跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 14:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭家瑜
研究生(外文):Chia-Yu Peng
論文名稱:多層電子密度泛函理論的發展以及鈍氣分子、激發態質子轉移反應與生命起源前胺基酸合成反應之理論研究
論文名稱(外文):Development of Multi-Coefficient Density Functional Theory and Theoretical Study on Noble Gas Molecules, Excited-State Proton Transfer Reactions, and Prebiotic Synthesis of Alpha-amino Acids
指導教授:胡維平
指導教授(外文):Wei-Ping Hu
口試委員:魏台輝李錫隆楊子萱莊曜遠
口試委員(外文):Tai-Huei WeiShyi-Long LeeTzzy-Schiuan YangYao-Yuan Chuang
口試日期:2015-07-14
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:220
中文關鍵詞:理論研究密度泛函理論鈍氣分子激發態質子轉移反應胺基酸合成反應
外文關鍵詞:Theoretical StudyDensity Functional TheoryNoble Gas MoleculesExcited-State Proton Transfer ReactionsPrebiotic Synthesis of Alpha-amino Acids
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本博士論文共有五章,在第一章中我們開發了一種新的 DFT 計算方法並測試其計算效能,第二章中我們研究了一種新型鈍氣陰離子 FNgCC- 的穩定性及其各種性質,第三章我們透過理論探討在生命起源前中性環境下,透過水及對掌性分子催化合成丙胺酸化學反應的反應機制,第四章我們以理論計算探討 cyclic-O3、cyclic-S3、cyclic-Se3 的動力學穩定性,第五章我們與實驗學家配合模擬 1,8-dihydroxy-2-naphthaldehyde (DHNA) 分子在基態以及第一激發單重態質子轉移的反應機制。
在第一章的研究中我們將本實驗室過去所發表的 multi-coefficient density functional theory (MC-DFT) 與 spin- component-scaling MP2 (SCS-MP2) 理論相結合,並額外增加 E3、E4 能量校正,開發了一系列效率極高的計算方法 (MC-MP4 | MC-DFT)。我們發現此方法所搭配之 functional 若使用 DSD-BLYP ,則其計算 211 動力學及熱力學反應與準確值的 mean unsigned errors (MUE) 可降至 0.72 kcal/mol,然而其僅需花費 DSD-BLYP/aug-cc-pVTZ (MUE = 1.36 kcal/mol) 之 78% 的計算時間,上述組合亦為本研究中準確性及計算效率最高的計算方法。
第二章我們透過各種理論方法研究一種新型的鈍氣陰離子 FNgCC- (Ng = He、Ar、Kr、Xe) 的各種性質。計算結果顯示 FNgCC(Ng = Ar、Kr、Xe) 都有相當高的結合能 (17-64 kcal/mol),而唯一的大量放熱途徑中 (FNgCC- -> FCC- + Ng) 亦包含 21-43 kcal/mol 的反應能障,而且都有相當高的 S-T gap (81 kcal/mol 以上)。我們透過理論預測這一系列的 FNgCC(Ng = Ar、Kr、Xe) 為動力學穩定的鈍氣分子,我們認為這些分子將來相當有可能在低溫的實驗條件下被觀測到。
第三章我們透過理論模擬生命起源前 (prebiotic) 中性環境下經由 Strecker reaction 合成丙胺酸 (alanine) 的反應機制。由我們的計算結果顯示此反應在沒有催化劑 (uncatalyzed) 的條件下,反應須跨越至少 33 kcal/mol 的反應能障。然而,若透過水分子催化上述反應,則所有反應能障約下降 17-27 kcal/mol,另一方面,若透過對掌性醇類分子 (R-form 或 S-form) CH3CHCl(OH)、CH3CH2CHCl(OH) 催化上述反應,則合成兩種不同對掌性丙胺酸 (D- 和 L-Alanine) 的反應能障差分別約為 0.6 和 0.9 kcal/mol,換算為 300 K 下反應速率差距分別約為 2.7 倍及 4.5 倍。顯示在生命起源前的環境下,對掌性分子的催化效應可能是造成兩種不同對掌性胺基酸比例不平衡的因素之一,此現象或許可解釋現今自然界的胺基酸對掌性為何以 L-form 為主要構型。
第四章我們透過高階理論方法計算 O3、S3、Se3 的 cyclic form -> open form 異構化反應的反應能量及其反應能障,並延續本實驗室先前 cyclic-O3 的研究,使用 VTST/MT (variational transition state theory with multidimensional tunneling) 理論計算 cyclic-S3 異構化反應的動力學性質及穿隧效應。我們發現 cyclic-O3、cyclic-S3、cyclic-Se3 的異構化反應中都有足夠的反應能障 (21.1、25.8、22.9 kcal/mol) 以維持其動力學穩定性。此外,VTST/MT 的計算結果顯示 cyclic-S3 的穿隧效應相當的弱,溫度 300 K 和 200 K 下所估計的異構化半生期分別約為 12.7 個小時和 106 年,其研究結果顯示 cyclic-S3 以及質量較重、穿隧效應較小的 cyclic-Se3 都有相當不錯的動力學穩定性。
第五章我們與實驗學家配合以理論計算模擬 1,8-dihydroxy-2-naphthaldehyde (DHNA) 在基態 (ground state, S0) 以及第一激發單重態 (1st singlet excited state, S1) 的 proton transfer 反應機制。計算結果顯示在基態下 DHNA 的 proton transfer 反應能量及能障分別約為 1.6 和 2.6 kcal/mol,我們預期在基態下 DHNA 和其 tautomer (TA) 有可能達到平衡共存。而在第一激發單重態下則存在一個低能量的反應路徑可生成 single proton transfer 以及 double proton transfer 的 tautomers (TA*、TB*),DHNA* -> TA* 和 TA* -> TB* 的反應能障分別約為 0.3 和 2.1 kcal/mol,上述理論結果映證了實驗上放光光譜所觀測到的 TA* 與 TB* 放光波長 (520 nm、650 nm)。由理論所模擬的 2-D 位能曲面以及反應路徑亦證明在第一激發單重態的上述反應為逐步進行 (sequential、stepwise) 而非同時進行 (concerted) 的 double proton transfer 反應。
This thesis consists of five chapters. In chapter 1, we developed and tested several new efficient DFT methods. In chapter 2, we performed high-level theoretical study on a new type of noble-gas (Ng) containing anions FNgCC. In chapter 3, we studied the mechanisms and reaction paths of the prebiotic strecker synthesis of alanine catalyzed by water and chiral molecules in the neutral environment. In chapter 4, we studied the kinetic stability of the cyclic-O3, cyclic-S3, and cyclic-Se3. In the last chapter, we cooperated with the experimental scientists and carried out the theoretical investigation on the excited state proton transfer of 1,8-dihydroxy-2-naphthaldehyde (DHNA).
