(34.204.185.54) 您好!臺灣時間:2021/04/11 07:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳欣儀
研究生(外文):WU,HSIN-YI
論文名稱(外文):Beckmann Rearrangement in Ionic Liquid-A DFT Study
指導教授:李錫隆李錫隆引用關係
指導教授(外文):LEE,SHYI-LONG
口試委員:王伯昌李政怡
口試委員(外文):WANG,BO-CHENGLEE,CHENG-I
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:82
中文關鍵詞:離子液體貝克曼重排反應
外文關鍵詞:ionic liquidBeckmann rearrangement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
Beckmann 重排反應在工業上是相當重要的反應之一,其中由反應生產的已內醯胺為尼龍6原料之一。目前綠色化學盛行,在文獻報導中多種酮肟與多種不同離子液體進行Beckmann重排反應。我們利用DFT中B3LYP方法,搭配6-31+G*基底函數來推測Beckmann 重排反應在離子液體中可能的反應途徑,也探討了離子液體在反應中扮演的角色為何。在此我們使用離子液體1-butyl-3-methylimidazolium bromide ([bmim] Br)做為溶劑分子。
結果顯示,在一般酸催化的Beckmann重排反應,反應能障高達55 kcal/mol。接著我們將離子液體陽離子[bmim]+作為催化劑,反應能障更高達66 kcal/mol,而原本多步驟Beckmann重排反應變為一步反應。在酸催化下的Beckmann重排反應中加入離子液體([bmim] Br)和路易士酸(AlCl3),反應能障會大幅下降,由55 kcal/mol下降至38 kcal/mol. 在第一步驟中,離子液體中的陰離子結合路易士酸會幫助質子由氮轉移至氧上,可以有效的降低反應能障。

B3LYP/6-31+G* calculations were performed to evaluate the role of ionic liquid, 1-butyl-3-methylimidazolium bromide (abbr. [bmim]Br) in Beckmann rearrangement. Our computed results showed that the energy barrier of 1,2-H shift step in the conventional acid-catalyzed Beckmann rearrangement is 55.1 kcal/mol at the B3LYP/6-31+G* level. The energy barrier of 1,2-H shift is decreased by 17 kcal/mol in the presence of Lewis acid (AlCl3) and ionic liquid ([bmim]Br) in acid-catalyzed Beckmann rearrangement. In conclusion, the bromide anion complexed with Lewis acid (AlCl3) is found to act as solvent to promote the proton transfer from nitrogen atom to OH group in the 1,2-H shift at lower cost.
Acknowledgement……………………………………………I
Scheme……………………………………………II
Figure……………………………………………III
Abstract……………………………………………V
Chapter 1. Introduction……………………………………………1
Chapter 2. Computational Methods & Theoretical Backgrounds……………………………………………5
2-1. Computational Methods in Details……………………………………………5
2-2. Density Functional Theory……………………………………………6
2-2-1. B3LYP (Becke, three-parameter, Lee-Yang-Parr)……………………………………………8
2-3. Basis Functions……………………………………………10
2-3-1. Split-valence Basis Set……………………………………………11
2-3-2. Polarization Function……………………………………………12
2-3-3. Diffusion Function……………………………………………12
2-4 Frontier molecular orbital theory……………………………………………………… 13
Chapter 3. Results and Discussions……………………………………………………………14
3-1 The acid-catalyzed Beckmann rearrangement revisted…………………………………14
3-2 The [bmim]+-catalyzed Beckmann rearrangement……………………………………………20
3-3 The acid-catalyzed Beckmann rearrangement with ionic liquid…………………………28
3-4 The acid-catalyzed Beckmann rearrangement with ionic liquid and Lewis acid………35
Chapter 4. Conclusion……………………………………………42
References……………………………………………44
Supplementary Information……………………………………………49

[1] Rappoport, Z.; Liebman, J.F. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids, John, Wiley & Sons, Inc.; New York, 2008.
[2] Lazier, W.A.; Rigby, W.G. du Pont de Nemours. United States Patent 2,234,566, 1941.
[3]Curtin, T. CataLett, 1993, 117,145-150
[4] Misono, M.; Inui, T. Catal. 1999, 51, 369.
[5] Ichihashi, H.; Sato, H. Appl. Catal. A: Gen., 2001, 262, 359.
[6] Forni, L.; Fornasari, G.; Tosia, C.; Trifir`o, F.; Vaccari, A.; Dumeignil, F.; Grimblot, J. Appl. Catal. A: Gen., 2003, 47.
[7] Mao, D.; Lu, G.; Chen, Q.; Xie, Z.; Zhang, Y. Catal. Lett., 2001, 77, 119.
[8] Takahashi, T.; Kai, T.; Nakao, E. Appl. Catal. A: Gen., 2004, 137.
[9] Roseler, J.; Heitman, G.; Holderich, W.F. Appl. Catal. A: Gen. 1996, 319.
