(44.192.112.123) 您好!臺灣時間:2021/02/28 06:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李俊擇
研究生(外文):LI,CHUN-TSE
論文名稱:多衛星系統組合對定位精度影響之分析
論文名稱(外文):The Study of Analysis the Influences of Positioning Accuracy for Combination of Multi-Satellite System Observations
指導教授:黃立信黃立信引用關係
指導教授(外文):HWANG,LIH-SHINN
口試委員:李興緯、李宜珊、陳鶴欽、陳鴻智
口試委員(外文):LI,SING-WEI、LI,YI-SHAN、CHEN,HE-CIN、CHEN,HAO-CIN
口試日期:2016-05-12
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:空間科學碩士班
學門:設計學門
學類:空間設計學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:137
中文關鍵詞:北斗衛星全球導航衛星系統靜態觀測半動態定位即時動態定位
外文關鍵詞:BDSGNSSStaticSemi-KinematicRTK
相關次數:
  • 被引用被引用:2
  • 點閱點閱:330
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用北斗導航衛星(BeiDou Navigation Satellite System, BDS)觀測資料,與GPS(Global Positioning System)、GLONASS(Global Navigation Satellite System)、Galileo和QZSS(Quasi Zenith Satellite System)等全球導航衛星系統(Global Navigation Satellite System, GNSS)觀測量結合,利用多頻衛星接收儀獲取多系統結合之衛星訊號,並設計不同長短基線的網形實驗,分別為長基線靜態觀測及短基線半動態與RTK(Real-Time Kinematic)觀測試驗進行處理,將多衛星系統組合之觀測資料,進行計算與比較分析,探討其對定位精度之影響與提出最佳化之分析報告。
在現階段之條件下,本研究成果顯示:
在靜態觀測中,多衛星系統之PDOP(Position Dilution of Precision)值較單一系統為低,但未必能提升觀測精度;但短基線觀測成果在高程或平面精度部分上,均優於長基線觀測之成果。在動態觀測中,顯示結合多衛星系統在進行觀測時,其衛星幾何分布較佳,則有更佳的定位精度。在本實驗中,當GPS或GLONASS觀測成果不佳時,多衛星系統的增加使觀測的成功率上升。在動態定位觀測實驗上,半動態觀測較RTK成果提升精度上更為明顯。在動態觀測上,多衛星系統的觀測位於透空良好的地帶成效也許不明顯,但觀測品質不佳的地點,因加入多衛星系統,使其觀測成果就有明顯的改善,顯示多衛星系統若能配合適當網形平差模式,能使穩定性大幅提升,進而縮短觀測時間,說明基於觀測品質的考量,不同區域仍須選擇適當測量方法。

This research is combined BDS data with GNSS observations, including GPS, GLONASS, Galileo and QZSS satellite signals, by multi-frequency satellite receivers. Designed experiments of various-baseline nets, Static measurements on long baselines and semi-kinematic and RTK measurements on short baselines. For combined multi-satellite system observation, to compare and analysis the influences of positioning accuracy in optimization report.
Under current conditions, the results of those studies are summarized as follow:
On static measurement test. Multi-satellite system could not be able to enhance the accuracy of the observation. Not only in horizontal but also in vertical components, result shows that the accuracy on short-baseline measurements are better than the results of the long-baseline measurements.On kinematic measurement test. Because of geometric distribution, multi-satellite system maybe expressed more positioning accuracy during working.In this study, if the accuracy of only GPS or only GLONASS system observations expressed poor status, combined with multi-satellite systems could be enhanced probability of success in the kinematic measurement test, especially for semi- kinematic measurement.On kinematic measurement test. For multi-satellite system data, probability of success maybe not very obviously varied in open areas, but probability of success clearly varied in poor quality observation areas.This work shows that and more accuracy of positioning could be achieved and time of observation could be reduced by multi- satellite data with suitable network adjustment model, especially for semi- kinematic measurement. Based on the observed quality considerations, it proved when different areas still need to select the appropriate measurement methods.

