(3.237.234.213) 您好!臺灣時間:2021/03/09 12:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高崇善
研究生(外文):GAO,CHONG-SHAN
論文名稱:Ba2Ti9O20摻雜MO的介電陶瓷合成及特性研究
論文名稱(外文):The Study on Synthesis and Characterization of Dielectric Ceramic Materials of Ba2Ti9O20/MO
指導教授:洪耀勳洪耀勳引用關係
口試委員:劉益銘劉敏憲賴政國何子萬
口試日期:2016-05-10
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:材料科學與工程碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:91
中文關鍵詞:鋇鈦氧陶瓷介電材料X光繞射介電常數
外文關鍵詞:Barium titanate oxide ceramicsdielectric materialX-ray diffractiondielectric constant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
介電化合物Ba2Ti9O20具有高的相對介電常數(εr:40),高的品質/頻率因子(Qxf)及接近於零的溫度係數(τt),是一種穩定且優良的微波元件介電材料,但由於Ba2Ti9O20需達1400oC高溫燒結才能獲得介電性質穩定的材料,為了降低燒結溫度以吻合經濟效益且能保持或提升材料的介電性質因此本研究利用固態反應法來合成鈦酸鋇(Ba2Ti9O20)之前驅物介電粉末,再將合成出來的鈦酸鋇前驅物為主體,添加小量之各類助熔劑,經1350oC以下的溫度高溫燒結成Ba2Ti9O20/MXOY的介電陶瓷,並探討其晶體結構、微結構及介電性質。
藉由熱重分析儀(TGA)及差示熱分析儀(DTA)觀察原料及介電粉末熱性質;利用掃描式電子顯微鏡(SEM)來確認介電陶瓷之微結構;運用X光繞射分析儀(XRD)來觀察介電粉體與陶瓷的晶體結構;利用排液式比重儀量測陶瓷材料的密度;最後使用網路分析儀量測介電陶瓷之介電性質。
研究結果顯示燒結溫度在1250oC時,Ba2Ti9O20/CuO介電陶瓷的XRD繞射峰強度隨CuO的添加量增加而增大,且CuO添加量為3%時,相對介電常數達最大值(εr:72)。隨燒結溫度上升(1250oC~1350oC),Ba2Ti9O20/CuO的介電常數(permittirty)相對下降,例如含3%CuO的Ba2Ti9O20/CuO,其εr值由72下降至55;密度變化亦有相同趨勢。在1300oC的燒結溫度下,各種助熔劑的添加量增加時,陶瓷的介電常數亦隨之上升,尤其添加3%的Sm2O3、3%CuO及3%MnO2所形成的陶瓷,其介電常數分別為93、65及47;陶瓷密度的變化除添加助熔劑Sm2O3外,其餘的助熔劑(硫酸銅、醋酸銅及硫酸錳)添加量增加,因顆粒界限有熔化的固體溶液產生,密度隨之下降。

Dielectric compound Ba2Ti9O20 has good stability of dielectric properties such as high the relative dielectric constant (εr=40) , high quality factor Q x ƒ value and close to zero temperature conffieient (τt) , therefore Ba2Ti9O20 is one of the best dielectric materials for microwave devices . Yet Ba2Ti9O20 ceramic requires a high sintering temperature(>1400oC) is needed. In order to decrease the sintering temperature (below 1350oC) of Ba2Ti9O20 to full-fill the purpose of cost effective , some reasonable quantity of fusion aid such as CuSO4·5H2O and the others were added during the synthesis process of Ba2Ti9O20/MxOy by the solid-state reaction method. The dielectric properties, crystal structures and microstructures of the final products were also studied in this work.
Using thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) to confirm the thermal properties of the powder of starting materials. The crystal structures of the dielectric powders and ceramics were confirmed by X-ray diffraction(XRD). Scanning electron microscopy (SEM) were used to observe the surface phenomenon and the microstructure of the ceramics. Finally, dielectric properties of ceramics Ba2Ti9O20 /MxOy were measured by the network analyzer.
