(34.237.124.210) 您好!臺灣時間:2021/02/25 18:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉亭妤
研究生(外文):YEH,TING-YU
論文名稱:利用大腸桿菌生產柚皮素與香豆醇之最適化設計
論文名稱(外文):Optimal design of 2S-naringenin and p-coumaryl alcohol products in E. coli
指導教授:王逢盛
指導教授(外文):WANG,FENG-SHENG
口試委員:黃奇英趙雲鵬張牧新
口試日期:2016-07-04
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:75
中文關鍵詞:iAF1260模型柚皮素香豆醇基因調控
外文關鍵詞:iAF1260 model2S-naringeninp-coumaryl alcoholGene regulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前已知的植物天然產物(plant nature products)超過二十萬種,其中有些具有藥理活性或重要的生物特性。本研究主要探討兩種植物天然產物:柚皮素(2S-naringenin)和香豆醇(p-coumaryl alcohol)。柚皮素屬於黃酮類化合物,具有抗炎、抗菌、抗癌作用;香豆醇為木質素主要前驅物之一,也常被應用在工業合成上。此研究利用模擬代謝工程,找尋最適化設計使目標產物達最大化。分別建立了兩個csae,第一個case利用大腸桿菌iAF1260模型,加入生產柚皮素的類黃酮代謝途徑(Flavanone pathway)和相關基因(TAL、4CL、CHS、CHI);第二個case利用大腸桿菌iAF1260模型,加入生產香豆醇植物的苯丙烷代謝途徑(Phenylpropanoid pathway)和相關基因(TAL、4CL、CCR、CAD)。透過重建網路模型可得到突變後大腸桿菌模型,再利用通量均衡分析方法(Flux balance analysis, FBA)的計算,和使用巢狀式混合差值演化(Nested Hybrid Differential Evolution ; NHDE)與通量封包(Flux envelope)作分析,可得知生產柚皮素所需要氧氣通量為20 mmol gDW-1h-1,且當上調控基因TAL為0.6,可得到最大柚皮素產量;生產香豆醇所需要氧氣通量為15 mmol gDW-1h-1,且當上調控基因TAL為0.6,可得到最大香豆醇產量。
Currently, there are more than two hundred thousand kinds of known plant natural products, some of which have pharmacological activity or important biological properties. This study focused on two plant natural products: 2S-naringenin and p-coumaryl alcohol. 2S-naringenin belongs to flavonoids and it has anti-inflammatory, anti-bacterial and anti-cancer effect; p-coumaryl alcohol is one of precursors of lignin and it is also used in the industrial synthesis applications. The methods of microbial production are becoming more important. Microbial metabolic engineering means by modifying metabolic pathways to make microorganisms demonstrate desired characteristics. Two cases were built, the case 1 used iAF1260 model of E. coli, then added the flavonoid metabolic pathway about 2S-naringenin and related genes (TAL, 4CL, CHS, CHI) ; the case 2 also used iAF1260 model of E. coli, then added phenylpropanoid metabolic pathway about p-coumaryl alcohol and related genes (TAL, 4CL, CCR, CAD). Genes and other information from the previous literature were reconstructed in iAF1260 model. And then calculated flux balance by the analysis method (Flux balance analysis, FBA) and used Nested Hybrid Differential Evolution(NHDE) and Flux envelope. The result of the first case, 2S-naringenin produced need oxygen flux of 20 mmol gDW-1h-1 and when the regulation of gene TAL was 0.6, to obtain the maximum yield; the second case, p-coumaryl alcohol produced need oxygen flux of 15 mmol gDW-1h-1 and when the regulation of gene TAL was 0.6, to obtain the maximum yield.
目錄
致謝 I
摘要 II
Abstract III
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 5
1.3 研究動機 7
1.4 組織章節 8
第二章 生物資料庫及工具程式簡介 9
1.2 生物資料庫簡介 9
2.1.1 Biochemically , Genomically and Genetically(BIGG) 9
2.1.2 Kyoto Encyclopedia of Genes and Genomes(KEGG) 10
2.1.3 BRaunschweig Enzyme DAtabase (BRENDA) 11
2.2 工具程式簡介 14
2.2.1 Model Transformation Program(MTP) 14
2.2.2 General Algebraic Modeling System(GAMS) 15
第三章 代謝網路模型與分析方法 18
3.1 前言 18
3.2代謝網路模型 19
3.2.1 iAF1260代謝模型 19
3.2.2 加入異源代謝途徑重建iAF1260模型 19
3.3 基本設定與計算方法介紹 25
3.3.1 最佳化目標函數 25
3.3.2 計算方法介紹 26
第四章 結果與討論 41
4.1 氧氣攝取量影響 41
4.2 調控重組基因影響 44
4.3 酵素調控強度與目標函數影響 48
第五章 結論與未來研究方向 52
5.1 結論 52
5.2未來研究方向 53
第六章 參考文獻 54
附錄A 57


[1]H. Kitano, "Systems Biology: Toward System-level Understanding of Biological Systems," In Foundations of Systems Biology, p. 1-36, 2001.

