跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳南宇
研究生(外文):Chen, Nan Yu
論文名稱:X光吸收光譜與同步X光粉末繞射探討鉑-釕、 釩-鈦氧化物、及沸石-黏合劑間之交互作用
論文名稱(外文):X-ray Absorption Spectroscopy and Synchrotron X-ray Powder Diffraction Study of Pt-Ru, V2O5-TiO2, and Zeolite-Binder Interactions
指導教授:張仁瑞
指導教授(外文):Chang, Jen Ray
口試委員:蔣見超張仁瑞李茂田李志甫許火順
口試委員(外文):Tsiang, Chien ChaoChang, Jen RayLee, Maw TienLee, Jyh FuSheu, Hwo Shuenn
口試日期:2015-10-30
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:141
中文關鍵詞:X光吸收X光粉末繞射程溫還原鉑-釕氧化釩二氧化鈦鈉型沸石-氧化矽脫鋁雙金屬交互作用黏合劑
外文關鍵詞:XASXRPDTPRPt-RuV2O5TiO2NaY-SiO2dealuminationbimetal-interactionbinder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:476
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在探討雙金屬交互作用對催化反應的影響。研究中共分為三部分,我們先探討金屬-金屬間之交互作用,以共含浸法及連續含浸法分別製備Pt-Ruco/C及Ru-Ptse/C觸媒,並以X光吸收及程溫還原分析Ru-Ptse/C;研究結果顯示,當以Pt(absorber)-Ru(backscatter) 相位及振幅校正Pt-Ru black於Pt LIII edge傅立葉轉換EXAFS時,Pt-Ru交互作用之特徵峯約位於2.7Å,如以Pt-Pt進行相位校正,Pt-Ru交互作用之特徵峯約位於2.5 Å,此外,其Pt-Ru及Pt-Pt間特徵峯之相對強度亦可對Pt-Ru及Pt-Pt之交互作用進行半定量分析;上述簡易分析方法可延伸至分析Pt-Pd/γ-Al2O3,然卻無法應用於Pt-Re/γ- Al2O3,因為Pt-Pt及Pt-Re之相位函數相似且兩者特徵峯重合,故無法分析Pt-Re之交互作用。
其次為探討金屬-載體之交互作用,及瞭解TiO2所扮演之角色,實驗中將三異丙醇氧化釩附著於粒狀SiO2、TiO2奈米粒子及嫁接TiO2之粒狀SiO2,為加速觸媒老化測試,將觸媒測試之o-DCB(鄰二氯苯)氧化反應溫度自200oC上升至550oC。經老化測試之觸媒利用EXAFS及同步輻射XRPD分析觸媒之結構變化,並進一步評估觸媒之穩定性及瞭解嫁接TiO2之角色。研究結果顯示,(1) 嫁接之TiO2有助於分散及固定釩;(2)於TiO2-SiO2載體發現單一傘狀結構的釩,於SiO2載體上發現聚合的VO4,以及在TiO2載體上發現共存的V2O5及TiVO4兩晶相;(3)o-DCB的氧化反應使釩聚集造成觸媒的活性衰減;(4)V2O5/TiO2觸媒之全氧化選擇性較差可能由於布忍斯特酸/路易士酸之比例較高的關係;(5)TiO2-V2O5之交互作用降低釩的價數而緩和含氧中間產物對釩活性基的強吸附作用,因此可加速反應速率;(6)於反應中釩的水合作用可能造成釩的聚集而使得觸媒失活。
最後是探討載體-黏合劑間之交互作用,將NaY粉末與SiO2膠狀溶液混合均勻及捏合,使用擠壓成型機擠出成形、再煅燒成形之NaY-SiO2。探討SiO2黏合劑對粒狀NaY-SiO2之結構及表面特性之影響,氮氣吸脫附恆溫曲線結果顯示,粒狀NaY-SiO2形成柱狀之中孔結構;由同步輻射X光粉末繞射、穿透式電子顯微鏡、以及傅立葉轉換紅外線光譜分析結果指出,捏合過程中酸的水解會造成Al3+脫離及內部結晶Si-O-Al鍵破壞,此酸的水解反應會造成沸石晶格沿著沸石通道收縮,同時,脫鋁反應伴隨著Na+的移除會造成NaY矽鋁比增加及提高疏水性;另外,研究結果亦顯示SiO2黏合劑與NaY碎片或鋁殘餘物反應形成新布忍斯特酸;脫鋁過程中,流動之Si(OH)4回填至空缺使沸石有更佳之的熱穩定性,故本研究製備之NaY-SiO2粒狀沸石可應用於工業製程。

The purpose of this research was to investigate the effect of bimetallic interaction to catalytic reaction. This study was divided into three parts. First, we discussed the metal-to-metal interaction. Pt-Ruco/C catalyst was prepared by co-impregnation and Ru-Ptse/C catalyst was prepared by successive impregnation, respectively. Those samples were characterized by XAS and TPR. When Pt(absorber)-Ru(backscatter) phase-and-amplitude correction was applied to Fourier-transformed EXAFS of Ru-Pt black at Pt edge, the characteristic peak of Pt-Ru interactions appears at 2.70 Å, whereas, when Pt-Pt correction is applied, the peak appeared at about 2.5 Å. The interactions also could semi-quantitatively be determined by the relative intensity between Pt-Ru and Pt-Pt characteristic peaks. This simple method in determining bimetallic interaction could be extended to characterize Pt-Pd/γ-Al2O3. However, for Pt-Re/γ-Al2O3, Pt-Re interactions cannot be determined by the method because of overlap of Pt-Pt and Pt-Re characteristic peaks due to similar phase functions. The second part was about the metal-support interaction for vanadia redox catalysts. To understand the role of TiO2, V2O5/SiO2, V2O5/TiO2, and V2O5/TiO2-SiO2 having different structures were prepared by incorporating vanadium oxytripropoxide on granular SiO2, TiO2 nano-particles, and TiO2-grafted-SiO2 pellets, respectively. In order to accelerate the catalyst deactivation, the catalysts were tested for oxidation of 1,2-dichlorobenzene with temperature elevated from 200 to 550oC. Using EXAFS and XRPD, the structural changes in the accelerated aging tests were characterized to assess the catalyst stability and the role of the grafted TiO2 in catalysis. The correlation of catalyst structures with catalytic reaction results indicated that: (1) the grafted TiO2 helps anchoring and dispersing vanadia in the catalyst preparation; (2) monomeric vanadia species with umbrella geometry, polymeric VO4, and TiVO4 coexisting with V2O5 clusters were formed on TiO2-SiO2 pellet, granular SiO2, and TiO2 nano-particles, respectively; (3) oxidative destruction of 1,2-dichlorobenzene induces the aggregation of vanadia species on the supports leading to a decrease of catalytic activity; (4) lower total oxidation selectivity for V2O5/TiO2 as opposed to the other two catalyst samples could be due to the presence of higher Brønsted-to-Lewis acid sites ratio; (5) a decrease of vanadium-atoms valence charge induced by TiO2-V2O5 interactions alleviates strong adsorption of oxygen-containing intermediates on vanadia sites, thereby increasing the reaction rate; and (6) hydration of vanadia in reaction could lead to aggregation of the vanadia species and catalyst deactivation. The last part was to discuss the interaction for support-to-binder. NaY-SiO2 extrudate was prepared by blending NaY powder with silica gel, and followed with kneading, extruding and calcination. The impact of silica binder on the structure and surface properties of NaY-SiO2 extrudate was investigated. Nitrogen adsorption/desorption isotherm suggests the formation of cylinderical meso-pores for NaY-SiO2. XRPD, TEM, and FT-IR suggest that in kneading, dealumination and cleavage of the intra-crystalline Si–O–Al bond via acid hydrolysis occur. This acid hydrolysis causes shrinkage of zeolite lattice along zeolite channel due to dislodgement of Al3+cations. The dealumination increases silica/alumina ratio of NaY concomitantly with the removal of Na+ leading to increase in the hydrophobicity of NaY, while reaction of silica binder with NaY debris and/or aluminum residue forms new Brønsted acid sites. Moreover, backfilling the vacancies created in the dealumination by mobile Si(OH)4 makes the zeolite more thermally stable, which lends the extrudate itself to industrial applications.
