跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 08:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘冠宏
研究生(外文):Pan,Kuang-Hung
論文名稱:合成新型生物聚胺酯嫁接聚乙烯胺之基因載體
論文名稱(外文):Synthesis of novel polyurethane grafted polyethylenimine as DNA delivery vectors
指導教授:程中玉
指導教授(外文):Cherng,Jong-Yuh
口試委員:施美份戴建國
口試委員(外文):Shih, Mei-FeinTai,Chien-Kuo
口試日期:2016-06-27
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:106
中文關鍵詞:陽離子型高分子非病毒性基因載體聚胺脂聚乙烯胺
外文關鍵詞:polycationicnon-viral vectorspolyurethanepolyethylenimine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
在這研究中主要去合成兩種以PU作為主鏈衍生物之陽離子型高分子,並探討相互間轉染之差異。首先透過以PU為主鏈,側鏈選用分子量為423之直鏈型聚乙烯胺,經由胺解反應得到一較短鏈之PUS423,其次透過以PU為主鏈,側鏈選用分子量為423與600,結構分別為直鏈型與團狀型之聚乙烯胺,並利用苯甲醛作為連結以亞胺鍵結聚乙烯胺,得到一較長側鏈之PUI423與PUI600,同時含有imine官能基團。目的為了解PUS423、PUI423與PUI600短鏈與長鏈相互間轉染效率與細胞毒性之差異。並且更進一步比較先前實驗室所合成的PLI423與PLI600轉染效率與細胞毒性之探討。透過PEI25K在體外(vitro)轉染上已被公認做為一個黃金指標,以便評估新型陽離子基因載體傳遞效果的標準。這項研究中我們發現PUI423與PUI600皆能輕易地與質體 DNA 自組裝成奈米級的複合體,粒徑大小小於 200 奈米且複合體表面上帶正電荷。高分子PUI423與PUI600比市售的基因載體材料PEI25K轉染上有更優異的表現與較低細胞毒性。由實驗結果證實了長側鏈轉染效率高於短側鏈,與側鏈轉染效率影響力優越於主鏈的影響力。
關鍵字:非病毒性基因載體、陽離子型高分子、聚胺脂、聚乙烯胺

In this research, two kinds of biodegradable PU derivatives were studied for their differences in transfection efficiency. One of the PU derivatives was successfully synthesized by aminolysis reaction to have polyurethane (PU) as backbone with low molecular weight polyethylenimine (Mw=423) shorter side chains (as PUS423). Another kind was an acid-liable polyurethane-grafted-polyethylenimine (Mw=423 or 600) (as PUI423 or PUI600) were synthesized by making PU as backbone with 4-carboxybenzaldehyde and polyethylenimine in the side chains via imine linkages. For the purpose of understanding the effect of different side chain length on transfection efficiency, the toxicity and the transfection efficiency of PUI423, PUI600 , PUS423 and previous work (PLI423 and PLI600)were compared. Branched PEI25k has been used as a standard reference to compared with our newly designed polymers. This study found that PUI423 and PUI600 were able to bind plasmid DNA and yielded positively charged complexes within a nano-sized range (< 200 nm). The PLI423/DNA and PLI600/DNA complexes were able to transfect COS-7 cell in vitro with better transfection efficiency than other PUS423/DNA and PEI25K/DNA. These results demonstrate that the polymers with longer chain have positive influence and side chain effects better than backbone on transfection efficiency.