目錄

誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 x
1. 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 文獻回顧 3
1.4 研究方法與流程 6
2. 理論基礎 7
2.1 GNSS介紹 7
2.1.1 GPS介紹 7
2.1.2 GLONASS介紹 13
2.1.3 BDS介紹 17
2.1.4 Galileo介紹 25
2.1.5 QZSS介紹 27
2.2 衛星定位原理 29
2.3 差分定位 32
2.3.1 地面一次差 33
2.3.2 空中一次差 33
2.3.3 二次差分 34
2.3.4 三次差分 35
2.4 半動態定位 36
2.5 RTK即時動態定位 37
2.6 精度因子介紹 38
2.7 GPS和GLONASS系統整合 41
2.8 GPS和BDS系統整合 43
3. 研究內容 44
3.1 研究區域 44
3.2 使用儀器及軟體 47
3.2.1 研究儀器 47
3.2.2 研究軟體 50
3.3 實驗時間與儀器配置 50
4. 實驗結果比較與分析 54
4.1 靜態觀測成果 54
4.2 動態觀測成果 69
4.2.1 半動態觀測成果 72
4.2.2 RTK觀測成果 80
5.  結論與建議 90
5.1 結論 90
5.2 建議 91
6. 參考文獻 92
附錄一 靜態觀測實驗照片 98
附錄二 RTK觀測實驗照片 100
附錄三 靜態觀測成果 106
附錄四 半動態觀測成果 112
附錄五 RTK觀測成果 117
自傳 122


[1]崔國強,“GPS+GLONASS與GPS定位效能之比較研究”,第十八屆測量學術及應用研討會論文集,宜蘭,第129-138頁,1999。
[2]蔡宜學,“GPS/GLONASS整合式之導航系統”,碩士論文,國立臺灣大學電機工程學系,臺北,第1-78頁,2000。
[3]蔡孟倫,“未來全球導航衛星系統於臺灣區域效能分析”,碩士論文,國立成功大學測量及空間資訊學系,臺南,第63-84頁,2008。
[4]黃景祥,“GPS/GLONASS 多衛星信號整合分析之研究”,碩士論文,國防大學理工學院環境資訊及工程學系,桃園,第1-37頁,2009。
[5]鄭昶弘、高書屏,“不同RTK 定位技術在地籍重測之研究-以嘉義地區莫拉克災後監測網為例”,第三十屆測量及空間資訊研討會論文集,臺中,第103-118頁,2011。
[6]沈力洋,“GPS/Galileo 單頻即時動態定位效能分析”,碩士論文,國立成功大學測量及空間資訊學系,臺南,第62-68頁,2010。
[7]楊開元,“GPS/BDS 衛星導航之方法與效能”,碩士論文,國立成功大學測量及空間資訊學系,臺南,第82-111頁,2013。
[8]Li, H., Dang, Y., Bei, J., and Yang, F.,“Research on spatiotemporal unification of BDS/GPS/GLONASS multi-mode fusion navigation and positioning,” Institute of Geodesy and Geodynamics, Chinese Academy of Surveying and Mapping, Beijing, China, pp.73-78, 2013.
[9]Luo, X. and Cai, C., “Accuracy assessment of combined GPS/Galileo single point positioning,” Institute of Geodesy and Geodynamics, Chinese Academy of Surveying and Mapping, Beijing, China, pp. 136-140, 2013.
[10]Sui, Xin., Xu, Aigong., Xu, Zongqiu., Wu Tanshi., and Ge, Maorong., “Performance Analysis of Ambiguity Resolution with Combined GPS/BDS Observations,” International Electronic Conference on Sensors and Applications, China, 2014
[11]Robert, Odolinski., Peter, J. Teunissen., and Dennis, Odijk., “Combined BDS, Galileo, QZSS and GPS single-frequency RTK,” GPS Solutions, Vol. 19, No. 1, U.S.A, pp. 151-163, 2014.
[12]Robert, Odolinski., Peter, J. Teunissen., and Dennis, Odijk., “Combined GPS + BDS for short to long baseline RTK positioning,” Measurement Science and Technology, Vol. 26, No. 4, U.S.A, pp. 1-9 2015.
[13]Luo, X., Richer, B., and Cole, A., “GLONASS only and BeiDou RTK only Positioning,” Leica Geosystems Technical literature,Heerbrugg, Switzerland, pp. 7-11 2014.