圖目錄………………………………………………………………………………….......X
表目錄…………………………………………………………………………………...XIII
第一章 緒論………………………………………………………………………………1
1.1 延伸X光吸收細微結構(Extend X-Ray Absorption Fine Structure, EXAFS)………1
1.2 同步X光粉末繞射(Synchrotron X-Ray Powder Diffraction, XRPD)………………3
1.3 金屬-金屬之交互作用………………………………………………………………..3
1.4 金屬-金屬氧化物及載體-黏合劑間之交互作用………………………………..…..4
第二章 觸媒製備、反應裝置及分析方法………………………………………………7
2.1 觸媒製備……………………………………………………………………...………7
2.1.1 Pt-Ru觸媒製備………………………………………………….………………..7
2.1.2 V2O5/TiO2-SiO2觸媒製備………………………………………………………..7
2.1.3 NaY-SiO2擠出物載體之製備……………………………………………………8
2.2 反應設備……………………………………………………………………………….8
2.3 化學藥品及產物分析………………………………………………………………….8
2.3.1 藥品………………………………………………………………………………8
2.3.2 產物分析………………………………………………………………..………10
2.4 觸媒特性分析………………………………………………………………………...10
2.4.1 程溫還原(Temperature Programmed Reduction)……………………………….10
2.4.2 紅外線光譜……………………………………………………………………..10
2.4.3 穿透式電子顯微鏡(TEM)……………………………………………………...11
2.4.4 X光吸收光譜……………………………………………………………………11
2.4.5 X光粉末繞射……………………………………………………………………12
2.4.6 其他分析儀器…………………………………………………………..………12
第三章 EXAFS特徵峯與程溫還原分析雙金屬交互作用:含浸法對Pt-Ru/C觸媒的影響……………………………………………………………………….………………….15
3.1 引言…………………………………………….……………………………………15
3.2 實驗步驟…………………………………………………………………………….17
3.2.1 樣品製備…………………………………………………………………………17
3.2.2程溫還原(Temperature-programmed reduction)…………………………………18
3.2.3 X光吸收光譜…………………………………………………………………….18
3.3 結果討論…………………………………………………………………………….20
3.3.1 程溫還原分析Pt/C、Ru/C、及Pt-Ru/C之特性………………………………20
3.3.2 EXAFS之Pt-Ru雙金屬交互作用特徵峯………………………………………20
3.3.3 參數方法對Pt-Ru雙金屬交互作用之探討……………………………….……24
3.3.4 程溫還原鑑定Pt-Pd、Pt-Re觸媒及Pt-Pd雙金屬交互作用之EXAFS特徵峯26
3.4 結論………………………………………………………………………………..28

第四章 釩氧觸媒氧化分解臨二氯苯:嫁接TiO2對釩結構及催化反應之影響……..41
4.1 引言………………………………………………………………………………..41
4.1.1 戴奧辛的產生………………………………………………………………….41
4.1.2 戴奧辛控制技術……………………………………………………………….42
4.1.3吸附脫除戴奧辛與觸媒催化氧化去除戴奧辛之比較….…………...………..44
4.1.4 戴奧辛催化氧化觸媒………………………………………………………...45
4.1.5 TiO2負載型釩氧觸媒…………………………………………………………..47
4.1.6 粒狀V2O5/TiO2-SiO2觸媒之製備、鑑定、及測試………………………….48
4.2 實驗方法………………………………………………………………………….50
4.3結果討論…………………………………………………………………………..53
4.3.1 觸媒加速老化測試……………………………………………………………53
4.3.2 同步輻射X光粉末繞射鑑定觸媒結構……………………………………...54
4.3.3以EXAFS及XANES鑑定SiO2上釩氧化物結構…………………………..55
4.3.4 X光吸收鑑定TiO2上釩的結構………………………………………………57
4.3.5 X光吸收鑑定V2O5/TiO2-SiO2之結構……………………………………….58
4.3.6 TiO2奈米粒子載體的優點及缺點…………………………………………….59
4.3.7 詳細EXAFS分析……………………………………………………………..61
4.3.8 嫁接TiO2對觸媒穩定性扮演之角色………………………………………...64
4.4 結論…………………………………………………………………………………65
第五章 沸石-黏合劑間之交互作用對成型NaY-SiO2結構及表面特性之影響………80
5.1 前言………………………………………………………………………………….80
5.2 實驗………………………………………………………………………………….82
5.2.1 粒狀NaY-SiO2的製備……………………………………………………….…..82
5.2.2 同步輻射X光粉末繞射………………………………………………….….…..84
5.2.3 傅立葉轉換紅外線光譜…………………………………………………………85
5.3 結果與討論………………………………………………………………………….86
5.3.1 XRPD數據分析…………………………………………………………….…….86
5.3.2 Rietveld 模擬結果………………………………………………………….…….87
5.3.3 NaY及NaY-SiO2的孔洞結構…………………………………………….…….90
5.4 使用FT-IR鑑定NaY及NaY-SiO2的結構及表面特性……………………….…94
5.5 黏著劑-沸石交互作用對吸附的影響…………………………..…………………..97
5.6 結論………………………………..………………………………………………...98
第六章 未來研究方向…………………………………………………………………..121
參考文獻…………………………………………………………………………………122

[1] 李志甫,「NSRRC BL17C 光束線暨X光吸收光譜實驗站操作說明書」,行政院
同步輻射研究中心,民國九十一年。
[2] Frenkel A.I., 2012,” Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts, ” Chem. Soc. Rev., 41, 8163-8178.
[3] 汪建民,「材料分析」,第11-72頁,新竹市,民全書局,民國九十四年。
[4] 許火順,從粉末繞射解析未知物之晶體結構」,第263-272頁,化學,民國九十
三年。
[5] Rietveld H.M., 1969, ”The Rietveld method ,” J. Appl. Crystallogr. 2, 65-71.
[6] Larson, A.C., and R.B. von Dreele, 1986, ”Generalized Structure Analysis System,”Los Alamos National Laboratory, Los Alamos, NM.
[7] Rodriguez-Carvajal J., 1990, ”Fullprof:A program for Rietveld Refinement and Pattern Matching Analysis”, Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.
[8] Hou R., M.D. Porosoff, J.G. Chen, and T. Wang, 2015, ”Effect of oxide supports on Pd-Ni bimetallic catalysts for 1,3-butadiene hydrogenation, ” Applied Catalysis A:general, 490, 17-23.
[9] Hilli Y., N.M. Kinnunen, M. Suvanto, A. Savimaki, and K. Kallinen, 2015, ” Preparation and characterization of Pd-Ni bimetallic catalysts for CO and C3H6 oxidation under stoichiometric conditions,” Applied Catalysis A:general,497, 85-95
[10] Kim J.K., J.K. Lee, K.H. Kang, J.C. Song, and I.K. Song, 2015, ” Selective cleavage of C-O bond in benzyl phenyl ether to aromatics over Pd-Fe bimetallic catalyst supported on ordered mesoporous carbon,” Applied Catalysis A:general, 498, 142-149.
[11] Baranowska K., and J. Okal, 2015, ” Bimetallic Ru-Re/γ-Al2O3 catalysts for the catalytic vombustion of propane:Effect of the addition,” Applied Catalysis A:general, 499, 158-167.
[12] Soares O. S.G.P., L. Marques, C.M.A.S. Freitas, A.M. Fonseca, P. Parpot, J.J.M. Orfao, M.F.R. Pereira, and I.C. Neves, 2015, ”Mono and bimetallic NaY catalysts with high performance in nitrate reduction in water,” Chemical Engineering Jounal, 281, 411-417.
[13] Nassar N.N., C.A. Franco, T. Montoya, F.B. Cortes, and A. Hassan, 2015, ”Effect of oxide support on Ni-Pd bimetallic nonocatalysts for steam gasification on n-C7 asphltenes, ” Fuel, 156, 110-120.
[14] Qi S., B.A. Cheney, R. Zheng, W.W. Lonergan, 2011, ”The effect of oxide support on the low temperature hydrogenation activity of acetone over Pt/Ni bimetallic catalysts on SiO2, γ-Al2O3 and TiO2,” Applied Catalysis A:general, 393, 44-49.
[15] Wang T., W. Lonergan, J.G. Chen, 2013, ”Selection of oxide supports to anchor desirable bimetallic structures for ethanol reforming and 1,3-butadiene hydrogenation, ” Chinese Jouurnal of Catalysis, 34, 2009-2017.
[16] Liu G., J. Guo, F. Meng, X. Zhang, and L Wang, 2014, ”Effects of Colloidal Silica Binder on Catalytic Activity an Adhesion of HZSM-5 Coatings for Structure Reactors, ”Chinese Journal of Chemical Engineering, 22, 875-881.
[17] Irani M., A. Nakhaie-Pour, and Sh. Tehrani, 2008, ” The Effect of SiO2 and Al2O3 Binders on the Activity and Selectivity of Bifunctional Fe/HZSM-5 Catalyst in Fischer-DTropshch Synthesis,” Iranian Journal of Chemical Engineering, 5, 64-70
[18] Alayoglu S., A. U. Nilekar, Mavrikakis, M. and B. Eichhorn, 2008,”Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen,” Nature Materials, 7, 333–338.
[19] Modestov A. D., M. R. Tarasevich, V. Y. Filimonov, and E. S. Davydova, 2010,“CO tolerance and CO oxidation at Pt and Pt–Ru anode catalysts in fuel cell with polybenzimidazole-H3PO4 membrane,” Electrochim Acta, 55, 6073–6080.
[20] Jung C., J. Kim, and C. K. Rhee, 2010“CO preoxidation on Ru-modified Pt(111),” Electrochemistry Communications, 12, 1363-1366.
[21] Velázquez-Palenzuela A., E. Brillas, C. Arias, F. Centellas, J. A. Garrido,R. M. Rodríguez, and P.-L. Cabot, 2012,”Structural Characterization of Ru-Modified Carbon-Supported Pt Nanoparticles Using Spontaneous Deposition with CO Oxidation Activity,” The Journal of Physical Chemistry C, 116, 18469-18478.
[22] Sato T., K. Okaya, K. Kunimatsu, H. Yano, M. Watanabe, and H. Uchida, 2012,“Effect of Particle Size and Composition on CO-Tolerance at Pt−Ru/C Catalysts Analyzed by In Situ Attenuated Total Reflection FTIR Spectroscopy,” ACS Catalysis, 2, 450-455.
[23] Ralph T. R., and M. P. Hogarth, 2002,”Catalysis for Low Temperature Fuel Cells,” Platinum Metals Review, 46, 117-135.
[24] Lin S. D., T.-C. Hsiao, J.-R. Chang, and A. S. Lin, 1999,”Morphology of Carbon Supported Pt-Ru Electrocatalyst and the CO Tolerance of Anodes for PEM Fuel Cells”, The Journal of Physical Chemistry B, 103, 97-103.
[25] Liu D.-G., J.-F. Lee, and M.-T. Tang, 2005, ” Characterization of Pt-Ru/C catalysts by X-ray absorption spectroscopy and temperature-programmed surface reaction,” Journal of Molecular Catalysis A: Chemical, 240, 197-206.
[26] Li H., D. Kang, H. Wang, and R. Wang, 2011,”Carbon-Supported Pt-RuCo Nanoparticles With Low-Noble-Metal Content and Superior Catalysis for Ethanol Oxidization,” International Journal of Electrochemical Science, 6, 1058-1065.