In chapter 1, we developed and tested several new efficient multi-coefficient density functional theory (MC-DFT) methods based on the DSD-BLYP functional and by including SCS-MP2 and MP4 correction energies on the performance of thermochemical kinetics against the database of 211 accurate energies. When the MP4 correlation energies were included, the new method gave an astonishingly small MUEs of 0.72 kcal/mol and cost only 78% of the DSD-BLYP/aug-cc- pVTZ method (with MUE = 1.36 kcal/mol).
In chapter 2, we made high-level theoretical study on a new type of noble-gas (Ng) containing anions FNgCC-. The results showed that FNgCC- (Ng = Ar, Kr, Xe) are kinetically stable anions in the gas phase with the three-body dissociation energies of 17-64 kcal/mol and two body-dissociation (FNgCC- -> FCC- + Ng) barriers of 21-43 kcal/mol; moreover, the S-T gaps of all the FNgCC- were over 81 kcal/mol. These results suggested that the future experimental identification of the FNgCC- anions is expected under cryogenic conditions.
In chapter 3, the mechanisms and reaction paths of the prebiotic strecker synthesis of alanine catalyzed by water and chiral molecules in the neutral environment have been studied. In this three-step reaction, the energy barriers were calculated to be over 33 kcal/mol in the uncatalyzed condition; the reaction catalyzed by water, however, could significantly reduce the barriers by 17-27 kcal/mol. When the reactions were catalyzed by the chiral molecules (R-form or S-form) CH3CHCl(OH) and CH3CH2CHCl(OH), the differences of barriers between two chiral products (D- and L-Alanine) were calculated to be 0.6 and 0.9 kcal/mol; of the rates in 300 K, 2 and 4.5 times. This result suggested that the chiral catalysts in prebiotic conditions could produce different numbers of the two different chiral (D- and L-) amino acids, which was might be a plausible reason for the dominance of L-amino acids in nature nowadays.
In chapter 4, high-level electronic structure calculations have been carried out on the kinetic stability of the cyclic-O3, cyclic-S3, and cyclic-Se3. In this study, the rate constant and tunneling effect for the isomerization reaction of cyclic-S3 was also calculated by using the VTST/MT and compared to our previous study about cyclic-O3. From our high-level calculations, the energy barriers of the isomerization reactions for O3, S3, and Se3 were predicted to be 21.1, 25.8, and 22.9 kcal/mol, respectively. The half-life of the cyclic-S3 estimated by VTST/MT was ~12.7 hours at 300 K and ∼106 years at 200 K. Since the Se3 systems were expected to show much less tunneling effects, both cyclic S3 and Se3 were expected to be kinetically stable.
In chapter 5, we studied the proton transfer reactions of 1,8- dihydroxy-2-naphthaldehyde (DHNA) on both ground state (S0) and 1st singlet excited state (S1) and estimated the wavelenths of vertical S0 -> S1 excitation and S1 -> S0 emissions. On the ground-state (S0), the normal form (N) was lower in energies than tautomer A (TA) by 1.5 kcal/mol and the barrier of N -> TA was 2.6 kcal/mol, which suggested there were equilibrium between the N and TA species in S0. The calculated S1 barriers of N* -> TA* and TA* -> TB* were 0.3 and 2.1 kcal/mol, respectively, which suggested there existed a low energy path for N* to produced TA* and TB* by single and double proton transfer reactions. A comprehensive 2-D PES plot proved that the sequential, two-step proton motion is along the minimum energetic pathway, consistent with the experimental results.