Keywords:non-viral vectors、polycations、polyurethane、polyethylenimine
目錄
謝誌 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 基因治療的起源與發展 1
1-2 基因治療的原理與功用 3
1-3 基因載體治療之方法 5
1-3-1 病毒型載體法(Viral vector) 6
1-3-2 非病毒型載體(Non-viral vector) 9
1-4 陽離子型高分子載體的轉染機制 13
第二章 研究動機與目的 16
2-1 聚氨酯(Polyurethane;PU) 16
2-2 聚氨酯嫁接聚乙烯胺之設計(PUS423,PUI423與PUI600) 17
2-3 聚氨酯與聚賴氨酸分別嫁接聚乙烯胺之轉染探討 21
第三章 實驗方法 23
3-1 實驗藥品 24
3-2 實驗儀器 27
3-3 實驗步驟 29
3-3-1 PU之合成 29
3-3-2 PUS423 之合成 30
3-3-3 PUI423 之合成 31
3-3-4 PUI600 之合成 35
3-3-5 高分子結構鑑定與平均分子量分析 36
3-3-6 PUS423,PUI423與PUI600之水解測試 37
3-3-7 PLI之酸鹼滴定(緩衝能力)分析 37
3-3-8 質體 DNA 之製備與特性 37
3-3-8-1 菌株保存與培養 37
3-3-8-2 質體DNA製備流程 37
3-3-8-3 質體DNA濃度與純度分析 41
3-3-9 PUS(I)∕DNA複合體之凝膠電泳分析 41
3-3-10 PUS(I)∕DNA複合體水解後之凝膠電泳分析 42
3-3-11 PUS(I)∕DNA複合體之粒徑分析 42
3-3-12 細胞培養 43
3-3-12-1 細胞株 43
3-3-12-2 配置細胞培養液 43
3-3-12-3 冷凍細胞活化之流程 44
3-3-12-3 繼代培養 44
3-3-13 細胞存活率試驗(XTT assay) 45
3-3-14 體外基因轉染檢驗(ONPG assay) 46
3-3-15 綠色螢光蛋白基因表現(Flow cytometry analysis) 46
第四章 結果與討論 50
4-1 PU之合成與鑑定 50
4-2 PUS之合成與鑑定 51
4-3 PUI之合成與鑑定 51
4-4 GPC分子量鑑定 55
4-5 PUS(I)之降解能力之探討 59
4-6 PUS(I)之緩衝能力分析 65
4-7 PUS(I)/DNA複合體之凝膠電泳分析 66
4-8 PUS(I)/DNA複合體水解後之凝膠電泳分析 70
4-9 PUS(I)/DNA複合體之粒徑分析 72
4-10 PUS(I)/DNA複合體之細胞存活率試驗(XTT assay) 74
4-11 PUS(I)/DNA複合體之體外基因轉染檢驗(ONPG assay) 77
4-11-1 質體 DNA(pCMV-LacZ)轉染比較 77
4-11-2 質體 DNA (pEGFP-C2)轉染探討 80
第五章 結論 88
第六章 參考文獻 90


1.Blaese, R. M.; Culver, K. W.; Miller, A. D.; Carter, C. S. T lymphocyte-directed gene therapy for ADAnegative SCID: Initial trial results after 4 years. Science 1995, 270 (5235), 475.
2.Biasco, L.; Baricordi, C.; Aiuti, A. Retroviral integrations in gene therapy trials. Molecular Therapy 2012, 20 (4), 709-716.
3.Lam, J.; Ma, Y.; Armes, S.; Lewis, A.; Baldwin, T.; Stolnik, S. Phosphorylcholine–polycation diblock copolymers as synthetic vectors for gene delivery. Journal of controlled release 2004, 100 (2), 293-312.
4.Li, J.; Chen, Y.-C.; Tseng, Y.-C.; Mozumdar, S.; Huang, L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. Journal of controlled release 2010, 142 (3), 416-421.
5.Grossman, M.; Raper, S. E.; Kozarsky, K.; Stein, E. A.; Engelhardt, J. F.; Muller, D.; Lupien, P. J.; Wilson, J. M. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nature genetics 1994, 6 (4), 335-341.
6.Hosseini, F.; Jolayi, H.; Valizadeh, L.; Tabaghchy Ahary, A.; Hashemi, M.; Varmazyar, Z. The knowledge of hemophilia affected adolescents on the prevention of hemophilia complications. Scientific Journal of Iranian Blood Transfusion Organization 2014, 10 (4).
7.Zallen, D. T. US gene therapy in crisis. Trends in Genetics 2000, 16 (6), 272-275.
8.Lungwitz, U.; Breunig, M.; Blunk, T.; Göpferich, A. Polyethylenimine-based non-viral gene delivery systems. European Journal of Pharmaceutics and Biopharmaceutics 2005, 60 (2), 247-266.
9.Szlosarek, P. W.; Dalgleish, A. G. Potential applications of gene therapy in the patient with cancer. Drugs & aging 2000, 17 (2), 121-132.