[27] Takeguchi T., T. Yamanaka, K. Asakura, E. N. Muhamad, K. Uosaki, and W. Ueda, 2012,“Evidence of Nonelectrochemical Shift Reaction on a CO-TolerantHigh-Entropy State Pt−Ru Anode Catalyst for Reliable and Efficient Residential Fuel Cell Systems,” Journal of the American Chemical Society, 134, 14508-14512.
[28] Yoshimura Y., H. Yasuda, T. Sato, N. Kijima, and T. Kameoka, 2001, “Sulfur-tolerant Pd-Pt/Yb-USY zeolite catalysts used to reformulate diesel oils,” Applied Catalysis A: General, 207, 303-307.
[29] Carvalho L. S., C. L. Pieck, M. do C. Rangel, N. S. Fígoli, and J. M. Parera, “Sulfur Poisoning of Bi- and Trimetallicγ-Al2O3-Supported Pt, Re, and Sn Catalysts, 2004,” Industrial & Engineering Chemistry Research, 43, 1222-1226.
[30] Matsui T., M. Harada, Y. Ichihashi, K. K. Bando, N. Matsubayashi, M. Toba, and Y. Yoshimura, 2005, ” Effect of noble metal particle size on the sulfur tolerance of monometallic Pd and Pt catalysts supported on high-silica USY zeolite,” Applied Catalysis A: General, 286, 249-257.
[31] Yoshimura Y., M. Toba, T. Matsui, M. Harada, Y. Ichihashi, K. K. Bando,
H. Yasuda, H. Ishihara, Y. Morita, and T. Kameoka, 2007, “Active phases and sulfur tolerance of bimetallic Pd–Pt catalysts used for hydrotreatment,” Applied Catalysis A: General, 322, 152-171.
[32] Zhang H., X. Meng, Y. Li, and Y. S. Lin, 2007,“MCM-41 Overgrown on Y Composite Zeolite as Support of Pd-Pt Catalyst for Hydrogenation of Polyaromatic Compounds,” Industrial & Engineering Chemistry Research, 46, 4186-4192.
[33] Gutiérrez A., J. M. Arandes, P. Castaño, M. Olazar, A. Barona, and J. Bilbao, 2012,“Effect of space velocity on the hydrocracking of Light Cycle Oil over a Pt–Pd/HY zeolite catalyst,” Fuel Processing Technology,95, 8-15.
[34] Gutiérrez A., J. M. Arandes, P. Castaño, M. Olazar, and J. Bilbao, 2012, “Enhancement of aromatic hydro-upgrading on a Pt catalyst by promotion with Pd and shape-selective supports,” Fuel Processing Technology, 101, 64-72.
[35] Yu Y., B. Fonfé, A. Jentys, G. L. Haller, J. A. R. van Veen, O. Y. Gutiérrez, and J. A. Lercher, 2012,“Bimetallic Pt–Pd/silica–alumina hydrotreating catalysts. Part II: Structure–activity correlations in the hydrogenation of tetralin in the presence of dibenzothiophene and quinolone,” Journal of Catalysis, 292, 13-25.
[36] Fung A. S., M. J. Kelley, D. C. Koningsberger, and B. C. Gates, 1997, “γ-Al2O3 -Supported Re-Pt Cluster Catalyst Prepared from [Re2Pt(CO)12 ]: Characterization by Extended X-ray Absorption Fine Structure Spectroscopy and Catalysis of Methylcyclohexane Dehydrogenation,” Journal of the American Chemical Society, 119, 5877-5887.
[37] Huang S.-Y., C.-M. Chang, and C.-T. Yeh, 2006,” Promotion of platinum–ruthenium catalyst for electro-oxidation of methanol by ceria,” Journal of Catalysis, 241, 400-406.
[38] Cimino S. and L. Lisi, 2012, “Impact of Sulfur Poisoning on the Catalytic Partial Oxidation of Methane on Rhodium-Based Catalysts,” Industrial & Engineering Chemistry Research, 51, 7459-7466.
[39] Yang H., W. Vogel, C. Lamy, and N. Alonso-Vante, 2004,”Structure and Electrocatalytic Activity of Carbon-Supported Pt-Ni Alloy Nanoparticles
Toward the Oxygen Reduction Reaction,” The Journal of Physical Chemistry B, 108, 11024-11034.
[40] Huang Q., H. Yang, Y. Tang, T. Lu, and D. L. Akins, 2006, “Carbon-supported Pt–Co alloy nanoparticles for oxygen reduction reaction,” Electrochemistry Communications, 8, 1220-1224.
[41] Guillon E., B. Didillon and D. Uzio, 2006, ” Aromatic Reduction Over Supported Modified Platinum Catalysts Influence of a Second Metal on the Sulfur Resistance of Platinum,” Oil & Gas Science and Technology - Rev. IFP, 61, 405-413.
[42] Park I.-S., K.-W. Park, J.-H. Choi, C. R. Park, and Y.-E. Sung, 2007, “Electrocatalytic enhancement of methanol oxidation by graphite nanofibers with a high loading of PtRu alloy nanoparticles,” Carbon, 45, 28-33.
[43] Liu S.-H., W.-Y. Yu, C.-H. Chen, A.-Y. Lo, B.-J. Hwang, S.-H. Chien, and S.-B. Liu, “Fabrication and Characterization of Well-Dispersed and Highly Stable PtRu Nanoparticles on Carbon Mesoporous Material for Applications in Direct Methanol Fuel Cell, 2008,” Chemistry of Materials, 20, 1622-1628.
[44] Ciftci A., D. A. J. M. Ligthart, A. O. S., A. J.F. van Hoof, H. Friedrich, and E. J. M. Hensen, 2014, ”Pt-Re synergy in aqueous-phase reforming of glycerol and the water–gas shift reaction,” Journal of Catalysis, 311, 88-101.
[45] Rigsby M. A., W.-P. Zhou, A. Lewera, H. T. Duong, P. S. Bagus, W. Jaegermann, R. Hunger, and A. Wieckowski, 2008, “Experiment and Theory of Fuel Cell Catalysis: Methanol and Formic Acid Decomposition on Nanoparticle Pt/Ru,” The Journal of Physical Chemistry C, vol. 112, 39, 15595-15601.
[46] Umeda M., Y. Matsumoto, and M. Inoue,S. Shironita, 2013, “O2–enhanced methanol oxidation reaction at novel Pt-Ru-C co-sputtered electrodes,” Electrochimica Acta, 101, 142-150.
[47] Arikan T., A. M. Kannan , and F. Kadirgan, ” Binary Pt-Pd and ternary Pt-Pd-Ru nanoelectrocatalysts for direct methanol fuel cells, 2013,” International Journal of Hydrogen Energy, 38, 2900-2907.
[48] Kitchin J. R., J. K. Nørskov, M. A. Barteau, and J. G. Chen, “Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals, 2004,” Journal of Chemical Physics, 120, 10240-10246.
[49] Watanabe M., T. Sato, K. Kunimatsu, and H. Uchida, 2008,“Temperature dependence of co-adsorption of carbon monoxide and water on highly dispersed Pt/C and PtRu/C electrodes studied by in-situ ATR-FTIRAS,” Electrochimica Acta, 53, 6928-6937.
[50] Dimakis N., H. Iddir, R. R. Díaz-Morales, R. Liu, G. Bunker ,E.-H. Chung, and E. S. Smotkin, “A Band Dispersion Mechanism for Pt Alloy Compositional Tuning of Linear Bound CO Stretching Frequencies, 2005,” The Journal of Physical Chemistry B, 109, 1839-1848.
[51] Liu B. Y., J. M. Jin, C. Hardacre, P. Hu, and W. F. Lin, “Combined studies of DFT atomistic modelling and in situ FTIR spectroscopy on surface oxidants and CO oxidation at Ru electrodes, 2013,” Journal of Electroanalytical Chemistry, 688, 216-223.
[52] Johansson A.-C., J. V. Larsen, M. A. Verheijen, K. B. Haugshøj ,H. F. Clausen, W. M. M. Kessels, L. H. Christensen, and E. V. Thomsen, 2014, ” Electrocatalytic activity of atomic layer deposited Pt–Ru catalysts onto N-doped carbon nanotubes,” Journal of Catalysis, 311, 418-486.
[53] Zhao Y., L. Fan, J. Ren, and B. Hong, 2014, “Electrodeposition of Pt-Ru and Pt-Ru-Ni nanoclusters on multi-walled carbon nanotubes for direct methanol fuel cell,” International Journal of Hydrogen Energy, I-I4.
[54] Xie C., Y. Chen, M. H. Engelhard, and C. Song, 2012, “Comparative Study on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Hydrocarbon Fuel,” ACS Catalysis, 2, 1127-1137.
[55] Kua J. and W. A. Goddard III,” Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol Fuel Cells, 1999,” Journal of the American Chemical Society, 121, 10928-10941.
[56] Isaacs B. H., and E. E. Petersen, 1982, “The effect of drying temperature on the temperature-programmed reduction profile of a platinum/rhenium/alumina catalyst,” Journal of Catalysis, 77, 43-52.
[57] Carvalho L. S., C. L. Pieck, M. C. Rangel, N. S. Fígoli, J. M. Grau, P. Reyes, and J. M. Parera, 2004, “Trimetallic naphtha reforming catalysts. I. Properties of the metal function and influence of the order of addition of the metal precursors on Pt–Re–Sn/γ-Al2O3–Cl,” Applied Catalysis A: General, 269, 91-103.
[58] Shannon M. D., C. M. Lok, and J. L. Casci, 2007,” Imaging promoter atoms in Fischer–Tropsch cobalt catalysts by aberration-corrected scanning transmission electron microscopy,” Journal of Catalysis, 249, 41-51.
[59] Diehl F. and A.Y. Khodakov, 2009,” Promotion of Cobalt Fischer-Tropsch Catalysts with Noble Metals: a Review,” Oil & Gas Science and Technology - Rev. IFP, 64, 11-24.