中文摘要...page I
英文摘要...page V

第一章 Development of a New Hybrid Density Functional Theory (MC-MP4 | MC-DHDFT) Including Energy Corrections to the MP4 Level
摘要...page 1
1.1 前言...page 2
1.1.1 密度泛函理論...page 2
1.1.2 Exc 的數學形式分類...page 4
1.1.3 多層電子結構方法...page 15
1.1.4 多層電子密度泛函理論...page 19
1.1.5 研究動機...page 21
1.2 研究方法...page 21
1.3 結果與討論...page 27
1.3.1 不同的 MC-DFT理論方法搭配各種 functionals 之表現...page 27
1.3.2 各理論方法下相對計算量及 Performance/Cost Ratio 之比較...page 43
1.4 結論...page 47
1.5 參考文獻...page 48

第二章 Theoretical Prediction on the Structures and Stability of the Noble-Gas Containing Anions FNgCC- (Ng = He, Ar, Kr, and Xe)
摘要...page 66
2.1 前言...page 67
2.2 理論與計算方法...page 68
2.3 結果與討論...page 70
2.3.1 結構比較...page 70
2.3.2 相對能量以及 S-T gap...page 72
2.3.3 穩定性探討...page 73
2.3.4 振動頻率...page 76
2.3.5 鍵結形式與電荷分布...page 77
2.3.6 F-(NgCC)2 陰離子...page 78
2.4 結論...page 79
2.5 參考文獻...page 80

第三章 Theoretical Study on the Prebiotic Strecker Synthesis of Alanine Catalyzed by Water and Chiral Molecules
摘要...page 101
3.1 前言...page 102
3.2 理論與計算方法...page 106
3.3 結果與討論...page 107
3.3.1 透過 Strecker reaction 合成 alanine 的反應機構及相對能量...page 107
3.3.1.1 反應一 (R1) CH3CH=O + NH3...page 108
3.3.1.2 反應二 (R2) CH3CH=NH + HCN...page 110
3.3.1.2 反應三 (R3) CH3CH(CN)(NH2) + 2H2O...page 112
3.3.2 反應二 (R2) 中不同對掌性催化劑對反應性所造成的影響...page 115
3.4 結論...page 117
3.5 參考文獻...page 119

第四章 Theoretical Study on the Stability of Cyclic O3, S3, and Se3
摘要...page 141
4.1 前言...page 142
4.2 理論與計算方法...page 145
4.2.1 電子結構計算方法...page 145
4.2.2 速率常數與穿隧效應計算方法...page 146
4.3 結果與討論...page 147
4.3.1 基態之各靜態點結構...page 147
4.3.2 基態之各靜態點相對能量...page 148
4.3.3 基態與激發態的位能曲面...page 149
4.3.4 速率常數以及穿隧效應...page 150
4.4 結論...page 153
4.5 參考文獻...page 154

第五章 Theoretical Study on the Excited State Proton Transfer of 1,8-dihydroxy-2-naphthaldehyde
摘要...page 179
5.1 前言...page 180
5.2 理論與計算方法...page 183
5.3 結果與討論...page 184
5.3.1基態 (S0) 下的結構...page 184
5.3.2 基態 (S0) 下的相對能量及 vertical S0 -> S1 excitation...page 185
5.3.3 激發態 (S1) 下的相對能量...page 186
5.3.4 激發態 (S1) 下的 S1  S0 emission...page 189
5.3.5 基態 (S0) 及激發態 (S1) 的位能曲面與反應路徑...page 192
5.4 結論...page 193
5.5 參考文獻...page 194

1.5 參考文獻
(1)Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864-B871.
(2)Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138.
(3)Laird, B. B.; Ross, R. B.; Ziegler, T. in Chemical Application of Density-Functional Theory; Laird, B. B.; Ross, R. B.; Ziegler, T., Eds.; ACS Symposium Series 629, American Chemical Society, Washington, DC, 1996; pp. 1-11.
(4)Scuseria, G. E.; Staroverov,V. N. in Theory and Applications of Computational Chemistry: The First Forty Years, Dykstra, C. E., Frenking, G.; Kim, K. S.; Scuseria, G. E., Eds.; Elsevier B.V., 2005; pp. 669-724.
(5)Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: TheSelf-Consistent Field for Molecular and Solids; McGraw-Hill: New York,1974.
(6)Becke, A. D. Phys. Rev. A 1988, 38, 3098.
(7)Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(8)Perdew, J. P. In Electronic Structure of Solids ’91; Ziesche, P., Eschig, H., Eds.; Akademie Verlag: Berlin, 1991; p 11
(9)Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
(10)Becke, A. D. J. Chem. Phys. 1996, 104, 10401.
(11)Van Voorhis, T.; Scuseria, G. E. J. Chem. Phys. 1998, 109, 400
(12)Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401.
(13)Zhao, Y.; Truhlar, D. G. Theor. Chem. Account. 2008, 120, 215.
(14)Perdew, J. P.; Schmidt, K. In Density Functional Theory and Its Applications to Materials; Doren, V., Alsenoy, C. V., Geerlings.,P.,Eds.;American Institute of Physics: New York, 2001.
(15)Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(16)Zhao, Y.; Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 2715.
(17)Schmider, H. L.; Becke, A. D. J. Chem. Phys. 1998, 108, 9624.
(18)Boese, A. D.; Martin, J. M. L. J. Chem. Phys. 2004, 121, 3405.
(19)Zhao,Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Phys. 2005, 123, 161103.
(20)Zhao, Y.; Truhlar, D. G. J. Chem. Theory. Comput. 2007, 4, 1849.
(21)Peverati, R.; Truhlar, D. G. J. Phys. Chem. Lett. 2012, 3, 117.
(22)Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
(23)Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.
(24)Zhao, Y.; Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 4786.
(25)Grimme, S. J. Chem. Phys. 2006, 124, 034108.
(26)Tarnopolsky, A.; Karton, A.; Sertchook, R.; Vuzman, D.; Martin, J. M. L. J. Phys. Chem. A 2008, 112, 3.
(27)Karton, A.; Tarnopolsky, A.; Lamère, J.; Schatz, G. C.; Martin, J. M. L. J. Phys. Chem. A 2008, 112, 12868.
(28)Grimme, S. J. Chem. Phys. 2003, 118, 9095.
(29)Szabados, A. J. Chem. Phys. 2006, 125, 214105.
(30)Grimme, S. J. Comput. Chem. 2004, 25, 1463.
(31)Kozuch, S.; Gruzman, D.; Martin, J. M. L. J. Phys. Chem. C 2010, 114, 20801.
(32)Kozuch, S. ; Martin, J. M. L. J. Comput. Chem. 2013, 34, 2327.
(33)Grimme, S. ; Ehrlich, S. ; Goerigk, L. J. Comput. Chem. 2011, 32, 1456.
(34)Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622.
(35)Curtiss, L. A.; Jones, C.; Trucks, G. W.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1990, 93, 2537.
(36)Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.
(37)Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A.; J. Chem Phys. 1998, 109, 7764.
(38)Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem Phys. 2007, 126, 084108.