[14]Rock, Santerre., Lin, Pan., Cai, Changsheng., and Zhu, Jianjun., “Single Point Positioning Using GPS, GLONASS and Beidou Satellites,”Scientific Research, Vol. 5, No. 4, U.S.A, pp. 107-114, 2014.
[15]Li, Xingxing., Zhang Xiaohong., Ren Xiaodong., Mathias, Fritsche., Jens, Wickert., and Harald, Schuh., “Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou,” Scientific Reports 5, China, pp. 73-78 2015.
[16]Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more, Springer Wien New York, U.S.A, pp. 309-340 2008.
[17]Kenneth, W. Hudnut., and Bryan, Titus., “GPS L1 civil signal modernization (L1C),” STEWARDSHIP PROJECT #204, U.S.A, pp. 13-31 2004.
[18]Fontana, R., and Latterman, D., “GPS modernization and the future,” In: Proceedings of the IAIN World Congress and the 56th AM of the ION, San Diego, U.S.A, pp. 222-231, 2000.
[19]Barker, B.C., Betz, J.W., Clark, J.E., Correia, J.T., Gillis, J.T., Lazar, S., Rehborn, K.A., and Straton, III, J.R., “Overview of the GPS M code signal,” In:Proceedings of the ION National Technical Meeting 2000, Anaheim, U.S.A, pp.542-549, 2000.
[20]Fontana, R.D., Cheung, W., Novak, P.M., and Stansell, T. “The new L2 civil signal,” In: Proceedings of ION GPS 2001, Salt Lake City, U.S.A, pp. 617-631, 2011.
[21]Dierendonck, A., and Hegarty, C., “The new L5 civil GPS signal,” GPS World, Vol. 11, No. 9, pp. 64-71, 2000.
[22]http://www.gps.gov/systems/gps/space/(2016.4.19)
[23]Harrington, P., “GPS program update,” Paper presented at the IGG expert meeting on GNSS, Montreal, Canada, pp. 1-26 2008.
[24]安守中,GPS定位原理及應用,全華科技圖書股份有限公司,台北,第7-89頁,2006。
[25]江偉銘,“應用時間序列分析於GPS多路徑效應之研究”,碩士論文,國立中央大學土木工程學系,桃園,第1-12頁,2008。
[26]張繼文,“GPS虛擬參考站系統於地籍控制測量應用之研究”,碩士論文,國立中興大學土木工程學系,臺中,第8-18頁,2004。
[27]Alexe,i E. Zinoviev., “Using GLONASS in Combined GNSS Receivers : Current Status”, Topcon Positioning Systems CIS, LLC. ION GNSS 18th International Technical Meeting of the Satellite Division, Long Beach, CA, pp. 1047-1057, 2005.
[28]https://glonass-iac.ru/en/GLONASS/(2016.4.19)
[29]James, M. N., Gary, A. J., and Daniel, P., “GLONASS and GPS: Redundancy and Reliability Obtained by Combining the Two Systems,” Dynamic Positioning Conference, U.S.A, pp.12-13, 1999.
[30]Misra, P. N., Abbot, R. I., and Gaposchkin, E. M., “Integrated Use of GPS and GLONASS: Transformation Between WGS 84 and PZ-90,” ION GPS 96, Salt Lake City, U.S.A, pp.307-314, 1996.
[31]CSNO, “Report on the development of BeiDou (COMPASS) navigation satellite system,” China Satellite Navigation Office, Beijing, China, pp. 1-18 2013.
[32]CSNO, “BeiDou navigation satellite system open service performance standard,” China Satellite Navigation Office, Beijing, China, pp. 1-5 2013
[33]CSNO, “BeiDou navigation satellite system signal in space interface control document,” China Satellite Navigation Office, Beijing, China, pp. 1-11 2013.
[34]Ran C., “Development of BeiDou navigation satellite system,” Paper presented at the Proceedings of the 6th ICG, Tokyo, Japan, 2011.
[35]Zhou, S., Cao, Y., Zhou, J., Hu, X., Tang, C., Liu, L., Guo, R., He, F., Chen, J., and Wu, B., “Positioning accuracy assessment for the 4GEO/5IGSO/2MEOconstellation of COMPASS,” Science China Physics, Mechanics and Astronomy, Vol. 55, No. 12, pp. 2290-2299, 2012.