[60] Amada Y., Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, and K. Tomishige, “Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir–ReOx/SiO2 catalyst, 2011,” Applied Catalysis B: Environmental, 105, 117-127.
[61] Hsieh Y.-C., L.-. Chang, P.-W. Wu, Y.-M. Chang, and J.-F. Lee, “Displacement reaction of Pt on carbon-supported Ru nanoparticles in hexachloroplatinic acids, 2011,” Applied Catalysis B: Environmental, 103, 116-127.
[62] Chotisuwan S., J. Wittayakun and B. C. Gates,” EXAFS characterization of supported PtRu/MgO prepared from a molecular precursor and organometallic mixture, 2006,” Studies in Surface Science and Catalysis, 159, 209-212.
[63] Wang Y., and N. Toshima, 1997, “Preparation of Pd - Pt Bimetallic Colloids with Controllable Core/Shell Structures,” The Journal of Physical Chemistry B, 101, 5301-5306.
[64] Hills C. W., M. S. Nashner, A. I. Frenkel, J. R. Shapley, and R. G. Nuzzo, 1999,” Carbon Support Effects on Bimetallic Pt - Ru Nanoparticles Formed from Molecular Precursors,” Langmuir, 15, 690-700.
[65] Bönnemann H., and R. M. Richards,”Nanoscopic Metal Particles 2 Synthetic Methods and Potential Applications, 2001,” European Journal of Inorganic Chemistry, 2001, 2455-2480.
[66] Scott R. W. J., O. M. Wilson, S.-K. Oh, E. A. Kenik, and R. M. Crooks, 2004,”Bimetallic Palladium - Gold Dendrimer-Encapsulated Catalysts,” Journal of the American Chemical Society, 126, 15583-15591.
[67] Zhou S., B. Varughese, B. Eichhorn, G. Jackson, and K. McIlwrath, 2005,” Pt–Cu Core–Shell and Alloy Nanoparticles for Heterogeneous NOx Reduction: Anomalous Stability and Reactivity of a Core–Shell Nanostructure,” Angewandte Chemie, 44, 4615-4619.
[68] Mieville R.L., 1984, “Platinum-rhenium interaction: A temperature-programmed reduction study,” Journal of Catalysis, 87, 437-442.
[69] Wei Y.-C., C.-W. Liu, and K.-W. Wang, 2009,” Activity–Structure Correlation of Pt/Ru Catalysts for the Electrodecomposition of Methanol: The Importance of RuO2 and PtRu Alloying,” ChemPhysChem, 10, 1230-1237.
[70] Page T., R. Johnson, J. Hormes, S. Noding, and B. Rambabu, 2000, “A study of methanol electro-oxidation reactions in carbon membrane electrodes and structural properties of Pt alloy electro-catalysts by EXAFS,” Journal of Electroanalytical Chemistry, 485, 34-41.
[71] Amada Y., H. Watanabe, M. Tamura,Y. Nakagawa, K. Okumura, and K.Tomishige, 2012,” Structure of ReOx Clusters Attached on the Ir Metal Surface in Ir −ReOx/SiO2 for the Hydrogenolysis Reaction,” The Journal of Physical Chemistry C, 116, 23503-23514.
[72] Jan C.-A., T.-B. Lin, and J.-R.y Chang, 1996,”Aromatics Reduction over Supported Platinum Catalysts. 3. Effects of Catalyst Precursors and Pretreatment Conditions on the Performance of Palladium-Promoted Platinum Catalysts,” Industrial & Engineering Chemistry Research, 35, 3893-3898.
[73] McNicol B. D., 1977, “The reducibility of rhenium in re onγ-alumina and Pt-Re on γ-alumina catalysts,” Journal of Catalysis, 46, 438-440.
[74] Vaarkamp M., J. C. Linders, and D. C. Koningsberger, 1995,”A new method for parameterization of phase shift and backscattering amplitude, “Physica B: Condensed Matter, 208-209, 159-160.
[75] Vaarkamp M. V, 1994,”Comparison of theoretical methods for the calculation of extended x-ray-absorption fine structure,” Physical Review B, 50, 7872-7883.
[76] Cook J. W., and D. E. Sayers, 1994,” Criteria for automatic xray absorption fine structure background removal,” The Journal of Applied Physics, 52, 5024-5031.
[77] van Zon J. B. A. D., D. C. Koningsberger, H. F. J. van’t Blik, and D. E. Sayers, 1985,“An EXAFS study of the structure of the metal–support interface in highly dispersed Rh/Al2O3 catalysts,” The Journal of Chemical Physics, 82, 5742-5754.
[78] Martens J. H. A., Ph.D. Dissertation, 1988,“ A spectroscopic Characterization of the Structure of Supported Metal Catalysts,” Technische Universiteit Eindhoven.
[79] Zabinsky S. I., J. J. Rehr, and A. Ankudinov, 1995, “Multiple-scattering calculations of x-ray-absorption spectra,” Physical Review B, 52, 2995-3009.
[80] Jao R.-M., T.-B. Lin, J.-R. Chang, 1996, “Light Naphtha Isomerization over Mordenite-Supported Ni-Pt Catalysts: Effects of Ni on the Catalytic Performance for Paure Feed and Sulfur-Containing Feed,” Journal of Catalysis, 161, 222-229.
[81] Shih C.-C., and J.-R. Chang, 2006,” Pt/C stabilization for catalytic wet-air oxidation:
Use of grafted TiO2,” Journal of Catalysis, 240, 137-150.
[82] Koningsberger D.C., and R. Prins, 1988“X-Ray Absorption: Principles, Applica-tions, Techniques of EXAFS, SEXAFS, and XANES”, Wiley, New York.
[83] Asakura K., 1995, in: Y. Iwasawa (Ed.), “X-Ray Absorption Fine Structure for
Catalysts and Surface,” World Scientific, Singapore, p. 33.
[84] van Zon J. B. A. D., 1988, Ph.D. Dissertation, Eindhoven University of Technology, The Netherlands.
[85] Varrkamp,M. V, 1996, XDAP User’s Guide, XAFS Services International, The
Netherlands.
[86] Fung A. S., M. R. Mcdevitt, P. A. Tooley, M. J. Kelley, D. C. Koningsberger, and B. C. Gates, 1993, “A Model γ-Al2O3-Supported Re-Pt Catalyst Prepared from [Re2Pt(CO)12]: I. Synthesis and Spectroscopic Characterization,” Journal of Catalysis, 140, 190-208.
[87] Shih C.-C., and J.-R. Chang, 2005,” Genesis and growth of platinum subnano-particles on activated-carbon characterized by X-ray absorption spectroscopy: effects of preparation conditions,” Materials Chemistry and Physics, 92, 89-97.
[88] Mojet B.L., J.T. Miller, D.E. Ramaker, and D.C. Koningsberger, 1999, “A New Model Describing the Metal–Support Interaction in Noble Metal Catalysts.” Journal of Catalysis, 186, 373-378.
[89] Malet P., G. Munuera, and A. Caballero, 1989, “Effect of chlorine in the formation of PtRe alloys in PtReAl2O3 catalysts, Journal of Catalysis, 115, 67-579.
[90] Augustine S. M., and W. M.H. Sachtler, 1989,”On the mechanism for the platinum-catalyzed reduction of rhenium in PtRe/γ-Al2O3,” Journal of Catalysis, 116, 184-194.
[91] Kulkarni P.S., J.G. Crespo, and C.A.M. Afons, 2008,”Dioxins sources and current remediation technologies—a review,” Environ Int., 34, 139.
[92] Congress U.S., office of technology assessment, 1991,”Dioxin Treatment Technologies,” Washington, DC: Government printing office.
[93] US Environmental Protection Agency, Hazardous Waste Engineering Research
Labotory, 1986”Treatment Technologies for Dioxin-Containing Waste,”EPA/600/2-86/096, pp 1.3-1.4, 3.4-3.7.
[94] US Environmental Protection Agency, 2008,”Pentachlorophenol and its Use as a Wood Preservative,” EPA-HQ-OPP-2004-0402.
[95] Tysklind M., I. Fängmark, S. Marklund, A. Lindskog, L. Thaning, C. Rappe, 1993, ”Atmospheric Transport and Transformation of Polychlorinated
Dibenzo-pdioxins and Dibenzofurans,” Environ Sci Technol, 27, 2190-2197.
[96] Rotard W., W. Christmann, W. Knoth, 1994,” Background levels of PCDD in soils of Germany,” Chemosphere, 29, 2193-2200.
[97] Fries G.F., D.J. Paustenbach, 1990,” Evaluation of potential transmission of 2,3,7,8-tetrachlorodibenzo-p-dioxin-contaminated,” J. Toxicol Environ Health, 29, 1-43
[98] Ballschmiter K., W. Zoller, H. Buchert H, Th. Clas, 1985, ”Correlation between Substitution Pattern and Reaction Pathway in the Formation of Polychlorodibenzofurans, ” Fresenius Z. Anal. Chem., 322, 587-594.
[99] Griffin R.D., 1986,”A new theory of dioxin formation in municipal solid waste combustion,” Chemosphere 15, 1987-1990.
[100] Hagenmaier H., R. Beising, 1989,”Untersuchung von Kraftwerksrauchgasen auf polychlorierte Dibenzodioxine und Dibenzofurane,” VGB Kraftwerkstechnik 69, 1024.
[101] Everaert K., and J. Baeyens, 2002,”The formation and emission of dioxins in large scale thermal processes,” Chemosphere, 46, 439-448.
[102] Freeman H.M., E.F. Harris, 1995, ”Hazardous Waste Remediation: Innovative Treatment Technologies”, 2nd, Technomic Publishing Company, Inc, Lancaster, PA, USA, P 342.
[103] Strandberg J., H. Odén, R.M. Nieto, A. Björk, 2011,”Treatment of Dioxin Contaminated Soils,” IVL Swedish Environmental Research Institute, pp 17-26
[104] Pendergrass A.S., 1990,”APEG-Plus Dechlorination of Dioxins, PCB’s and Pentachlorophoenol in Solid and Sludges,” HAZ MAT WEST, 6,679-686.
