
[37] S. G. Armato Iii, G. McLennan, M. F. McNitt-Gray, C. R. Meyer, D. Yankelevitz, D. R. Aberle, et al., "Lung image database consortium: Developing a resource for the medical imaging research community," Radiology, vol. 232, pp. 739-748, 2004.
[38] M. F. McNitt-Gray, S. G. Armato Iii, C. R. Meyer, A. P. Reeves, G. McLennan, R. C. Pais, et al., "The Lung Image Database Consortium (LIDC) Data Collection Process for Nodule Detection and Annotation," Academic Radiology, vol. 14, pp. 1464-1474, 2007.
[39] C. C. Chang and C. J. Lin, "LIBSVM: A Library for support vector machines," ACM Transactions on Intelligent Systems and Technology, vol. 2, 2011.
[40] J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," Annals of Statistics, vol. 28, pp. 337-407, 2000.
[41] C. Yeh, J. F. Wang, M. T. Wu, C. W. Yen, M. L. Nagurka, and C. L. Lin, "A comparative study for 2D and 3D computer-aided diagnosis methods for solitary pulmonary nodules," Computerized Medical Imaging and Graphics, vol. 32, pp. 270-276, 2008.
[42] E. C. da Silva, A. C. Silva, A. C. de Paiva, R. A. Nunes, and M. Gattass, "Diagnosis of solitary lung nodules using the local form of Ripley's K function applied to three-dimensional CT data," Computer Methods and Programs in Biomedicine, vol. 90, pp. 230-239, 2008.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