(39)Ochterski, J. W.; Petersson, G. A.; and Montgomery Jr., J. A. J. Chem. Phys. 1996, 104, 2598.
(40)Martin, J. M. L.; Oliveira G. J. Chem. Phys. 1999, 111, 1843.
(41)Parthiban S.; Martin, J. M. L. J. Chem. Phys. 2001, 114, 6014.
(42)Boese, A. D.; Oren, M.; Atasoylu, O.; Martin, J. M. L.; Kállar, M.; Gauss J. J. Chem. Phys. 2004, 120, 4129.
(43)Karton A., Rabinovich, E.; Martin, J. M. L. J. Chem. Phys. 2006, 125, 144108.
(44)Fast, P. L.; Sanchez, M. L.; Truhlar, D. G. Chem. Phys. Lett. 1999, 306, 407.
(45)Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2003, 107, 3898.
(46)Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J.Chem. Phys. 2000, 112, 1125.
(47)Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 2001, 114, 108.
(48)Lee, T.-H.; Chen, H.-R.; Hu, W.-P. Chem. Phys. Lett. 2005, 412, 430.
(49)(a) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265. (b) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
(50)(a) Dunning, Jr., T. H. J. Chem. Phys. 1989, 90, 1007. (b) Kendall, R. A.; Dunning, Jr., T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796. (c) Woon, D. E.; Dunning, Jr., T. H. J. Chem. Phys. 1993, 98, 1358. (d) Dunning, Jr., T. H.; Peterson, K. A.; Wilson, A. K. J. Chem. Phys. 2001, 114, 9244
(51)Zhao, Y.; Lynch, B. J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2005, 7, 43.
(52)Sun, Y.-L.; Lee, T.-H.; Chen, J.-L.; Wu, K.-J.; Hu, W.-P. Chem. Phys. Lett. 2007, 442, 220.
(53)Chen, J.-L.; Sun, Y.-L.; Wu, K.-J.; Hu, W.-P. J. Phys. Chem. A 2008, 112, 1064.
(54)Chen, J.-L.; Hong, J.-T.; Wu, K.-J.; Hu, W.-P. Chem. Phys. Lett. 2009, 468, 307.
(55)(a) Jensen, F. J. Chem. Phys. 2001, 115, 9113. (b) Jensen, F. J. Chem. Phys. 2002, 116, 7372. (c) Jensen, F. J. Chem. Phys. 2002, 117, 9234.
(56)Lynch, B. J.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2003, 107, 1384.
(57)Fast, P. L.; Corchado, J.; Sanchez, M. L.; Truhlar, D. G. J. Phys. Chem. A 1999, 103, 3139.
(58)(a) Peverati, R.; Truhlar, D. G. J. Chem. Phys. 2011, 135, 191102. (b) Zheng, J.; Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2009, 5, 808. (c) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364.
(59)Frisch, M. J.; et al. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford CT, 2009.

2.5 參考文獻
(1)Bartlett, N. Proc. Chem. Soc. 1962, 218.
(2)Pettersson, M.; Lundell, J.; Räsänen, M. Eur. J. Inorg. Chem. 1999, 729.
(3)Khriachtchev, L.; Räsänen, M.; Gerber, R. B. Acc. Chem. Res. 2009, 42, 183.
(4)Khriachtchev, L.; Domanskaya, A.; Lundell, J.; Akimov, A.; Räsänen, M.; Misochko, E. J. Phys. Chem. A 2010, 114, 4181.
(5)Khriachtchev, L.; Tapio, S.; Domanskaya, A. V.; Räsänen, M.; Isokoski, K. J. Chem. Phys. 2011, 134, 124307.
(6)Grochala, W.; Khriachtchev, L.; Räsänen, M. in Physics and Chemistry at Low Temperatures, edited by L. Khriachtchev, CRC Press, 2011, Ch. 13, p 419.
(7)Arppe, T.; Khriachtchev, L.; Lignell, A.; Domanskaya, A. V.; Räsänen, M. Inorg. Chem. 2012, 51, 4398.
(8)Evans, C. J.; Lesarri, A.; Gerry, M. C. L. J. Am. Chem. Soc. 2000, 122, 6100.
(9)Evans, C. J.; Gerry, M. C. L. J. Chem. Phys. 2000, 112, 1321.
(10)Evans, C. J.; Gerry, M. C. L. J. Chem. Phys. 2000, 112, 9363.
(11)Evans, C. J.; Rubinoff, D. S.; Gerry, M. C. L. Phys. Chem. Chem. Phys. 2000, 2, 3943.
(12)Reynard, L. M.; Evans, C. J.; Gerry, M. C. L. J. Mol. Spectrosc. 2001, 206, 33.
(13)Walker, N. R.; Reynard, L. M.; Gerry, M. C. L. J. Mol. Struct. 2002, 612, 109.
(14)Thomas, J. M.; Walker, N. R.; Cooke, S. A.; Gerry, M. C. L. J. Am. Chem. Soc. 2004, 126, 1235.
(15)Cooke, S. A.; Gerry, M. C. L. J. Am. Chem. Soc. 2004, 126, 17000.
(16)Michaud, J. M.; Cooke, S. A.; Gerry, M. C. L. Inorg. Chem. 2004, 43, 3871.
(17)Cooke, S. A.; Gerry, M. C. L. Phys. Chem. Chem. Phys. 2004, 6, 3248.
(18)Michaud, J. M.; Gerry, M. C. L. J. Am. Chem. Soc. 2006, 128, 7613.
(19)Seidel, S.; Seppelt, K. Science 2000, 290, 117.
(20)Hu, W.-P.; Huang, C.-H. J. Am. Chem. Soc. 2001, 123, 2340.
(21)Li, J.; Bursten, B. E.; Liang, B.; Andrews, L. Science 2002, 295, 2242.