[2]L. Hood, "A Personal View of Molecular Technology and How It Has Changed Biology " Journal of Proteome Research, p. 399-409, 2002.

[3]M. Kanehisa and P. Bork, "Bioinformatics in the post-sequence era," Nature genetics, vol. 33 p. 305-310, 2003.

[4]J. Marienhagen and M. Bott, "Metabolic engineering of microorganisms for the synthesis of plant natural products," J Biotechnol, vol. 163, p. 166-178, 2013.

[5]J. E. Bailey, "Lessons from metabolic engineering for functional genomics and drug discovery," Nature Biotchnology, vol. 17, p. 166-618, 1999.

[6]M. Durot, P. Y. Bourguignon, and V. Schachter, "Genome-scale models of bacterial metabolism: reconstruction and applications," FEMS Microbiol Rev, vol. 33, p. 164-190, Jan 2009.

[7]A. M. Feist, C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce, P. D. Karp, et al., "A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information," Molecular systems biology, vol. 3, p. 121, 2007.

[8]K. J. Kauffman, P. Prakash, and J. S. Edwards, "Advances in flux balance analysis," Current Opinion in Biotechnology, vol. 14, p. 491-496, 2003.

[9]F.-S. Wang and W.-H. Wu, "Optimal design of growth-coupled production strains using nested hybrid differential evolution," Journal of the Taiwan Institute of Chemical Engineers, vol. 54, p. 57-63, 2015.


[10]H. Kitano, "Systems Biology: A Brief Overview," Science, p. 1662-1664, 2002.

[11]V. T. D. Reed J. L. , Schilling C. H. and Palsson B. O., "An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR)," Genome Biology vol. 4, p. R54, 2003.

[12]S. Kumar and A. B. Tiku, "Biochemical and Molecular Mechanisms of Radioprotective Effects of Naringenin, a Phytochemical from Citrus Fruits," J Agric Food Chem, vol. 64, p. 1676-1685, 2016.

[13]Y. Nahmias, J. Goldwasser, M. Casali, D. van Poll, T. Wakita, R. T. Chung, et al., "Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin," Hepatology, vol. 47, p. 1437-1445, May 2008.

[14]Z. A. King, J. Lu, A. Drager, P. Miller, S. Federowicz, J. A. Lerman, et al., "BiGG Models: A platform for integrating, standardizing and sharing genome-scale models," Nucleic Acids Res, vol. 44, p. D515-D522, 2016.

[15]M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe, "KEGG for integration and interpretation of large-scale molecular data sets," Nucleic Acids Res, vol. 40, p. D109-14, 2012.

[16]P. Xu, S. Ranganathan, Z. L. Fowler, C. D. Maranas, and M. A. Koffas, "Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA," Metabolic Engineering, vol. 13, p. 578-587, 2011.

[17]T. Vannelli, W. Wei Qi, J. Sweigard, A. A. Gatenby, and F. S. Sariaslani, "Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi," Metabolic Engineering, vol. 9, p. 142-151, 2007.

[18]J. J. K. S. a. C. J. D. Ju Èrgen Ehlting, "Identi®cation of 4-coumarate:coenzyme A ligase (4CL) substrate recognition domains," The Plant Journal, vol. 27, p. 455-465, 2001.


[19]F. Jansen, B. Gillessen, F. Mueller, U. Commandeur, R. Fischer, and F. Kreuzaler, "Metabolic engineering for p-coumaryl alcohol production in Escherichia coli by introducing an artificial phenylpropanoid pathway," Biotechnol Appl Biochem, vol. 61, p. 646-654, 2014.

[20]P. V. van Summeren-Wesenhagen, R. Voges, A. Dennig, S. Sokolowsky, S. Noack, U. Schwaneberg, et al., "Combinatorial optimization of synthetic operons for the microbial production of p-coumaryl alcohol with Escherichia coli," Microb Cell Fact, vol. 14, p. 79, 2015.

[21]C. E. Garcia Sanchez and R. G. Torres Saez, "Comparison and analysis of objective functions in flux balance analysis," Biotechnol Prog, vol. 30, p. 985-991, Sep-Oct 2014.

[22]B. Colson, P. Marcotte, and G. Savard, "An overview of bilevel optimization," Annals of Operations Research, vol. 153, p. 235-256, 2007.


電子全文 電子全文(網際網路公開日期:20211231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