[105] US Environmental Protection Agency, Office of Research and Development, Risk Reduction Engineering Laboratory, 1990,” The Superfund Innovative Technology Evaluation Program: Technology Profiles,” 3rd ed. Washington DC EPA/540/5-90/006
[106] Hansen J.E.,1991, ”Geosafe Corp to Norm Neidergang, Associated Division Director, Hazardous Waste Management Division, Office of Superfund, ” US EPA, Region V.
[107] Gullett B., and R. Seeker, 1997,”Chlorinated dioxin and furan formation, control and monitoting,” in Proceedings of the Interfaith Center on Corporate Responsibility (ICCR ′97), Research Triangle Park.
[108] Ishikawa R., A. Buekens, H. Huang, K. Watanabe, 1997,”INFLUENCE OF COMBUSTION CONDITIONS ON DIOXlN IN AN INDUSTRIAL-SCALE FLUIDIZED-BED INCINERATOR: EXPERIMENTAL STUDY AND STATISTICAL MODELLING, ” Chemosphere, 35, 465-477.
[109] Watanabe K., and K.Tsukamoto, 1994,” Emission Control of Dioxin Compounds in Plastic Waste Incineration,”Organohalogen Compounds, 19, 431-436.
[110] Environment Australia, 1999, ”Incineration and Dioxins: Review of Formation Processes, ”consultancy report prepared by Environmental and Safety Services for Environment Australia, Commonwealth Department of the Environment and Heritage, Canberra.
[111] Lindbauer R.L., F. Wurst, T. Prey T, 1992,”Combustion dioxin supression in municipal solid waste incineration with sulphur additives,” Chemosphere, 25, 1409-1414.
[112] Gullett B.K., K.R. Bruce, and L.O. Beach, 1992,”Effect of Sulfur Dioxin on the Foramation Mechanism of Polychlorinated Dibenzodioxin and Dibenzlfuran In Municipal Waste Combustors,”Environ Sci Technol, 26, 1938-1943.
[113] Wielgosiński G., 2010,”The possibilities of reduction of polychlori-nated dibenzo-p-dioxins and polychlorinated dibenzofurans emission,” Intl J Chem Eng, article ID 392175.
[114] Weber R., and T. Sakurai, 2001,”Low temperature decomposition of PCB by TiO2-based V2O5/WO3 catalyst: evaluation of the relevance of PCDF formation and insights into the first step of oxidative destruction of chlorinated aromatics,” Appl. Catal. B., 34, 113-127.
[115] Brunelle D.J., A.K. Mendiratta, and D.A. Singleton, 1985,”Reaction/Removal of Polychlorinated Biphenyls from Transformer Oil: Treatment of Contaminated Oil with Poly(ethy1ene glycol)/KOH, ” Environ. Sci. Technol., 19, 740-746.
[116] Yamasaki N., T. Yasui, and K. Matsuoka, 1980,”Hydrothermal Decomposition of Polychlorinated Biphenyls, ” Environ. Sci. Technol., 14, 550-552.
[117] Anitescu G., L. L. Tavlarides, 2000,”Oxidation of Aroclor 1248 in Supercritical Water: A Global Kinetic Study,” Ind. Eng. Chem. Res., 39, 583-591.
[118] Abad E., M. A. Adrados, J. Caixach, and J. Rivera, 2002,”Dioxin Abatement Strategies and Mass Balance at a Municipal Waste Management Plant,” Environ. Sci. Technol., 36, 92-99.
[119] Plinke M, K. Fritsky, C.P. Ganatra, M. Wiken, H. Gass , R. Weber R, and Y. Mogami, 2000, ” Catalytic Dioxin/Furan Removal from Flue Gas Streams, ” Organohalogen Compounds, 45, 452-459.
[120] Bonte J.L. , M. Plinke, R. Dandaraw, G. Brinckman, M. Waters, K. van Overberghe, and J. van den Heuvel, 1999, ”Catalytic Filtration: Dioxin/Furan Destruction in the Baghouse, ” Organohalogen Compounds, 40, 459-464.
[121] Ramis G., G. Busca, C. Cristiani, L. Lietti, P. Forzatti, F. Bregani, 1992, ” Characterization of Tungsta-Titania Catalysts, ” Langmuir, 8, 1744-1749.
[122] Albonetti S., S. Blasioli, R. Bonelli, J.E. Mengou, S. Scirè, and F. Trifirò, 2008, ” The role of acidity in the decomposition of 1,2-dichlorobenzene over TiO2-based V2O5/WO3 catalysts,” Appl. Catal. A., 341, 18-25.
[123] Chang H.-Y. , S.-P. Wang, J.-R. Chang, and H.-S. Sheu, S.-G. Shyu, 2012,” Synchrotron radiation PXRD Investigation of V2O5/TiO2 catalysts for 1,2-dichlorobenzene oxidation: Implication ff structure modification,” Appl. Catal. B., 112, 476-484.
[124] Meininghaus C.K.W., and R. Prins R, 2000,” Sorption of volatile organic compounds on hydrophobic zeolites,” Microporous Mesoporous Mater, 35, 349-365.
[125] Khan F.I., and A Kr. Ghoshal, 2000,” Removal of Volatile Organic Compounds from polluted air,” J. Loss. Prevent. Proc., 13, 527-545.
[126] Tsou J., L. Pinard, P. Magnoux, J.L. Figueiredo, and M. Guisnet M, 2003,” Catalytic oxidation of volatile organic compounds (VOCs) Oxidation of o-xylene over Pt/HBEA catalysts,” Appl. Catal. B., 46, 371-379.
[127] Ribeiro F., J.M. Silva, E. Silva, M.F. Vaz, and F.A.C. Oliveira, 2011,”Catalytic combustion of toluene on Pt zeolite coated cordierite foams,” Catal Today, 176, 93-96.
[128] Avgouropoulos G., E. Oikonomopoulos, D. Kanistras, and T. Ioannides, 2006,” Complete oxidation of ethanol over alkali-promoted Pt/Al 2 O 3 catalysts,” Appl. Catal. B., 65, 62-69.
[129] Liotta L.F., 2010,” Catalytic oxidation of volatile organic compounds on supported noble metals,” Appl. Catal. B., 100, 403-412.
[130] Tsou J., P. Magnoux, M. Guisnet, J.J.M. Órfão, and J.L. Figueiredo, 2005, ” Catalytic oxidation of volatile organic compounds
Oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts,” Appl. Catal. B., 57, 117-123.
[131] Beauchet R., P. Magnoux, J. Mijoin, 2007, ”Catalytic oxidation of volatile organic compounds (VOCs) mixture (isopropanol/o-xylene) on zeolite catalysts,” Catal Today, 124, 118-123.
[132] Gluhoi A.C., N. Bogdanchikova, and B.E. Nieuwenhuys, 2006,” Total oxidation of propene and propane over gold–copper oxide on alumina catalysts Comparison with Pt/Al2O3,” Catal Today, 113, 178-181.
[133] Navascués N., M. Escuin, Y. Rodas, S. Irusta, R. Mallada , and J. Santamaría, 2010, ” Combustion of Volatile Organic Compounds at Trace Concentration Levels in
Zeolite-Coated Microreactors,” Ind. Eng. Chem. Res., 49, 6941-6947.
[134] Taralunga M., B. Innocent, J. Mijoin, P. Magnoux, 2007,” Catalytic combustion of benzofuran and of a benzofuran/1,2-dichlorobenzene binary mixture over zeolite catalysts,” Appl. Catal. B. 75, 139-146.
[135] Sheu H.-S., J.-F. Lee, S.-G. Shyu, W.-W. Chou, J.-R. Chang, 2009,” Sulfur resistance enhancement by grafted TiO 2 in SiO 2 -supported Pd catalysts: Role of grafted TiO2 and genesis of Pd clusters,” J. Catal., 266, 15-26.
[136] Woltz C., A. Jentys, and J.A. Lercher, 2006, ” Improving bifunctional zeolite catalysts for alkane hydroisomerization via gas phase sulfation,” J. Catal., 237, 337-348.
[137] Williams M.F., B. Fonfé, C. Woltz, A. Jentys, J.A.R. van Veen,and J.A. Lercher, 2007, ” Hydrogenation of tetralin on silica–alumina-supported Pt catalysts
II. Influence of the support on catalytic activity,” J. Catal., 251, 497-506.
[138] Purnell S.K., K.M Sanchez, R. Patrini, J-R. Chang, J-R, and B.C. Gates, 1994,” Genesis and Growth of Pt Particles on MgO: Characterization by X-ray Absorption Spectroscopy and Infrared Spectroscopy,” J. Phys. Chem. 95,1205-1212.
[139] Corella J., J.M. Toledo, and M. Gutiérrez, 2001,” Combustion of chlorine-containing biomass: V2O5-WO3-TiO2 monoliths for Cl-VOCs abatement in the flue exit gas. Part I. In Progress in Thermochemical Biomass Conversion, ” Bridgwater AV ed. vol 1, Blackwell Science Ltd, Oxford, UK, pp. 887-895
[140] Finocchio E., G. Ramis, and G. Busca, 2011,” A study on catalytic combustion of chlorobenzenes,” Catal Today, 169, 3-9.
[141] Berndt M., and P. Landri, 2002, ” An overview about Engelhard approach to non-standard environmental catalysis,” Catal Today, 75, 17-22.
[142] Finocchio E., G. Busca, and M. Notaro, 2006, ” A review of catalytic processes for the destruction of PCDD and PCDF from waste gases,” Appl. Catal. B. 62, 12-20.
[143] Okumura M., T. Akita, M. Haruta, X. Wang, O. Kajikawa, and O. Okada, 2003, ” Multi-component noble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin,”Appl. Catal. B. 41, 43-52.