(22)Andrews, L.; Liang, B.; Li, J.; Bursten, B. E. J. Am. Chem. Soc. 2003, 125, 3126.
(23)Liang, B.; Andrews, L.; Li, J.; Bursten, B. E. Inorg. Chem. 2004, 43, 882.
(24)Li, T.-H.; Mou, C.-H.; Chen, H.-R.; Hu, W.-P. J. Am. Chem. Soc. 2005, 127, 9241.
(25)Lin, T.-Y.; Hsu, J.-B.; Hu, W.-P. Chem. Phys. Lett. 2005, 402, 514.
(26)Li, T.-H.; Liu, Y.-L.; Lin, R.-J.; Yeh, T.-Y.; Hu, W.-P. Chem. Phys. Lett. 2007, 434, 38.
(27)Liu, Y.-L.; Chang, Y.-H.; Li, T.-H.; Chen, H.-R.; Hu, W.-P. Chem. Phys. Lett. 2007, 439, 14.
(28)Sun, Y.-L.; Hong, J.-T.; Hu, W.-P. J. Phys. Chem. A 2010, 114, 9359.
(29)Lai, T.-Y.; Yang, C.-Y.; Lin, H.-J.; Yang, C.-Y.; W.-P. Hu, J. Chem. Phys. 2011, 134, 244110.
(30)Antoniotti, P.; Borocci, S.; Bronzolino, N.; Cecchi, P.; Grandinetti, F. J. Phys. Chem. A 2007, 111, 10144.
(31)Borocci, S.; Bronzolino, N.; Giordani, M.; Grandinetti, F. J. Phys. Chem. A 2010, 114, 7382.
(32)Cohen, A.; Lundell, J.; Gerber, R. B. J. Chem. Phys. 2003, 119, 6415.
(33)Mück, L. A.; Timoshkin, A. Y.; Hopffgarten, M.; Frenking, G. J. Am. Chem. Soc. 2009, 131, 3942.
(34)Belpassi, L.; Infante, I.; Tarantelli, F.; Visscher, L. J. Am. Chem. Soc. 2008, 130, 1048.
(35)Mou, C.-H.; Witek, H. A. J. Chem. Phys. 2008, 129, 244310.
(36)Zou, W. L.; Liu, Y.; Boggs, J. E. Dalton Trans. 2010, 39, 2023.
(37)Pettersson, M.; Lundell, J.; Khriachtchev, L.; Räsänen, M. J. Chem. Phys. 1998, 109, 618.
(38)Khriachtchev, L.; Tanskanen, H.; Lundell, J.; Pettersson, M.; Kiljunen, H.; Räsänen, M. J. Am. Chem. Soc. 2003, 125, 4696.
(39)Khriachtchev, L.; Tanskanen, H.; Cohen, A.; Gerber, R. B.; Lundell, J.; Pettersson, M.; Kiljunen, H.; Räsänen, M. J. Am. Chem. Soc. 2003, 125, 6876.
(40)Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
(41)Pople, J. A.; Head‐Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.
(42)Becke, A. D. Phys. Rev. A. 1988, 38, 3098.
(43)Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B. 1988, 37, 785.
(44)Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
(45)Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664.
(46)Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
(47)Kendall, R. A.; Dunning, T. H., Jr. J. Chem. Phys. 1992, 96, 6796.
(48)Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358.
(49)Wilson, A. K.; Woon, D. E.; Peterson, K. A.; Dunning, T. H., Jr. J. Chem. Phys. 1999, 110, 7667.
(50)Dunning, T. H., Jr.; Peterson, K. A.; Wilson, A. K. J. Chem. Phys. 2001, 114, 9244.
(51)Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113.
(52)Roos, B. O.; Taylor, P. R.; Siegbahn, P. E. M. Chem. Phys. 1980, 48, 157.
(53)Werner, H.-J. Mol. Phys. 1996, 89, 645.
(54)Celani, P.; Werner, H.-J. J. Chem. Phys. 2000, 112, 5546.
(55)Breneman, C. M.; Wiberg, K. B. J. Comp. Chem. 1990, 11, 361.
(56)Carpenter, J. E.; Weinhold, F. J. Mol. Struct. (Theochem) 1988, 169, 41.
(57)Frisch, M. J.; et al. Gaussian 03, revision E.01; Gaussian, Inc.: Wallingford CT, 2004.
(58)MOLPRO, version 2012.1, designed by H.-J. Werner and P. J. Knowles, 2012.

3.5 參考文獻
(1)Rauchfuss, H. Chemical Evolution and the Origin of Life; Springer, 2008.
(2)Saladino, R.; Crestini, C.; Pino, S.; Costanzo, G.; Mauro, E. D. Physics of Life Reviews 2012, 9, 84.
(3)Strecker, A. Ann. Chem. Pharm. 1850, 75, 27.
(4)Miller, S. L. Science 1953, 117, 528.
(5)Orgel; L. E.; Lohrmann, R. Acc. Chem. Res. 1974, 7, 368
(6)Shevlin, P. B.; McPherson, D. W.; Meliud, P. J. Am. Chem. Soc. 1983, 105, 488.
(7)Arnaud, R.; Adamo, C.; Cossi, M.; Milet, A.; Vallee, Y.; Barone, V. J. Am. Chem. Soc. 2000, 122, 324.
(8)Roy, D.; Najafian, K.; Schleyer, P. v. R. Proc. Natl. Acad. Sci. 2007, 104, 17272.
(9)Iyer, M. S.; Gigstad, K. M.; Namdev, N. D.; Lipton M. J. Am. Chem. Soc. 1996, 118, 4910.
(10)Enders, D.; Shilvock, J. P. Chem. Soc. Rev., 2000, 29, 359.
(11)Yet, L. Angew. Chem., Int. Ed. 2001, 40, 875.
(12)Grőger, H. Chem. Rev. 2003, 103, 2793.
