跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 15:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱亭瑄
研究生(外文):Ting Hsuan Chiu
論文名稱:應用化學水浴法製備四元銀-錫-硫/銅-錫-硫化物光電極與其光電化學鹽水製氫效能之研究
論文名稱(外文):The study of photoelectrochemical salt-water splitting using chemical bath deposited quaternary Ag-Sn-S/Cu-Sn-S as the photoelectrodes in the photoelectrochemical cells
指導教授:鄭光煒
指導教授(外文):K. W. Cheng
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:104
中文關鍵詞:光電極半導體薄膜晶體成長化學水浴法
外文關鍵詞:Photoelectrodethin filmsChemical Bath DepositionSemiconductorCrystal growth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用化學水浴法於鈉玻璃與銦錫氧化物透明導電玻璃基材上製備銀-錫-硫/銅-錫-硫(Ag8SnS6/Cu2SnS3)半導體薄膜,探討反應製程 參數、燒結參數與前驅溶液中不同銀銅比例對銀-錫-硫/銅-錫-硫薄膜晶體結構、光學性質及光電化學性質之影響。
晶體結構及元素組成分析結果可得知樣品(A)~(D)都具有orthorhombic-Ag8SnS6的晶型結構,隨著[Ag]/]Ag+Cu]前驅溶液含量比例逐漸下降其( 0 2 2 )晶面的主要特徵峰強度則越弱,寬度越寬,而樣品(E)~(F)則具有cubic-Cu2SnS3的晶型結構,隨著[Ag]/[Ag+Cu]含量比例逐漸下降其(211)晶面的主要特徵峰強度則越強,寬度越窄。由光學量測結果可知,樣品薄膜的直接能隙介於1.28~1.07eV之間。在電性分析中,樣品載子濃度與載子移動率範圍分別為:1.72×1012~3.22×1016cm-3與81.0~15.1cm2/V-s之間,由結果可知樣品(A)~(C)為n type,樣品(D)~(F)為p type,隨著[Ag]/[Ag+Cu]含量比例逐漸下降,其載子濃度逐漸上升,而載子移動率逐漸下降。光敏性的量測結果顯示,樣品(B)於0.5 M K2SO4水溶液中,可得最高光敏電流密度0.08 mA/cm2,而於1M NaCl下,可得最高光敏電流密度0.1 mA/cm2。

In this study, silver-tin-sulfide/copper-tin-sulfide (Ag8SnS6/Cu2SnS3) thin film were deposited onto the surfaces of glass and indium-tin-oxide coated glass substrates using chemical bath deposition. The structural, optical, electrical, and photoelectrochemical properties of the Ag-Sn-S/Cu-Sn-S thin films on substrates were investigated as a function of the [Ag]/[Ag+Cu] molar ratio in the precursor solution. X-ray diffraction patterns show that the samples change from Ag8SnS6 phase to Cu2SnS3 phase with a decrease in the [Ag]/[Ag+Cu] molar ratio in the precursor solution. With a decrease in the [Ag]/[Ag+Cu] molar ratio in the precursor solution, the (0 2 2) diffraction peak of samples shifted to higher angles. A pure orthorhombic Ag8SnS6 phase was obtained in the samples prepared at [Ag]/[Ag+Cu] molar ratios in the precursor solution of 1. The energy band gaps of the samples obtained from transmittance and reflectance spectra were in the range of 1.28 ~ 1.07 eV. The carrier concentration and mobilities of the samples were in the ranges of 1.72×1012~3.22×1016cm-3 and 81.0~15.1cm2/V-s, respectively. The maximum photoelectrochemical performance of the samples in 0.5M K2SO4 aqueous solution and 1M NaCl aqueous solution was 0.08 mA/cm2 and 0.1 mA/cm2 at an external potential of +0.0 V vs. an Ag/AgCl reference electrode, respectively.