[10] Holderich, W.F.; Dahloff, G.; Ichihashi, H.; Sugita, K. Sumitomo Chemical Company. United States Patent 6,531,595, 2003.
[11] Ngamcharussrivichai, C.; Wu, P.; Tatsumi, T. J. Catal. 2005, 139.
[12] Thomas, B.; Prathapan, S.; Sugunan, S. Microporous Mesoporous Mater. 2005, 21.
[13] Camblor, M.A.; Corma, A.; Garcia, H.; Semmer-Herledan, V.; Valencia, S. J. Catal. 2005, 117, 267.
[14] Thomas, B.; Prabhu, U.R.; Prathapan, S.; Sugunan, S. Microporous Mesoporous Mater. 2007, 102, 138.
[15] Wang, X.; Chen, C.C.; Chen, S.Y.; Mou, Y.; Cheng, S. Appl. Catal. A: Gen., 2005, 47, 281.
[16] Ngamcharussrivichai, C.; Wu, P.; Tatsumi, T. J. Catal., 2004, 227, 448.
[17] Ngamcharussrivichai, C.; Wu, P.; Tatsumi, T. Appl. Catal. A: Gen., 2005, 158, 228.
[18] Ngamcharussrivichai, C.; Wu, P.; Tatsumi, T. Catal. Commun., 2007, 8, 135.
[19] Bonhôte, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Inorg. Chem. 1996, 35, 1168-1178.
[20] Hussey, C. L. Pure Appl. Chem. 1988, 60, 1763-1772.
[21] Seddon, K. R. In Molten Salt Chemistry; Mamantov, G.; Marassi, R., Eds.; Reidel Publishing Co.: Dordrecht, The Netherlands, 1987; p 365.
[22] Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Inorg. Chem. 1982, 21, 1263-1264.
[23] Hussey, C. L. In Advances in Molten Salts Chemistry; Mamantov, G.; Mamantov, C., Eds.; Elsevier: New York, 1983; Vol. 5, pp 185-230.
[24] Dieter, K. M.; Dymek, C. J.; Heimer, N. E.; Rovang, J. W.; Wilkes, J. S. J. Am. Chem. Soc. 1988, 110, 2722-2726.
[25] Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B. Thermochim. Acta, 2000, 357-358
[26]Peng, J.; Deng, Y. Tetrahedron Letters, 2001. 42(3), 403-405.
[29] Zicmanis, A.; Katkevica, S.; Mekss, P. Catalysis comm. 2009, 10 (5), 614-619.
[30] Xiao, Y. Study of organic reaction in pyrdinium based ILS, New jersey institute of technology.
[31] Ryan, R. organic synthesis in ionic liquids, Dublin university.
[32] Hillio, A.A.; Mastoi, G.M. Oriental J.Chem. 2011, 27,1591.
[33] Li, Z.; Yang, Q.; Qi, X.; Xu, Y.; Zhang, D.; Wang, Y.; Zhao, Y. Chem Comm. 2015, 51, 1930.
[34] Becke, A. D. Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098.
[35] Becke, A. D. J. Chem. Phys., 1993, 98, 5648.
[36] Becke, A. D. J. Chem. Phys., 1997, 107, 8554.
[37] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter, 1988, 37, 785.
[38] Schmider, H. L.; Becke, A. D. J. Chem. Phys., 1998, 108, 9624.
[39] Grev, R.S.; Janssen, C.L.; Schaefer III, H.F. J. Chem. Phys. 1991, 95, 5128.
[40] Fukui, K. J. Phys. Chem. 1990 74, 4161–4163.
[41] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., GAUSSIAN 09, (Revision A.1), Gaussian, Inc., Wallingford, CT, 2009.
[42] Szabo, A.; Ostlund, N. S.; Modern Quantum Chemistry, Macmillan, New York, 1982.
[43] Hohenberg, P.; Kohn, W. Phys. Rev., 1964, B864.
[44] Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
[45] Fermi Z., E. Phys. 1928, 48 73; Thomas, L. H. Proc. Camb. Phil. Soc. 1927, 23, 542; these articles are reproduced in N. H. March, Self Consistent Fields in Atoms, Plenum, Oxford, 1975.
[46] J. Chem. Soc., Perkin Trans. 2, 1997
[47] Wei, X.; Zhang, D.; Zhang, C.Q.; Liu, C.G. International Journal of Quantum Chemistry, 2011, 110, 1056 –1062.
[48] Sun, H.; Zhang, D.; Wang, F.; Liu, C. J. Phys. Chem. A, 2007, 111 (20), pp 4535–4541
[49] Hunt, P.A.; Kirchner, B.; Welton, T. Chem. Eur. J., 2006, 12, 6762–6775.
[50] Zicmanis, A.; Katkevica, S.; Mekss. P. Catalysis comm. 2009, 10 (5), 614-619.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