(13)Shibasaki, M.; Kanai, M.; Mita, T. Organic Reactions, 2008, 70.
(14)Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947.
(15)Li, J.; Jiang, W.-Y.; Han, K.-L.; He, G.-Z.; Li, C.; J. Org. Chem. 2003, 68, 8786.
(16)Zhu, H.S.; Ho, J.J. J. Phys. Chem. A 2004, 108, 3798.
(17)Koch, D.M.; Toubin, C.; Peslherbe, G.H.; Hynes, J.T. J. Phys. Chem. C 2008, 112, 2972.
(18)Meierhenrich, U. Amino Acids and the Asymmetry of Life; Springer, 2008.
(19)Blackmond, D. G. Cold. Spring. Harb. Perspect. Biol. 2010, 2, 1.
(20)Buschmann, H. ; Thede, R.; Heller, D. Angew. Chem. 2000, 112, 4197.
(21)Buono, F. G.; Iwamura, H.; Blackmond, D. G. Angew. Chem., Int. Ed. 2004, 43, 2099.
(22)Rubenstein, E.; Bonner, W. A.; Noves, H. P.; Brown, G. S. Nature, 1983, 306, 118.
(23)Bonner, W. A.; Rubenstein, S. Biosystems, 1987, 20, 99.
(24)Yang, C. N. The law of parity conservation and other symmetry laws of physics, Nobel Lecture, 1957.
(25)Lee, T. D. Weak interactions and nonconservation of parity, Nobel Lecture, 1957.
(26)Mason, S. F.; Tranter, G. E. J. Chem. Soc. Chem. Commun. 1983, 117.
(27)Goldanski, V. I.; Kuzmin, V. V. Nature, 1991, 352, 114.
(28)Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
(29)Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265.
(30)Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
(31)Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.
(32)Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
(33)Frisch, M. J.; et al. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford CT, 2013.

4.5 參考文獻
(1)Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810.
(2)Fishman, J.; Crutzen, P. J. Nature 1978, 274, 855.
(3)Kohlmiller, C. K.; Andrews, L. J. Am. Chem. Soc. 1981, 103, 2578.
(4)Atkinson, R.; Carter, W. P. L. Chem. Rev. 1984, 84, 437.
(5)Farman, J. C.; Gardiner, B. G.; Shanklin, J. D. Nature 1985, 315, 207.
(6)Solomon, S.; Garcia, R. R.; Rowland, F. S.; Wuebbles, D. J. Nature 1986, 321, 755.
(7)McElroy, M. B.; Salawitch, R. J.; Wofsy, S. C.; Logan, J. A. Nature 1986, 321, 759.
(8)Crutzen, P. J.; Arnold, F. Nature 1986, 324, 651.
(9)Barrle, L. A.; Bottenheim, J. W.; Schnell, R. C.; Crutzen, P. J.; Rasmussen, R. A. Nature 1988, 334, 138.
(10)Lelieveld, J.; Crutzen, P. J. Nature 1990, 343, 227.
(11)McGrath, M. P.; Clemitshaw, K. C.; Rowland, F. S.; Hehre, W. J. J. Phys. Chem. 1990, 94, 6126.
(12)Wayne, R. P.; Poulet, G.; Biggs, P.; Burrows, J. P.; Cox, R. A.; Crutzen, P. J.; Hayman, G. D.; Jenkin, M. E.; Le Bras, G.; Moortgat, G. K.; Platt, U.; Schindler, R. N. Atmos. Environ. 1995, 29, 2677.
(13)Zhang, J.; Lee, Y.-T. J. Phys. Chem. A 1997, 101, 6485.
(14)(a) Laidig, W. D.; Schaefer, H. F. J. Chem. Phys. 1981, 74, 3411. (b) Borowski, P.; Andersson, K.; Malmqvist, P. Å.; Roos, B. O. J. Chem. Phys. 1992, 97, 5568. (c) Leininger, M. L.; Schaefer, H. F. J. Chem. Phys. 1997, 107, 9059. (d) Li, X.; Paldus, J. J. Chem. Phys. 1999, 110, 2844. (e) Ljubic, I.; Sabljic, A. J. Phys. Chem. A 2002, 106, 4745. (f) Zhao, Y.; Tishchenko, O.; Gour, J. R.; Li, W.; Lutz, J. J.; Piecuch, P.; Truhlar, D. G. J. Phys. Chem. A 2009, 113, 5786.
(15)Xantheas, S. S.; Atchity, G. J.; Elbert, S. T.; Ruedenberg, K. J. Chem. Phys. 1991, 94, 8054.
(16)Ivanic, J.; Atchity, G. J.; Ruedenberg, K. J. Chem. Phys. 1997, 107, 4307.
(17)Siebert, R.; Schinke, R.; Bittererova, M. Phys. Chem. Chem. Phys. 2001, 3, 1795.
(18)Siebert, R.; Fleurat-Lessard, P.; Schinke, R; Bittererova, M.; Farantos, S. C. J. Chem. Phys. 2002, 116, 9749.
(19)Qu, Z.-W.; Zhu, H.; Schinke, R. J. Chem. Phys. 2005, 123, 204324.
(20)De Vico, L.; Pegado, L.; Heimdal, J.; Sőderhjelm, P.; Roos, B. O. Chem. Phys. Lett. 2008, 461, 136.
(21)Chen, J.-L.; Hu, W.-P. J. Am. Chem. Soc. 2011, 133, 16045.
(22)Meyer, B. Chem. Rev. 1976, 76, 367.
(23)Erdmann, H.; Liebigs, J. Ann. Chem. 1908, 362, 133.
(24)Berkowitz, J.; Marquart, J. R. J. Chem. Phys. 1963, 39, 275.
(25)Meyer, B.; Stroyer-Hansen, T.; Oommen, T. V. J. Mol. Spectrosc. 1972, 42, 335.