目錄
指導教授推薦書
口試委員會審定書
致謝 iii
摘要 v
Abstract vi
目錄 vii
圖目錄 x
表目錄 xiv
第一章 緒論 - 1 -
1-1 前言 - 1 -
1-2 研究動機 - 3 -
第二章 文獻回顧 - 5 -
2-1 半導體理論 - 5 -
2-1-1 何謂半導體 - 5 -
2-1-2 半導體材料種類 - 7 -
2-2 半導體光觸媒 - 11 -
2-2-1 半導體光觸媒之電化學性質 - 12 -
2-2-2 光觸媒之光電化學分解水原理 - 15 -
2-2-3 半導體光觸媒材料與應用 - 17 -
2-2-4 影響光觸媒其光電化學性質之因素 - 21 -
2-2-5 光觸媒水分解產氫之發展現況 - 22 -
2-3 化合物半導體薄膜製備方法 - 23 -
2-3-1 化學水浴法 (Chemical Bath Deposition,CBD) - 23 -
2-3-2 化學水浴成膜法之成核原理 - 24 -
2-3-3 化學水浴成膜之技術探討 - 26 -
第三章 研究方法及實驗步驟 - 28 -
3-1 實驗藥品 - 28 -
3-2 實驗設備 - 29 -
3-3 分析儀器 - 29 -
3-4 實驗流程 - 30 -
3-4-1 基材準備及清洗 - 33 -
3-5 薄膜性質分析 - 34 -
第四章 結果與討論 - 40 -
4-1 挑選薄膜成長參數最佳化 - 40 -
4-2 樣品燒結參數最佳化 - 45 -
4-3 晶型結構分析 - 50 -
4-3-1 X光繞射分析儀分析 - 50 -
4-4 薄膜成分分析 - 52 -
4-5 表面型態分析 - 54 -
4-5-1 場發射掃描式電子顯微鏡 - 54 -
4-5-2 原子力顯微鏡 - 59 -
4-6 薄膜光學性質分析 - 63 -
4-6-1 薄膜穿透率與反射率 - 63 -
4-6-2 薄膜直接能隙值 - 64 -
4-7 薄膜電學性質分析 - 65 -
4-8 薄膜光電化學性質分析 - 66 -
4-8-1 交流阻抗分析 - 66 -
4-8-2 Mott-Schottky分析 - 68 -
4-8-3 光敏電流量測分析 - 71 -
4-8-3-1 以0.5M K2SO4水溶液作為電解質溶液 - 71 -
4-8-3-2 以1M NaCl水溶液作為電解質溶液 - 75 -
4-8-4 薄膜穩定性分析 - 80 -
4-8-5 入射光量子轉換效率(IPCE) - 81 -
第五章 結論 - 82 -
參考文獻 - 84 -


圖目錄
圖2-1、絕緣體、半導體與導體材料之能帶圖。 - 6 -
圖2-2、 本質半導體與n、p型半導體在熱平衡狀態下之(a)能帶圖、(b)能態密度、(c)費米函數和(d)載子濃度分布之示意圖 - 9 -
圖2-3、 典型光催化反應。 - 12 -
圖2-4、 n型半導體與電解質水溶液界面在不同偏壓下之能帶彎曲圖(a)累積層(Accumulation layer)(b)平帶狀態(Elat-band condition)(c)耗盡區(Depletion layer)(d)逆轉層(Inversion layer)。.. - 14 -
圖2-5、外加電場時半導體、電解質水溶液與金屬間能帶接觸圖[13]。 - 15 -
圖2-6、n-type TiO2光電化學反應裝置示意圖。 - 17 -
圖2-7、半導體光觸媒反應機制示意圖。 - 17 -
圖2-8、常見的半導體光觸媒材料之能帶結構圖。 - 19 -
圖2-9、太陽能產氫路徑圖。 - 23 -
圖2-10、化學水浴法製備薄膜的成核成長機制。 - 26 -
圖3-1、實驗流程圖。 - 31 -
圖3-2、製備多成份Ag-Cu-Sn-S薄膜樣品之流程圖。 - 32 -
圖3-3、基材放置與化學水浴法裝置圖 - 33 -
圖3-4、光電化學反應器裝置圖。 - 39 -
圖4-1、試片(a)~(c)於500℃下持溫五分鐘之XRD圖譜 - 43 -
圖4-2、試片(d)~(h)於500℃下持溫五分鐘之XRD圖譜。 - 43 -
圖4-3、試片(g)利用快速升溫爐於不同燒結溫度及持溫時間下之XRD圖譜。 - 49 -
圖4-4、樣品(A)~(F)之XRD圖譜。 - 51 -
圖4-5、樣品(A)~(F)於2θ=27~31°之XRD圖譜。 - 51 -
圖4-6、前驅溶液中[Ag]/[Ag+Cu]比與樣品(A)~(F)之[Ag]/[Ag+Cu]比例變化圖。 - 53 -