10.Felgner, P. L. Particulate systems and polymers for in vitro and in vivo delivery of polynucleotides. Advanced Drug Delivery Reviews 1990, 5 (3), 163-187.
11.Zeilfelder, U.; Frank, O.; Sparacio, S.; Schön, U.; Bosch, V.; Seifarth, W.; Leib-Mösch, C. The potential of retroviral vectors to cotransfer human endogenous retroviruses (HERVs) from human packaging cell lines. Gene 2007, 390 (1), 175-179.
12.Deng, X.; Szabo, S.; Khomenko, T.; Jadus, M. R.; Yoshida, M. Gene therapy with adenoviral plasmids or naked DNA of vascular endothelial growth factor and platelet-derived growth factor accelerates healing of duodenal ulcer in rats. Journal of Pharmacology and Experimental Therapeutics 2004, 311 (3), 982-988.
13.Daya, S.; Berns, K. I. Gene therapy using adeno-associated virus vectors. Clinical microbiology reviews 2008, 21 (4), 583-593.
14.Walther, W.; Stein, U. Viral vectors for gene transfer. Drugs 2000, 60 (2), 249-271.
15.Bett, A.; Prevec, L.; Graham, F. Packaging capacity and stability of human adenovirus type 5 vectors. Journal of virology 1993, 67 (10), 5911-5921.
16.McCoy, R. D.; Davidson, B. L.; Roessler, B. J.; Huffnagle, G. B.; Janich, S. L.; Laing, T. J.; Simon, R. H. Pulmonary inflammation induced by incomplete or inactivated adenoviral particles. Human gene therapy 1995, 6 (12), 1553-1560.
17.Atchison, R. W.; Casto, B. C.; Hammon, W. M. Adenovirus-associated defective virus particles. Science 1965, 149 (3685), 754-755.
18.Podsakoff, G.; Wong, K.; Chatterjee, S. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors. Journal of virology 1994, 68 (9), 5656-5666.
19.Tarahovsky, Y. Cell transfection by DNA-lipid complexes—Lipoplexes. Biochemistry (Moscow) 2009, 74 (12), 1293-1304.
20.Wang, C. Y.; Huang, L. Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochemistry 1989, 28 (24), 9508-9514.
21.Legendre, J.-Y.; Szoka Jr, F. C. Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharmaceutical research 1992, 9 (10), 1235-1242.
22.Zhou, X.; Huang, L. DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochimica et Biophysica Acta (BBA)-Biomembranes 1994, 1189 (2), 195-203.
23.Mishra, A.; Singh, S. K.; Dash, D.; Aswal, V. K.; Maiti, B.; Misra, M.; Maiti, P. Self-assembled aliphatic chain extended polyurethane nanobiohybrids: Emerging hemocompatible biomaterials for sustained drug delivery. Acta biomaterialia 2014, 10 (5), 2133-2146.
24.Moghimi, S. M.; Symonds, P.; Murray, J. C.; Hunter, A. C.; Debska, G.; Szewczyk, A. A two-stage poly (ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Molecular Therapy 2005, 11 (6), 990-995.
25.Xiang, S. D.; Scholzen, A.; Minigo, G.; David, C.; Apostolopoulos, V.; Mottram, P. L.; Plebanski, M. Pathogen recognition and development of particulate vaccines: does size matter? Methods 2006, 40 (1), 1-9.
26.Bloomfield, V. A. Condensation of DNA by multivalent cations: considerations on mechanism. Biopolymers 1991, 31 (13), 1471-1481.
27.Pouton, C. W.; Lucas, P.; Thomas, B. J.; Uduehi, A. N.; Milroy, D. A.; Moss, S. H. Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. Journal of controlled release 1998, 53 (1), 289-299.
28.Askarian, S.; Abnous, K.; Darroudi, M.; Oskuee, R. K.; Ramezani, M. Gene delivery to neuroblastoma cells by poly (l-lysine)-grafted low molecular weight polyethylenimine copolymers. Biologicals 2016.
29.Kim, Y. H.; Park, J. H.; Lee, M.; Kim, Y.-H.; Park, T. G.; Kim, S. W. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. Journal of controlled release 2005, 103 (1), 209-219.