(26)(a) Meyer, B.; Oommen, T. V.; Jensen, D. J. Phys. Chem. 1971, 75, 912. ( b) Meyer, B.; Stroyer-Hansen, T.; Jensen, D.; Oommen, T. V. J. Am. Chem. Soc. 1971, 93, 1034.
(27)Meyer, B.; Stroyer-Hansen, T.; Oommen, T. V. J. Mol. Spectrosc. 1972, 42, 335.
(28)(a) Hassanzadeh, P.; Andrews, L. J. Phys. Chem. 1992, 96, 6579. (b) Brabson, G. D.; Mielke, Z.; Andrews, L. J. Phys. Chem. 1991, 95, 79.
(29)McCarthy, M. C.; Thorwirth, S.; Gottlieb, C. A.; Thaddeus, P. J. Am. Chem. Soc. 2004, 126, 4096.
(30)Koch, W.; Natterer, J.; Heinemann, C. J. Chem. Phys. 1995, 102, 6159.
(31)Goddard, J. D.; Chen, X.; Orlova, G. J. Phys. Chem. A 1999, 103, 4078.
(32)Francisco, J. S.; Lyons, J. R.; Williams, I. H. J. Chem. Phys. 2005, 123, 054302.
(33)Peterson, K. A.; Lyons, J. R.; Francisco, J. S. J. Chem. Phys. 2006, 125, 084314.
(34)Balasubramanian K.; Dai, D. J. Chem. Phys. 1993, 99, 5239.
(35)Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(36)Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
(37)Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.
(38)(a) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007. (b) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
(39)Dunning, T. H., Jr.; Peterson, K. A.; Wilson, A. K. J. Chem. Phys. 2001, 114, 9244.
(40)Roos, B. O.; Taylor, P. R.; Siegbahn, P. E. M. Chem. Phys. 1980, 48, 157.
(41)(a) Werner, H.-J. Mol. Phys. 1996, 89, 645. (b) Celani, P.; Werner, H.-J. J. Chem. Phys. 2000, 112, 5546.
(42)(a) Werner, H.-J.; Knowles, P. J. J. Chem. Phys. 1988, 89, 5803. (b) Langhoff, S. R.; Davidson, E. R. Int. J. Quantum Chem. 1974, 8, 61.
(43)(a) Truhlar, D. G.; Garrett, B. C. Acc. Chem. Res. 1980, 13, 440. (b) Truhlar, D. G.; Isaacson, A. D.; Garrett, B. C. In Theory of Chemical Reaction Dynamics; Baer, M., Ed.; CRC Press: Boca Raton, FL, 1985; Vol. 4, p 65.
(44)Liu, Y.-P.; Lu, D.-H.; Gonzalez-Lafont, A.; Truhlar, D. G.; Garrett, B. C. J. Am. Chem. Soc. 1993, 115, 7806.
(45)(a) Liu, Y.-P.; Lynch, G. C.; Truong, T. N.; Lu, D.-H.; Truhlar, D. G.; Garrett, B. C. J. Am. Chem. Soc. 1993, 115, 2408. (b) Lu, D.-H.; Truong, T. N.; Melissas, V. S.; Lynch, G. C.; Liu, Y.-P.; Garrett, B. C.; Steckler, R.; Isaacson, A. D.; Rai, S. N.; Hancock, G. C.; Lauderdale, J. G.; Joseph, T.; Truhlar, D. G. Comput. Phys. Commun. 1992, 71, 235.
(46)Truong, T. N.; Lu, D.-H.; Lynch, G. C.; Liu, Y.-P.; Melissas, V. S.; Gonzalez-Lafont, A.; Rai, S. N.; Steckler, R.; Garrett, B. C.; Joseph, T.; Truhlar, D. G. Comput. Phys. Commun. 1993, 75, 143.
(47)B. C. Garrett, M. J. Redmon, R. Steckler, D. G. Truhlar, M. S. Gordon, K. K. Baldridge, and D. Bartol, J. Phys. Chem. 1988, 92, 1476 .
(48)Huang, C.-H.; You, R.-M.; Lian, P.-Y.; Hu, W.-P. J. Phys. Chem. A 2000, 104, 7200.
(49)Frisch, M. J.; et al. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford CT, 2013..
(50)MOLPRO, version 2012.1, designed by H.-J. Werner and P. J. Knowles, 2012.
(51)Corchado, J. C.; Chunag, Y.-Y.; Coitino, E. L.; Truhlar, D. G. Gaussrate, version 8.2; University of Minnesota: Minneapolis, MN, 1999.
(52)Chuang, Y.-Y.; et al. Polyrate-version 8.2;University ofMinnesota: Minneapolis, MN, 1999.

5.5 參考文獻
(1)Waluk, J. Acc. Chem. Res. 2003, 36, 832.
(2)Tanner, C.; Manca, C.; Leutwyler, S. Science 2003, 302, 1736.
(3)Tolbert, L. M.; Solntsev, K. M. Acc. Chem. Res. 2002, 35, 19.
(4)Paterson, M. J.; Robb, M. A.; Blancafort, L.; DeBellis, A. D. J. Am. Chem. Soc. 2004, 126, 2912.
(5)Hosoi, H.; Mizuno, H.; Miyawaki, A.; Tahara, T. J. Phys. Chem. B 2006, 110, 22853.
(6)Wu, P.-W.; Hsieh, W.-T.; Cheng, Y.-M.; Wei, C.-Y.; Chou, P.-T. J. Am. Chem. Soc. 2006, 128, 14426.
(7)Kwon, O.-H.; Jang, D.-J. J. Phys. Chem. A 2005, 109, 20479.
(8)Gelabert, R.; Moreno, M.; Lluch, J. M. J. Phys. Chem. A 2006, 110, 1145.