[36]Han, C., Yang, Y., and Cai, Z. “BeiDou navigation satellite system and its time scales, ” Metrologia, Vol. 48, No. 4, pp. S213-S218, 2011.
[37]Montenbruck, O., Hauschild, A., Steigenberger, P., Hugentobler, U., Teunissen, P., and Nakamura, S., “Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system,” GPS Solutions, Vol. 17, No. 2, pp. 211-222, 2012.
[38]Meng, W., Liu, E., Han, S., and Yu Q., “Research and development on satellite positioning and navigation in China,” IEICE Transactions on Communications, Vol. E95.B, No. 11, pp. 3385-3392, 2012.
[39]Chen, P., Wen, H., Cheng, Y., and Wang, H., “Parameters of the CGCS2000 ellipsoid and comparisons with GRS80 and WGS84,” Acta Geodaetica et Cartographica Sinica, Vol. 38, No. 3, pp.189-194, 2009.
[40]Deng, C., Tang, W., Liu, J., and Shi, C., “Reliable single-epoch ambiguity resolution for short baselines using combined GPS/BeiDou system,” GPS Solutions, Vol. 18, No. 3, pp. 375-386, 2013.
[41]Yang, Y., “Chinese geodetic coordinate system 2000,” Chinese Science Bulletin, Vol. 54, No. 15, pp. 2714-2721, 2009.
[42]Yang, Y., “Progress, contribution and challenges of Compass/Beidou satellite navigation system,” Acta Geodaetica et Cartographica Sinica, Vol. 39, No. 1, pp. 1-6, 2010.
[43]李勝義、黃雯禧,“中共太空科技的發展現況與趨勢探討”,國防雜誌,第27卷,第4期,第82-99頁,2012。
[44]羅春秋,“中共「北斗」導航衛星發展及其軍事戰略意涵”,國防雜誌,第29卷,第6期,第63-76頁,2014。
[45]王崑義,“中國發展北斗衛星系統對臺灣安全的威脅與因應之道”,全球政治評論,第34期,第41-70頁,2011。
[46]林嘉濱,“加利略衛星導航系統與其訊號擷取”,碩士論文,國立臺灣大學電機工程研究所,臺北,第16-37頁,2006。
[47]JAXA, “Interface Specification for QZSS Ver. 1.6,” Quasi-Zenith Satellite System Navigation Service, pp. 24-26, 2014.
[48]楊名,“公分級GPS衛星即時動態定位系統”,中國測量工程,第39卷,第四期,第1-18頁,1997。
[49]Leick, A., Beser, J., Rosenboom, P., and Wiley, B., “Assessing GLONASS Observation,” proceedings of ION GPS 98 international technical meeting, Nashville, Tennessee, pp. 15-19, U.S.A, 1998.
[50]Wei, Z., “China geodetic coordinate system 2000 and its comparison with WGS84,” Journal of Geodesy and Geodynamics, Vol. 28, No. 5, pp. 1-5, 2008.
[51]Sun, F., Liu, S., Zhu, X., and Men, B. “Research and progress of BeiDou satellite navigation system,” Science China Information Sciences, Vol. 55, No. 12, pp. 2899-2907, 2012.
[52]http://www.trimble.com/GNSSPlanningOnline(2016.4.20)
[53]王昭融,“結合多個衛星系統模擬導航定位計算之研究”,碩士論文,國防大學理工學院環境資訊及工程學系,桃園,第11-23頁,2008。
[54]曾建榮,“GPS/GLONASS訊號整合應用於高程系統之研究”,碩士論文,國防大學理工學院環境資訊及工程學系,桃園,第10-42頁,2008。
[55]尤竣彥,“各式量測方法對幾何高差精度之研究”,碩士論文,國防大學理工學院環境資訊及工程學系,桃園,第48-76頁,2014。
[56]張勝雄,“利用GPS/GLONASS多衛星訊號、地下水法和大地起伏整合應用於臺灣地區地層變化之研究”,碩士論文,國防大學理工學院環境資訊及工程學系,桃園,第10-24頁,2008。
[57]許志生,“利用GNSS系統於網行平差分析及壩體變形監測之研究”,碩士論文,國防大學理工學院環境資訊及工程學系,桃園,第8-31頁,2013。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