圖4-7、樣品(A)~(F)之[Ag]/[Ag+Cu]比例與[Sn]/[Ag+Cu]和2[S]/[Ag+Cu+4Sn]比例變化圖。 - 54 -
圖4-8、樣品(A)之FE-SEM正面圖(10K(X)及40K(X))。 - 56 -
圖4-9、樣品(B)之FE-SEM正面圖(10K(X)及40K(X))。 - 56 -
圖4-10、樣品(C)之FE-SEM正面圖(10K(X)及40K(X))。 - 56 -
圖4-11、樣品(D)之FE-SEM正面圖(10K(X)及40K(X))。 - 57 -
圖4-12、樣品(E)之FE-SEM正面圖(10K(X)及40K(X))。 - 57 -
圖4-13、樣品(F)之FE-SEM正面圖(10K(X)及40K(X))。 - 57 -
圖4-14、樣品(A)~(B)之FE-SEM側面圖(11K(X))。 - 58 -
圖4-15、樣品(C)~(D)之FE-SEM側面圖(11K(X))。 - 58 -
圖4-16、樣品(E)~(F)之FE-SEM側面圖(11K(X))。 - 58 -
圖4-17、樣品(A)之表面粗糙度量測圖。 - 60 -
圖4-18、樣品(B)之表面粗糙度量測圖。 - 60 -
圖4-19、樣品(C)之表面粗糙度量測圖。 - 61 -
圖4-20、樣品(D)之表面粗糙度量測圖。 - 61 -
圖4-21、樣品(E)之表面粗糙度量測圖。 - 62 -
圖4-22、樣品(F)之表面粗糙度量測圖。 - 62 -
圖4-23、樣品(A)~(F)之薄膜吸收反射光譜。 - 64 -
圖4-24、樣品(A)~(F)薄膜(αhν)2對hν之能隙圖。 - 65 -
圖4-25、樣品(A)~(F)於-1、0、+1V下於0.5M K2SO4水溶液之交流阻抗圖。 - 67 -
圖4-26、樣品(A)~(D)在0.5M K2SO4水溶液之Mott-Schottky量測圖。 - 69 -
圖4-27、樣品(E)~(F)在0.5M K2SO4水溶液之Mott-Schottky量測圖。 - 70 -
圖4-28、樣品(A)~(F)薄膜之能帶結構圖‧ - 70 -
圖4-29、樣品(A)薄膜在0.5M K2SO4水溶液之光敏化量測圖。 - 72 -
圖4-30、樣品(B)薄膜在0.5M K2SO4水溶液之光敏化量測圖。 - 72 -
圖4-31、樣品(C)薄膜在0.5M K2SO4水溶液之光敏化量測圖。 - 73 -
圖4-32、樣品(D)薄膜在0.5M K2SO4水溶液之光敏化量測圖。 - 73 -
圖4-33、樣品(E)薄膜在0.5M K2SO4水溶液之光敏化量測圖。 - 74 -
圖4-34、樣品(F)薄膜在0.5M K2SO4水溶液之光敏化量測圖。 - 74 -
圖4-35、樣品(A)薄膜在1M NaCl水溶液之光敏化量測圖。 - 76 -
圖4-36、樣品(B)薄膜在1M NaCl水溶液之光敏化量測圖。 - 76 -
圖4-37、樣品(C)薄膜在1M NaCl水溶液之光敏化量測圖。 - 77 -
圖4-38、樣品(D)薄膜在1M NaCl水溶液之光敏化量測圖。 - 77 -
圖4-39、樣品(E)薄膜在1M NaCl水溶液之光敏化量測圖。 - 78 -
圖4-40、樣品(F)薄膜在1M NaCl水溶液之光敏化量測圖。 - 78 -
圖4-41、樣品(B)薄膜在1M NaCl水溶液之穩定度量測圖。 - 80 -
圖4- 42、樣品(B)、(D)薄膜在1 M NaCl水溶液中於+0.6 V下之IPCE效率圖。 - 81 -


表目錄
表2-1、絕緣體、半導體與導體之特性比較。 - 6 -
表2-2、可見光光觸媒材料於犧牲試劑下使用氙燈照射(λ>420nm)產生氫氣與氧氣之產率彙整表[10]。 - 20 -
表4-1、製備Ag-Sn-S/Cu-Sn-S薄膜條件之參數表。 - 42 -
表4-2、試片(a)~(c)於500℃下燒結後元素組成比例 - 44 -
表4-3、試片(d)~(h)於500℃下燒結後元素組成比例。 - 44 -
表4-4、Ag-Sn-S/Cu-Sn-S薄膜燒結條件之參數表。 - 47 -
表4-5、製備Ag-Sn-S/Cu-Sn-S薄膜條件之參數表。 - 48 -
表4-6、試片(g) 利用快速升溫爐於不同燒結溫度及持溫時間下之元素組成分析。 - 49 -
表4-7、樣品(A)~(F)之元素組成比例 - 53 -
表4-8、樣品(A)~(F)之光電性質分析表。 - 79 -


[1] 經濟部能源局, "中華民國103年能源統計手冊," 經濟部能源局, p. 11, 103年.