(9)Barbatti, M.; Aquino, A. J. A.; Lischka, H.; Schriever, C.; Lochbrunner, S.; Riedle, E. Phys. Chem. Chem. Phys. 2009, 11, 1406.
(10)Hsieh, C.-C.; Jiang, C.-M.; Chou, P.-T. Acc. Chem. Res. 2010, 43, 1364.
(11)Demchenko, A. P. Biochim. Biophys. Acta 1994, 1209, 149.
(12)Demchenko, A. P. FEBS Lett. 2006, 580, 2951.
(13)Demchenko, A. P; Klymchenko, A. S.; Pivovarenko, V. G.; Ercelen, S.; Duportail, G; Mely, Y. J. Fluoresc. 2003, 13, 291.
(14)Chou, H.-C.; Hsu, C.-H.; Cheng, Y.-M.; Cheng, C.-C.; Liu, H.-W.; Pu, S.-C.; Chou, P.-T. J. Am. Chem. Soc. 2004, 126, 1650.
(15)Rodrıiguez-Rodrıiguez, C.; de Groot, N. S.; Rimola, A.; Alvarez-Larena, A.; Lloveras, V.; Vidal-Gancedo, J.; Ventura, S.; Vendrell, J.; Sodupe, M.; Gonzalez-Duarte, P. J. Am. Chem. Soc. 2009, 131, 1436.
(16)Tang, K.-C.; Chang, M.-J.; Lin, T.-Y.; Pan, H.-A.; Fang, T.-C.; Chen, K.-Y.; Hung, W.-Y.; Hsu, Y.-H.; Chou, P.-T. J. Am. Chem. Soc. 2011, 133, 17738.
(17)Taylor, C. A.; El-Bayoumi, M. A.; Kasha, M. Proc. Natl. Acad. Sci. U. S. A. 1969, 103, 253.
(18)Ingham, K. C.; El-Bayoumi, M. J. Am. Chem. Soc. 1974, 96, 1674.
(19)Takasugi, M.; Guendouz, A.; Chassignolt, M.; Decout, J. L.; Lhommet, J.; Thuong, N. T.; Hélène, C. Proc. Natl. Acad. Sci. U. S. A 1991, 88, 5602.
(20)Crespo-Hernández, C. E.; Cohen, B.; Hare, P. M.; Kohler, B. Chem. Rev. 2004, 104, 1977.
(21)Takeuchi, S.; Tahara, T. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 5285.
(22)Kwon, O.-H.; Zewail, A. H. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 8703.
(23)Catalán, J. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, E78.
(24)Kwon, O.-H.; Zewail, A. H. Proc. Natl. Acad. Sci. U. S. A 2008, 105, E79 and references therein.
(25)Tang, K.-C.; Chen, C.-L.; Chuang, H.-H.; Chen, J.-L.; Chen, Y.-J.; Lin, Y.-C.; Shen, J.-Y.; Hu, W.-P.; Chou. P.-T. J. Phys. Chem. Lett. 2011, 2, 3063.
(26)Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(27)Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
(28)Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
(29)Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.
(30)Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
(31)Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
(32)Scalmani, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. J. Chem. Phys. 2006, 124, 094107.
(33)Head-Gordan, M.; Rico, R. J.; Oumi, M.; Lee, T. J. Chem. Phys. Lett. 1994, 219, 21.
(34)Kállay, M.; Gauss, J. J. Chem. Phys. 2004, 121, 9257.
(35)Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.
(36)MOLPRO, version 2012.1, designed by H.-J. Werner and P. J. Knowles, 2012.
(37)Frisch, M. J.; et al. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford CT, 2013..

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳垠慧。〈台北國際藝術博覽會(Art Taipei) 當代藝術買氣沸騰〉。《典藏今藝術》(2007年第178期):202-203。
2. 吳金桃。〈誰敢誰贏?試論英國當代藝術與藝術機制〉。《現代美術》(2003年第109期):50-63。
3. 胡永芬。〈華山論劍:第三屆藝術家博覽會,藝術跨代,電力放送〉。《藝術家》 (2004年第347期):168-169。
4. 吳金桃。<企業藝術獎>。《典藏今藝術》(2005年第149期):69-70。
5. 王嘉驥。〈關於台灣當代藝術競爭力的我思我見〉。《典藏今藝術》(2006年第161期):116-118。
6. 呂佩怡。〈從英國泰納獎的運作機制與效益回看台灣當代藝術獎項〉。《典藏今藝術》(2004年第139期):136-140。
7. 洪藝真。〈品味的炫耀與奇想的實現,沙奇美術館泰晤士河新館開幕〉。《藝術家》(2003年第339期):334-341。
8. 方惠光。〈期待台灣的新藝術,青年藝術市場的現狀與未來〉。《藝術家》(2005年第360期):306-309。
9. 王嘉驥。〈台灣的位置,奇觀、傳媒與當代藝術〉。《典藏今藝術》(2001年第102期):90-93。
10. 姚瑞中。〈從台灣藝術科系畢業展反思新生代創作趨勢與藝術教育〉。《藝術家》(2003年第377期):264-267。
11. 吳垠慧。〈就賣了一雙彈簧鞋,2500元!,台灣當代年輕家作品買賣概況〉。《典藏今藝術》(2005年第149期):146-150。
12. 王嘉驥。〈藝術市場統治年代 (1) 從羅森柏格的《藝術邊緣化》談起〉。《典藏今藝術》(2010年第212期):98。
13. 王嘉驥。〈台灣學院裡的當代藝術狀態〉。《藝術家》(2003年第337期):290-293。
14. 王嘉驥。〈台灣的位置從產業基礎結構看台灣當代藝術的展望〉。《典藏今藝術》(2000年第97期):76-81。
15. 王聖閎。〈那些學院不會教你/妳的事,閱讀「二十一世紀少年-游牧座標」的身分想像〉。《典藏今藝術》(2009年第202期):105-107。
 
無相關點閱論文