[144] Delaigle R., P. Eloy, and E.M. Gaigneaux, 2011, ” Necessary conditions for a synergy between Ag and V2O5 in the total oxidation of chlorobenzene,” Catal Today, 175, 177-182.
[145] Poplawski K., J. Lichtenberger, F.J. Keil, K. Schnitzlein, M.D. Amiridis, 2000, ” Catalytic oxidation of 1,2-dichlorobenzene over ABO3-type perovskites ” Catal Today, 62, 329-336.
[146] Padilla A.M., J.Corella J, and J.M. Teledo, 1997, ” Total oxidation of some chlorinated hydrocarbons with commercial chromia based catalysts,” Appl. Catal. B., 22, 107-121.
[147] Yim S.D., D.J. Koh, I.-S. Nam, 2002, ” A pilot plant study for catalytic decomposition of PCDDs/PCDFs over supported chromium oxide catalysts,” Catal Today,75, 269-276.
[148] Jurng J.S. , G.N. Bae, K.H. Ahn, J.E. Lee, J.Y. Kim, and H. Chung, 2009, ”Method for preparing nanostructured vanadia-titania catlysts useful for degrading chlorinated organic compounds by a flame spray process, ” US Patent US20090054231A1.
[149] Jurng J.S., S.M. Chin, J.Y. Jeong, J.E. Lee, and G.N. Bae, 2009, ” Catalytic process for reducing nitrogen oxides to nitrogen,” US Patent US20090123353A1.
[150] Sugishima N, A. Morita, and M. Kobayashi, 2000, ”Supported catalysts containing vanadium pentoxide titanium dioxide, phosphorous, rubidium and/or cesium, with or without zirconium dioxide,” US Patent 6120747.
[151] Cavani F., G. Centi, F. Parrinello, and F. Trifirò,1987, ”Preparation chemistry of V-Ti-O mixed oxide. Comparison of coprecipitation, grafting and impregnation methods,” Stud. Surf. Sci. Catal., 31, 227-240.
[152] Liu Y., Z.B. Wei, Z.C. Feng, M.F. Luo, P.L.Ying, C. Li, 2001, ” Oxidative Destruction of Chlorobenzene and o-Dichlorobenzene on a Highly Active Catalyst: MnOx/TiO2–Al2O3,” J. Catal., 202, 200-204.
[153] Jurng J.S., S.M. Chin, J.Y. Jeong, J.E. Lee, and G.-N. Bae, 2009, ”solvothermal method for preparing vanadia-titania catalyst having nanostructure for decomposing chlorinated organic compounds,” US patent 7632780.
[154] Lester G.R., 1994, ”catalyst for destruction of organhalogen compounds,” US patent 5292704B2.
[155] Greene H.L., and S. Chatterjee, 1994, ”catalysts for the destruction of organics,” US patent 5276249.
[156] Reiche M.A., T. Bürgi, A. Baiker, A. Scholz, B. Schnyder, and A. Wokaun, 2000, ” Vanadia and tungsta grafted on TiO2: influence of the grafting sequence on structural and chemical properties,” Appl. Catal. A., 198, 155-169.
[157] Matsushita K., H. Sakurada, K. Onuma, and S. Fujii, 1977, ” catalyst for selective reduction of nitrogen oxides,” US patent 4048112.
[158] Nakajima F., M. Takeuchi, S. Matsuda, S. Uno, T. Mori,, Y. Watanabe, and M. Imanari, 1978, ”catalytic process for reducing nitrogen oxides to nitrogen,” US patent 4085193.
[159] Reuter P., K. Blechschmitt, and F. Wirth, 1982, ”supported catalysts containing vanadium pentoxide titanium dioxide, phosphorus, rubidium and/or cesium, with or without zirconium dioxide,” US patent 4324694.
[160] Wang I.K., and J.-C. Wu, 1991, ” preparation of titanium-zirconium-vanadium mixed oxides and its application on fuel oil hydrodesulfurization and hydrodenitrogenation,” US patent 5032253.
[161] Suda A., N. Takahashi, C. Ando, T. Kandori, and M. Hatanaka, 2002, ”titania-zirconia powder and process for producing the same,” US patent 6391276B1
[162] Imanari M., and B. Oshida, 1983, ”catalyst composition for remival of nitrogen oxide and a probcess for removal of nitrogen oxides,”US patent 4378338
[163] Hagenmaier H., and G. Mittelbach, 1996, ” process for reducing emissions of organic halogen compounds from incineration systems,” US patent 5512259.
[164] Srinivasan S., A.K. Datye, M.H. Smith, and C.H.F. Peden, 1994, ”Interaction of Titanium Isopropoxied with Surface Hydroxyls on silica,” J. Catal., 145, 565-573.
[165] Lin H.-M., S.-T. Kao, K.-M. Lin, J.-R. Chang, and S.-G. Shyu, 2004, ” Grafting TiO2 on MCM-41 as a TiO2 support for vanadia for catalytic oxidation of ethanol—EXAFS and XANES analyses of vanadium,” J. Catal., 224, 156-163.
[166] de Resende N.S., J.-G. Eon, and M. Schmal, 1999, ” Pt–TiO2 –γ–Al2O3 Catalyst
I. Dispersion of Platinum on Alumina-Grafted Titanium Oxide,” J. Catal., 183, 6-13.
[167] Macleod N., R. Cropley, J.M . Keel, and R.M. Lambert, 2004, ” Exploiting the synergy of titania and alumina in lean NOx reduction: in situ ammonia generation during the Pd/TiO2/Al2O3–catalyzed H2/CO/NO/O2 reaction,” J. Catal. 221, 20-31.
[168] Fernandez A., J. Leyrer, A.R. González-Elipe, G. Munuera, and H. Knözinger, 1988, ” Spectroscopic characterization of TiO2/SiO2 catalysts,” J. Catal., 112, 489-494.
[169] Reichmann M.G., and A. T. Bell, 1987, ” The influence of preparation chemistry on the phase distribution ofsilica-supported titania,” Appl. Catal., 32, 315-326.
[170] Muñoz-Paez A., G. Munuera, 1991, ” Influence of surface oh groups and traces of water vapor during the preparation of TiO2-SiO2 samples,” Stud. Surf. Sci. Catal. 63, 627-636.
[171] Wauthoz P., M. Ruwet, T. Machej, and P. Grange, 1991, ” Influence of the preparation method on the V2O5/TiO2/SiO2catalysts in selective catalytic reduction of nitric oxide with ammonia,” Appl. Catal., 69, 149-167.
[172] Ollis D.F., E. Pelizzetti, and N. Serpone, 1991, ” Destruction of water contaminants,” Environ. Sci. Technol., 25, 1522-1529.
[173] Krishnamoorthy S., M.D. Amiridis, 1999, ”Kinetic and in situ FTIR studies of the catalytic oxidation of 1,2-dichlorobenzene over V2O5/Al2O3 catalysts ” Catal Today 51, 203-214.
[174] Krishnamoorthy S., J.P. Baker, M.D. Amiridis, 1998, ” Catalytic oxidation of 1,2-dichlorobenzene over V2O5/TiO2-based catalysts,” Catal Today, 40, 39-46.
[175] Krishnamoorthy S., J.A. Rivas, M.D. Amiridis, 2000, ” Catalytic Oxidation of 1,2-Dichlorobenzene over Supported Transition Metal Oxides,” J. Catal., 193, 264-272.
[176] Cook J.W., and D.E. Sayers, 1981, ” Criteria for automatic xray absorption fine structure background removal,” J. Appl. Phys., 52, 5024-5031.
[177] Zabinsky S.I., J.J. Rehr, A. Ankudinov, R.C. Albers, and M.J. Eller, 1995, ”Multiple-scattering calculations of x-ray-absorption spectra,” Phys. Rev. B, 52, 2995-3009.
[178] Hammersley A.P., 2004, ESRF Internal Report, ESRF98HA01T, FIT2D V12.012 Reference Manual V6.0
[179] Cullity B.D. , 1978, ”Elements of X-Ray Diffraction, ” 2nd ed. Addison Wesley
Publishing Company, Massachusetts, p 99
[180] Englisch M, Lercher JA, Haller GL, In: Iwasawa Y (ed), 1996, ”X-ray Absorption Fine Structure for Catalysts and Surfaces, ” vol 2, World Scientific, Singapore, p 276
[181] Wong J., F.W. Lytle, R.P. Messmer, and D.H. Maylotte, 1984, ”K-edge absorption spectra of selected vanadium compounds,” Phys. Rev. B, 30, 5596-5610.
[182] Bair R.A., and W.A. Goddard III, 1980, ”Ab initio studies of the x-ray absorption edge in copper complexes. I Atomic Cu2+ and Cu(II)Cl2, ” Phys. Rev. B, 22, 2767-2779.
[183] Tanaka T., H. Yamashita, R. Tsuchitani, T. Funabiki, and S. Yoshida, 1988, ” X-Ray Absorption (EXAFS/XANES) Study of Supported Vanadium Oxide Catalysts,” J. Chem. Soc., Faraday Trans 1, 84, 2987-2999.
[184] Koningsberger D.C., and R. Prins, 1988, ”X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, ” Wiley, New York, p 373.
[185]Chung F.H., 1974, ” Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. I. Matrix-Flushing Method for Quantitative Multicomponent Analysis,” J. Appl. Cryst., 7, 519-525.
[186] Batsanov S.S.,1962, ”Electronegativity of Elements and Chemical Bonds, ” 1st ed. Nauka, Novosibrsk.
[187] Lichtenberger J., and M.D. Amiridis, 2004, ” Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts,” J. Catal., 223, 296-3083
[188] Nicosia D., I. Czekaj, and O.Kröcher, 2008, ” Chemical deactivation of
V2O5/WO3–TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution Part II. Characterization study of the effect of alkali and
alkaline earth metals,” Appl. Catal. B, 77, 228-236.