30.Li, H.; Luo, T.; Sheng, R.; Sun, J.; Wang, Z.; Cao, A. Endoplasmic reticulum localization of poly (ω-aminohexyl methacrylamide) s conjugated with (L-)-arginines in plasmid DNA delivery. Biomaterials 2013, 34 (32), 7923-7938.
31.Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J.-P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences 1995, 92 (16), 7297-7301.
32.Vancha, A. R.; Govindaraju, S.; Parsa, K. V.; Jasti, M.; González-García, M.; Ballestero, R. P. Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer. BMC biotechnology 2004, 4 (1), 1.
33.Wightman, L.; Kircheis, R.; Rössler, V.; Carotta, S.; Ruzicka, R.; Kursa, M.; Wagner, E. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. The journal of gene medicine 2001, 3 (4), 362-372.
34.von Harpe, A.; Petersen, H.; Li, Y.; Kissel, T. Characterization of commercially available and synthesized polyethylenimines for gene delivery. Journal of Controlled Release 2000, 69 (2), 309-322.
35.Fischer, D.; Bieber, T.; Li, Y.; Elsässer, H.-P.; Kissel, T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharmaceutical research 1999, 16 (8), 1273-1279.
36.Jin, L.; Zeng, X.; Liu, M.; Deng, Y.; He, N. Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics 2014, 4 (3), 240-255.
37.Sun, X.; Gao, H.; Wu, G.; Wang, Y.; Fan, Y.; Ma, J. Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. International journal of pharmaceutics 2011, 412 (1), 52-58.
38.Yu, L.; Zhou, L.; Ding, M.; Li, J.; Tan, H.; Fu, Q.; He, X. Synthesis and characterization of novel biodegradable folate conjugated polyurethanes. Journal of colloid and interface science 2011, 358 (2), 376-383.
39.Murakami, H.; Nishiide, R.; Ohira, S.; Ogata, A. Synthesis of MDI and PCL-diol-based polyurethanes containing [2] and [3] rotaxanes and their properties. Polymer 2014, 55 (24), 6239-6244.
40.Qu, W.-Q.; Xia, Y.-R.; Jiang, L.-J.; Zhang, L.-W.; Hou, Z.-S. Synthesis and characterization of a new biodegradable polyurethanes with good mechanical properties. Chinese Chemical Letters 2016, 27 (1), 135-138.
41.Suh, J.; Paik, H.-j.; Hwang, B. K. Ionization of Poly (ethylenimine) and Poly (allylamine) at Various pH′ s. Bioorganic Chemistry 1994, 22 (3), 318-327.
42.Zheng, M.; Zhong, Y.; Meng, F.; Peng, R.; Zhong, Z. Lipoic acid modified low molecular weight polyethylenimine mediates nontoxic and highly potent in vitro gene transfection. Molecular pharmaceutics 2011, 8 (6), 2434-2443.
43.Zhong, Z.; Feijen, J.; Lok, M. C.; Hennink, W. E.; Christensen, L. V.; Yockman, J. W.; Kim, Y.-H.; Kim, S. W. Low molecular weight linear polyethylenimine-b-poly (ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties. Biomacromolecules 2005, 6 (6), 3440-3448.
44.El-Sonbati, A.; El-Bindary, A.; Rashed, I. Polymer complexes XXXVII novel models and structural of symmetrical poly-Schiff base on heterobinuclear complexes of dioxouranium (VI). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2002, 58 (7), 1411-1424.
45.Gupta, V. K.; Al Khayat, M.; Singh, A. K.; Pal, M. K. Nano level detection of Cd (II) using poly (vinyl chloride) based membranes of Schiff bases. Analytica Chimica Acta 2009, 634 (1), 36-43.
46.Zhao, D.; Gong, T.; Zhu, D.; Zhang, Z.; Sun, X. Comprehensive comparison of two new biodegradable gene carriers. International journal of pharmaceutics 2011, 413 (1), 260-270.
47.Calarco, A.; Bosetti, M.; Margarucci, S.; Fusaro, L.; Nicolì, E.; Petillo, O.; Cannas, M.; Galderisi, U.; Peluso, G. The genotoxicity of PEI-based nanoparticles is reduced by acetylation of polyethylenimine amines in human primary cells. Toxicology letters 2013, 218 (1), 10-17.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