The results show that the intensity of XRD peaks of Ba2Ti9O20/CuO increased with increasing CuO quantity . When CuO quantity reached 3% by Wt , the relative permittivity become the maximum at εr=72 . As the sintering temperature reached 1250oC~1350oC , the permittivity declined , from εr=72 to εr=55 . A similar trend was observed for sample intensity . At sintering temperature of 1300oC , sample permittity increaed with increasing fusion aid quantity in used . For example , the permittities of the sample with addition of 3% by wt Sm2O3 , 3% by wt CuO , 3% by wt MnO2 are 93 , 65 , and 47 , respectively . On the other hand the densities decrease when increasing the fusion aids such as CuSO4 , Cu(CH3COO)2 , MnSO4 except Sm2O3 . The desity drop was due to the formation of solid solution at the grain boundary of the sample .

誌謝 iv
摘要 v
ABSTRACT vi
目錄 viii
表目錄 x
圖目錄 xi
1. 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
2. 文獻回顧 4
2.1 介電材料簡述 4
2.2 介電原 5
2.3 介電材料合成方式 7
3. 研究方法 11
3.1 原料藥品 11
3.2 儀器設備 12
3.3 實驗步驟 13
3.4 介電陶瓷的製備 13
4. 結果與討論 18
4.1 前驅物粉末熱分析 18
4.2 晶格鑑定分析 29
4.3 微結構觀察與分析 54
4.4 陶瓷材料密度量測與分析 65
4.5 陶瓷材料的助熔劑、燒結溫度與介電材料之介電常數相互關係 68
5.結論 71
參考文獻 73


參考文獻
[1] 吳朗,「電子陶瓷入門」,全欣資訊圖書股份有限公司,1992。
[2] Phule, P. P., Risbud, S. H., Sci, J. M., Vol. 25. pp. 1169-1183,1990.
[3] Filimonov, D. S., Liu , Z. K., Randall, C. A., “ An Oxygen nonstoichiometry study of barium polytitanates with hollandite structure,” Material Research Bulletin ,Vol. 37, pp. 2373-2382, 2002.
[4] 張春松,“鈦酸鋇鍶的合成及介電特性研究”,碩士論文,國防大學理工學院化學工程研究所,桃園,第1-9頁,2015。
[5] Michael, Hu, Z. C., “ Wet-chemical synthesis of monodispersed barium titanate particles —hydrothermal conversion of TiO2 microspheres to nanocrystalline BaTiO3 Powder Technology, ” ,Vol. 110, pp. 2–14, 2000.
[6] Chen, J. F., “Synthesis of monodispersed barium titanate nanocrytals—hydrothermal recrystallization of BaTiO3 nanospheres Journal of Crystal Growth, ” ,Vol. 281 , pp. 669–677, 2005.
[7] Chu, L. W., “Synthesis of Ba2Ti9O20 materials via a dissolution–precipitation mechanism in a hydrothermal process, ” Acta Materialia, Vol. 54, pp. 1671–1677,2006.
[8] Chen, R. Z., “Structure sintering behavior and dielectric properties of silica-coated BaTiO3 ,” , Materials Letters ,Vol. 54 , pp. 314–317, 2002.
[9] 陳瑞傑,高介電鈦酸鋇陶瓷/高分子可撓曲基板之製作,南台大學電子工程系,2011年。
[10] 汪建民,陶瓷技術手冊(上),全華科技圖書,台北,第412-413頁,1999。
[11] Araújo, V. D., “Effect of calcium on the structural properties of Ba1-xCaxTiO3 particles synthesized by complex polymerization method, ” Journal of Materials Science, Vol. 49, pp. 2875-2878, 2014.
[12] Kingery, W. D., “Introduction to Ceramics 2nd edition, ” , pp. 125-176, 1976.
[13] 唐立權,“鈉與鈮參雜物對CaO‧TiO2‧SiO2陶瓷體之電性影響”,碩士論文,國立成功大學礦冶暨材料科學研究所,台南,第17-19頁,1991。
[14] 陳皇鈞,陶瓷材料概論(上冊),曉園出版社,台北,1987。
[15] 邱碧秀,電子陶瓷材料,徐氏基金會出版社,台北,第31-42頁,1988。
[16] Fu, C., Yang, C., Chen, H., Wang, Y., and Hu, L., “Microstructure and dielectric properties of BaxSr1-xTiO3 ceramics,” Materials Science and Engineering B, Vol. 119, pp. 185-188, 2005.