[189] Martra G., F. Arena, S. Coluccia, F. Frusteri, and A. Parmaliana, 2000, ” Factors controlling the selectivity of V2O5 supported catalysts in the oxidative dehydrogenation of propane,” Catal Today, 63, 197-207.
[190] Peña D.A. , B.S. Uphade, E.P. Reddy EP, and P.G. Smirniotis, 2004, ” Identification of Surface Species on Titania-Supported Manganese, Chromium, and Copper
Oxide Low-Temperature SCR Catalysts,”J. Phys. Chem. B, 108, 9927-9936.
[191] Tang F.S., K. Zhuang, F. Yang, L.L.Yang, B.L. Xu, J.H. Qiu, and Y.N. Fan, 2012, ” Effect of Dispersion State and Surface Properties of Supported Vanadia on the Activity of V2O5/TiO2 Catalysts for the Selective Catalytic Reduction of NO by NH3, ” Chin. Catal. 33, 933-940.
[192] Gao X., S.R. Bare, J.L.G. Fierro, M.A. Banares, and I.E. Wachs, 1998, ” Preparation and in-Situ Spectroscopic Characterization of Molecularly Dispersed Titanium
Oxide on Silica,” J. Phys. Chem. B, 102, 5653-5666.
[193] Gao X., S.R. Bare, J.L.G. Fierro, and I.E. Wachs, 1999, ” Structural Characteristics and Reactivity/Reducibility Properties of Dispersed and Bilayered V2O5/TiO2/SiO2 Catalysts” J. Phys. Chem. B, 103, 618-629.
[194] Takenaka S., T. Tanaka, T. Yamazaki, T. Funabiki, S. Yoshida, 1997, ” Structure of Active Species in Alkali-Ion-Modified Silica-Supported Vanadium Oxide” J. Phys. Chem. B, 101, 9035-9040.
[195] Zhang S.G., S. Higashimoto, H. Yamashita, and M. Anpo, 1998, ” Characterization of Vanadium Oxide/ZSM-5 Zeolite Catalysts Prepared by the Solid-State Reaction and Their Photocatalytic Reactivity: In Situ Photoluminescence, XAFS, ESR,
FT-IR, and UV - vis Investigations,” J. Phys. Chem. B, 102, 5590-5594.
[196] Olthof B., A. Khodakov, A.T. Bell, and E. Iglesia E, 2000, ” Effects of Support Composition and Pretreatment Conditions on the Structure of Vanadia
Dispersed on SiO2, Al2O3, TiO2, ZrO2 , and HfO2,” J. Phys. Chem. B, 104,1516-1528.
[197] Keller D.E., F.M.F. de Groot, D.C. Koningsberger, and B.M. Weckhuysen, 2005, ” VO4 Upside Down: A New Molecular Structure for Supported VO4 Catalysts,” J. Phys. Chem. B, 109, 10223-10233.
[198] Keller D.E., D.C. Koningsberge, and B.M. Weckhuysen, 2006, ” Elucidation of the molecular structure of hydrated vanadium oxide species by X-ray absorption spectroscopy: correlation between the V•••V coordination number and distance and the point of zero charge of thesupport oxide,” Phys. Chem. Chem. Phys. 8, 4814-4824.
[199] Keller D.E., T. Visser, F. Soulimani, D.C. Koningsberger, and B.M. Weckhuysen, 2007, ” Hydration effects on the molecular structure of silica-supported vanadium
oxide catalysts: A combined IR, Raman, UV–vis and EXAFS study,” Vib. Spectrosc. 43, 140-151.
[200] Bronkema J.L., and A.T. Bell, 2007, ” Mechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported on MCM-48,” J. Phys. Chem. C, 111, 420-430.
[201] Cavalleri M., M. Hermanna, A. Knop-Gericke, M. Hävecker, R. Herbertb, C. Hess, A. Oestereich, J. Döbler, and R. Schlögl, 2009,” Analysis of silica-supported vanadia by X-ray absorption spectroscopy: Combined theoretical and experimental studies,” J. Catal., 262, 215-223.
[202] Walter A., R. Herbert, C. Hess, and T. Ressler, 2010, ” Structural characterization of vanadium oxide catalysts supported on nanostructured silica SBA-15 using X-ray absorption spectroscopy,” Chem. Cent. J., 4, 23.
[203] Wu J.C.-S., and C.-H. Chen, 2004, ” A visible-light response vanadium-doped
titania nanocatalyst by sol–gel method,” J. Photochem Photobiol A, 163, 509-515.
[204] Lin C.-S., and H.L. Bai, 2004, ” Adsorption Behavior of Moisture over a Vanadia/Titania Catalyst: A Study for the Selective Catalytic Reduction Process ,” Ind. Eng. Chem. Res., 43, 5983-5988.
[205] Hetrick C.E., F. Patcas F,and M.D. Amiridis, 2011, ” Effect of water on the oxidation of dichlorobenzene over V2O5/TiO2 catalysts ” Appl. Catal. B, 101, 622-628.
[206] Israelachvili J.N., 2011, ”Intermolecular and Surface Force, ” 3rd ed. Academic Press, San Diego, p 253.
[207] Yoshida S., S.T. Tanaka, T. Hanada, T. Hiraiwa, H. Kanai, T. Funabiki, 1992, ” Analysis of XANES for identification of highly dispersed transition metal oxides on supports,” Catal. Lett., 12, 277-285.
[208] Cooper D.C., and F.C. Alley, 1990, ”Air Pollution Control: A Design Approach, ” Waveland Press: Prospect Heights, pp 355-359.
[209] Pfenninger, A. ”Manufacture and use of zeolites for adsorption process. ” Molecular Sieves, 1999, 2, 163.
[210] Shams K., S. J.Mirmohammadi, 2007, ”Preparation of 5A zeolite monolith granular extrudates using kaolin: Investigation of the effect of binder on sieving/adsorption properties using a mixture of linear and branched paraffin hydrocarbons, ” Microporous and Mesoporous Mater., 106, 268-277.
[211] Sun H., B.Shen, and J. Liu, 2008,” N-Paraffins adsorption with 5A zeolites: The effect of binder on adsorption equilibria,” Sep. Purif. Technol., 64, 135-139.
[212] Salem A., and R. AkbariSene, 2012, ”Optimization of zeolite-based adsorbent composition for fabricating reliable Raschig ring shaped by extrusion using Weibull statistical theory, ” Microporous and Mesoporous Mater., 163, 65-75.
[213] Wu X, ”Acidity and catalyticactivityof zeolitecatalystsbound with silicaandalumina, ” Ph.D. Thesis, the Texas A&M University, December, 2003.
[214] Zhang Y., Y. Zhou,; A. Qiu, Y. Wang, Y. Xu, and P. Wu, 2006, ”Effect of Alumina Binder on Catalytic Performance of PtSnNa/ZSM-5 Catalyst for Propane Dehydrogenation, ” Ind. Eng. Chem. Res. 45, 2213-2219.
[215] Liu H., Y. Zhou, Y. Zhang, L. Bai, and M.Tang, 2008, ” Influence of Binder on the Catalytic Performance of PtSnNa/ZSM-5 Catalyst for Propane Dehydrogenation, ” Ind. Eng. Chem. Res. 47, 8142-8147.
[216] Duan Y., Y. Zhou, X. Sheng, Y. Zhang, S. Zhou, and Z. Zhang, 2012, ”Influence of alumina binder content on catalytic properties of PtSnNa/AlSBA-15 catalysts, ” Microporous and Mesoporous Mater. 161, 33-39.
[217] de Lucas A., P. Sánchez, A. Fúnez, M.J. Ramos, and J.L. Valverde, ”Liquid-phase hydroisomerization of n-octane over platinum-containing zeolite-b2006,ased catalysts with and without binder, ” Ind. Eng. Chem. Res., 45, 8852-8859.
[218] de Lucas A., M.J. Ramos, F. Dorado,P. Sánchez, and J.L. Valverde, 2005, ”Influence of the Si/Al ratio in the hydroisomerization of n-octane over platinum and palladium beta zeolite-based catalysts with or without binder, ” Appl. Catal., A, 289, 205-213.
[219] de Lucas A., J.L Valverde,P. Sánchez, F. Dorado, and M.J. Ramos, 2004, ”Influence of the Binder on the n-Octane Hydroisomerization over Palladium-Containing Zeolite Catalysts, ” Ind. Eng. Chem. Res., 43, 8217-8225.
[220] Jasra R. V., B. Tyagi,Y.M. Badheka, V.N. Choudary, and T.S.G. Bhat, 2003, ”Effect of clay binder on sorption and catalytic properties of zeolite pellets, ” Ind. Eng. Chem. Res., 42, 3263-3272.
[221] Cañizares P., A. Durán, F. Dorado, and M. Carmona, 2000,”The role of sodium montmorillonite on bounded zeolite-type catalysts,” Appl. Clay Sci., 16, 273-287.
[222] Dorado F., R. Romero, and P. Cañizares, 2001,”Influence of clay binders on the Performance of Pd/HZSM-5 catalysts for the hydroisomerization of n-butane,” Ind. Eng. Chem. Res., 40, 3428-3434.
[223] Lee Y.-J. Y.-W. Kim, N. Viswanadham, K.-W. Jun, and J.W. Bae, 2010,”Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction, ” Appl. Catal. A , 374, 18-25.
[224] Devadas P., A.K. Kinage, and V.R. Choudhary, 1998,”Effect of silica binder on acidity, catalytic activity and deactivation due to coking in propane aromatization over H-gallosilicate (MFI), ” Stud. Surf. Sci. Catal., 113, 425-432.
[225] Yan T.Y., 1974,”Aromatiztion process and catalyst therefor, ” U.S. patent 3,843,741.
[226] Puppe L., and G. Reiss, 1990. ”Silica-bound calcium-containing zeolite a granulate, ” U.S. Patent 4,950,312.