[17] Ganguly, M., “Structural, electrical, and optical properties of (Ba1-xNd2/3x)TiO3 ceramics,” Phase transitions, Vol. 87, pp. 157-174, 2013.
[18] Li, Y., and Chen, X. M., “Effects of sintering conditions on microstructures and microwave dielectric properties of Ba6-3x(Sm1-yNdy)8+2xTi18O54 ceramics (x=2/3),” Journal of the European Ceramic Society, Vol. 22, pp. 715-719, 2002.
[19] Zheng, Y., “Effects of Bi2O3 addition on the microstructures and microwave dielectric characteristics of Ba6-3x(Sm0.2Nd0.8)8+2xTi18O54 (x=2/3) ceramics,” Materials Letters, Vol. 60, pp. 459-463, 2006.
[20] Grigore, L. F., “Investigation into the Formation of Phases with a Ba2Ti9O20-Type Structure in the BaO-TiO2 and BaO-SrO-TiO2 Systems,” Glass Physics and Chemistry, Vol. 33, No. 1, pp. 72-79, 2007.
[21] Wu, M. C., Hsieh, M. K., Yen, C. W., Huang, Y. C., Huang, W. T., and Su, W. F., “Low sintering BaNd2Ti4O12 microwave ceramics prepared by CuO thin layer coated powder,” Journal of the European Ceramic Society, Vol. 27, pp. 2835-2839, 2007.
[22] Wanga, S. F., “Effects of additives on the phase formation and microstructuralevolution of Ba2Ti9O20 microwave ceramic, ˮ Ceramics International, Vol. 29, pp. 77–81, 2003.
[23] Liou, Y. C., “Effect of dopants on synthesis of BaTi4O9 and Ba2Ti9O20 ceramics prepared by reaction-sintering process, ˮ Journal of the European Ceramic Society ,Vol.27 , pp. 3027–3032, 2007.
[24] Jong, B. L., “Low temperature sintering of the Ba2Ti9O20 ceramics using B2O3/CuO and BaCu(B2O5) additives, ˮ Journal of the European Ceramic Society ,Vol.27,pp. 2875–2879, 2007.
[25] Dong, K. Y., “Microwave dielectric properties and low temperature sintering of Ba3Ti4Nb4O21 ceramics with B2O3 and CuO additions, ˮ Journal of the European Ceramic Society ,Vol.27 , pp . 3053–3057, 2007.
[26] Lin, I. N., “Effect of reaction sintering process on the microwave dielectric properties of Ba2Ti9O20 materials, ˮ Journal of the European Ceramic Society ,Vol.30 , pp . 159-163, 2010.
[27] Lee, J. A., “Low-temperature sintering and microwave dielectric characteristics of Ba2Ti9O20 ceramics, ˮJournal of the European Ceramic Society ,Vol.26 , pp . 2111–2115, 2006.
[28] Wang, S. F., “Effects of B2O3 on the phase formation of Ba2Ti9O20 ceramic, ˮ Materials Chemistry and Physics ,Vol.79 , pp . 256–260, 2003.
[29] Huang, C. L., “Low temperature sintering and microwave dielectric properties of Ba2Ti9O20 ceramics using glass additions ,ˮ Materials Research Bulletin, Vol.35 , pp . 2445–2456, 2000.
[30] Weng, W., “The effects of incomplete combustion on Ba2Ti9O20 phase formation in a citrate solution combustion method ,ˮ Ceramics International ,Vol.35 , pp . 1725–1729, 2009.
[31] Liou, Y. C., “Synthesis of BaTi4O9 ceramics by reaction-sintering process ,ˮ Materials Research Bulletin ,Vol.40 , pp . 1483–1489, 2005.
[32] Lee, Y. C., “Microwave dielectric properties and microstructures of Ba2Ti9O20-based ceramics with 3ZnO–B2O3 addition,ˮ Journal of the European Ceramic Society ,Vol.25 , pp . 3459–3468, 2005.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