[227] Zhang W., Z. Qu, X. Li, Y. Wang, D. Ma, andJ. Wu, 2012, ”Comparison of dynamic adsorption/desorption characteristics of toluene on different porous materials, ” J. Environ. Sci. 24, 520-528.
[228] Yan T. Y., and J.-R. Chang, 2006, ”Process for removing volatile organic compounds, ” U.S. Patent 7,060,236.
[229] Verduijn J. P., M.M. Mertens, and W.J. Mortier, 2000, ”Preparation of zeolite bound by MFI structure type zeolite and use thereof, ” U.S. Patent 6,150,293.
[230] Khare, 2011, G. P. ”Aromatization catalyst comprising prolongated silica and method of making and using same, ” U.S. Patent 7,902,105, B2.
[231] Holland, B. T.; Subramani, V.; Gangwal, S. K. ”Utilizing Colloidal Silica and Aluminum-Doped Colloidal Silica as a Binder in FCC Catalysts:  Effects on Porosity, Acidity, and Microactivity, ” Ind. Eng. Chem. Res. 46, 4486-4496.
[232] Kasture M. W., P.S. Niphadkar, N. Sharanappa, V.V. Bokade, R. Kumar, and P.N. Joshi, 2004, ”Influence of nature of binder and formulation on catalytic performance in isopropylation of benzene reaction over H/beta zeolite catalysts, ” Stud. Surf. Sci. Catal. 154, 3088-3095.
[233] Young R. A., 1993,”The Rietveld Method, ” Oxford University Press: New York.
[234] Pecharsky V. K., and P.Y. Zavalij, P. Y., 2009, ”Fundamentals of Powder Diffraction and Structural Characterization of Materials, ” 2nd ed.; Springer: New York,; pp 239-262.
[235] Breck D.W.,1974, ”Zeolite Molecular Sieves, ” Wiley: London, pp 415-424.
[236] Jentys A.; J.A. Lercher, 2001”Techniques of zeolite characterization. In Introduction to Zeolite Science and Practice, ” van Bekkum, H.; H., Flanigen, E. M., Jacobs, P. A., Jansen, J. C., Eds.; Elsevier: Amsterdam, pp 345-386.
[237] Hammersley A. P., 2004, ”ESRF Internal Report, FIT2D V12.012 Reference Manual V6.0,” ESRF98HA01T
[238] Rietveld H. M., 1969, ”A profile refinement method for nuclear and magnetic structures, ” J. Appl. Crystallogr. 2, 65.
[239] Toby B. H., 2001,”EXPGUI, a graphical user interface for GSAS, ” J. Appl. Crystallogr. 34, 210.
[240] Larson A. C., R.B. Von Dreele , 2004,”General Structure Analysis System (GSAS), ” Los Alamos National Laboratory Report LAUR; pp 86-748.
[241] Cullity B. D., 1978, ”Elements of X-Ray Diffraction, ” 2nd ed.; Addison-Wesley: Reading, MA, pp 99-106.
[242]Sugiyama K.; and Y. Takéuchi, 1986, ”Distribution of Cations and Water Molecules in the Heulandite-Type Framework, ” Stud. Surf. Sci. Catal. 28, 449-456.
[243] Moı̈se J. C., J.P. Bellat, and A. Méthivier, 2001, ”Adsorption of water vapor on X and Y zeolites exchanged with barium, ” Microporous and Mesoporous Mater. 43, 91-101.
[244] Beauvais C., X. Guerrault, F.-X. Coudert, A. Boutin, A.H. Fuchs, 2004, ”Distribution of Sodium Cations in Faujasite-Type Zeolite:  A Canonical Parallel Tempering Simulation Study” J. Phys. Chem. B, 108, 399-404.
[245] Kirschhock C. E. A., B. Hunger, J. Martens, P.A. Jacobs, 2000, ”Localization of Residual Water in Alkali-Metal Cation-Exchanged X and Y Type Zeolites, ” J. Phys. Chem. B, 104, 439-448.
[246] Eulenberger G. R., D.P. Shoemaker, J.G. Keil, J. G. 1967, ”The Crystal structures of Hydrated and Dehydrated Synthetic Zeolites with Faujasite Aluminosilicate Frameworks. I. The Dehydrated Sodium, Potassium, and Silver Forms, ” J. Phys. Chem., 71, 1812-1819.
[247] Fleys M., 2003, ”Water behavior in hydrophobic porous materials. Comparison between Silicalite and Dealuminated zeolite Y by Molecular Dynamic Simulations, ” M. S. C. E. Thesis, Worcester Polytechnic Institute, December,
[248] Bish D. L., J.E. Post, 1993,”Quantitative mineralogical analysis using the Rietveld full-pattern fitting method, ” American Mineralogist, 78, 932-940.
[249] van Bokhoven J. A., A.L. Roest, and D.C. Koningsberger, 2000,”Changes in Structural and Electronic Properties of the Zeolite Framework Induced by Extraframework Al and La in H-USY and La(x)NaY: A 29Si and 27Al MAS NMR and 27Al MQ MAS NMR Study., ” J. Phys. Chem. B, 104, 6743-6754.
[250] Altwasser S., J. Jiao, S. Steuernagel, J. Weitkamp, M. Hunger, 2004, ”Elucidating the dealumination mechanism of zeolite H-Y by solid-state NMR spectroscopy, ” Stud. Surf. Sci. Catal. 154, 3098-3105.
[251] Agostini G., C. Lamberti, L. Palin, M. Milanesio, N. Danilina, B. Xu, M. Janousch, and J.A. van Bokhoven, 2010, ”In Situ XAS and XRPD Parametric Rietveld Refinement To Understand Dealumination of Y Zeolite Catalyst, ” J. Am. Chem. Soc. 132. 667-678.
[252] Janssen A.H., A.J. Koster, K.P. de Jong, 2002,”On the Shape of the Mesopores in Zeolite Y: A Three-Dimensional Transmission Electron Microscopy Study Combined with Texture Analysis, ” J. Phys. Chem. B 106, 11905-11909.
[253] Cooper D. A., T.W. Hastings, and E.P. Hertzenberg, 1997, ”Process for Preparing Zeolite Y with Increased Mesopore Volume, ” U. S. Patent 5,601,798.
[254] Thommes, M., 2010,”Physical Adsorption Characterization of Nanoporous Materials, ” Chem. Ing. Tech. 82, 1059-1073.
[255] Condon, J.B.,2006, ”Surface Area and Porposity Determinations by Physisorption: Measurements and Theory, ” Elservier, Amsterdam, pp 1-28.
[256] Páez-Mozo E., N. Gabriunas, F. Lucaccioni, D. Acosta, P. Patrono, A. La Ginestra, P. Ruiz, and B. Delmon, 1993,”Cobalt Phthalocyanine Encapsulated in Y Zeolite: A Physicochemical Study, ” J. Phys. Chem. 97, 12819-12827.
[257] Janssen A. H., A.J. Koster, K.P. de Jong, 2001,”Three-Dimensional Transmission Electron Microscopic Observations of Mesopores in Dealuminated Zeolite Y, ” Angew. Chem. Int. Ed. 40, 1102-1104.
[258] Little, L.H., 1966”Infrared Spectra of Adsorbed Species, ” London: New York.
[259] Hair, M. L.,1967,. ”Infrared spectroscopy in surface chemistry, ” Marcel Dekker: New York.
[260] Zhdanov S. P.; L.S. Kosheleva, and T.I. Titova, 1987, ”IR Study of Hydroxylated Silica, ” Langmuir, 3, 960-967.
[261] Jacobs W. P. J. H., J.H.M.C. van Wolput, R.A. van Santen, 1993 ”An in situ Fourier transform infrared study of zeolitic vibration: Dehydration, deammoniation, and reammoniation of ion-exchanged Y zeolite, ” Zeolite, 13, 170-182.
[262] Cairon O., T. Chevreau, and J.-C. Lavalley, 1998, ”Brønsted acidity of extraframework debris in steamed Y zeolites from the FTIR study of CO adsorption, ” J. Chem. Soc., Faraday Trans. 94, 3039-3047.
[263] Miessner H., H. Kosslick, U. Lohse, B. Parlitz, and V.-A. Tuan, 1993, ”Characterization of Highly Dealuminated Faujasite-Type Zeolites: Ultrastable Zeolite Y and ZSM-20, ” J. Phys. Chem. 97, 9741-9748.
[264] Stockenhuber M., and J.A. Lercher, 1995,”Characterization and removal extra lattice species in faujasites, ” Microporous Mater. 3, 457-465.
[265] Daniell W., N.-Y. Topsøe, and H. Knözinger, 2001,”An FTIR Study of the Surface Acidity of USY Zeolites: Comparison of CO, CD3CN, and C5H5N Probe Molecules, ” Langmuir, 17, 6233-6239.
[266] Rüscher C. H., J.-C. Buhl, and W. Lutz, 2001,”1Determination of the Si/Al ratio of Faujasite-type zeolites, ” Stud. Surf. Sci. Catal. 135, 1-9.
[267] Hensen E. J. M., D.G. Poduval, P.C.M.M. Magusin, A.E. Coumans, J.A.R. van Veen, 2010, ”Formation of acid sites in amorphous silica-alumina, ” J. Catal. 269, 201-218.
[268] Rep M., A.E. Palomares, G. Eder-Mirth, J.G. van Ommen, N. Rösch, J. A. Lercher, 2000, ”Interaction of Methanol with Alkali Metal Exchanged Molecular Sieves. 1. IR Spectroscopic Study, ” J. Phys. Chem. B, 104, 8624-8630.
[269] Hussein G. A. M., N. Sheppard, M.I. Zaki, R.B. Fahim, 1991,”Infrared spectroscopic studies of the reactions of alcohols over group IVB metal oxide catalysts. Part 3.—Ethanol over TiO2, ZrO2 and HfO2, and general conclusions from parts 1 to 3, ” J. Chem. Soc., Faraday Trans 87, 2661-2668.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top