[2] R. Krishnan, R. McConnell, and S. Licht, Solar hydrogen generation: toward a renewable energy future. New York: springer, 2008.
[3] T. Lindgren, A study of Thin Film Electrodes for Solar Hydrogen Generation. Uppsala University: Solid State Physics, 2004.
[4] A. Fujishima and K. Honda, "Electrochemical photolysis of water at semiconductor electrode," Nature, vol. 238, p. 37-38, 1972.
[5] A. Hemissi, H. Amardjia-Adnani, and J. C. Planet, "Titanium oxide thin layer deposed by dip-coating method: Their optical and structural properties," Current Applied Physics, vol. 9, p. 717-721, 2009.
[6] I. Tsuji, H. Kato, and A. Kudo, "Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS-CuInS2-AgInS2 Solid-Solution Photocatalyst," Angew. Chem. Int. Ed, vol. 44, p. 3565-3568, 2005.
[7] D. William, Material Science and engineering: An introduction. New York: John Wiley & Sons, 2003.
[8] C. Kittel, Introduction to Solid State Physics: John Wiley & Sons, 2005.
[9] 黃惠良, 蕭錫鍊, and 周明奇, 太陽電池: 五南出版社, 97年初版.
[10] A. Kudo, H. Kato, and I. Tsuji, "Strategies for the development of visible-light-driven photocatalysts for water splitting," Chemistry Letters, vol. 33, p. 1534-1539, 2004.
[11] J. R. Bolton, "Solar photoproduction of hydrogen: A review," Solar energy, vol. 57, p. 37-50, 1996.
[12] Ю. В. UПлесков, 半導體光電化學: 科學出版, 78年.
[13] A. J. Bard, Integrated Chemical Systems. New York: Jhon Wiley & Sons, 1994.
[14] A. Fujishima, T. N. Rao, and D. A. Tryk, "Titanium dioxide photocatalysis," J. Photochem. Photobiol C : Photochemistry Reviews, vol. 1, p. 1-21, 2000.
[15] T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects," Int. J. Hydrogen Energy, vol. 27, p. 991-1022, 2002.
[16] A. D. Compaan, "Photovoltaics: Clean power for the 21st century," Solar energy materials and solar cells, vol. 90, p. 2170-2180, 2006.
[17] M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, p. 338-344, 2001.
[18] S. Chandra, Photoelectrochemical solar cells. New York: Gordn and Breach, 1985.
[19] J. M. Bolts, A. B. Bocarsly, M. C. Palazzotto, E. G. Walton, N. S. Lewis, and M. S. Wrighton, "Chemically derivatized n-type silicon photoelectrodes. Stabilization to surface corrosion in aqueous electrolyte solutions and mediation of oxidation reactions by surface-attached electroactive ferrocene reagents," J. Am. Chem. Soc., vol. 101, p. 1378-1385, 1979.
[20] J. Nowotny, C. C. Sorrell, L. R. Sheppard, and T. Bak, "Solar-hydrogen: Environmentally safe fuel for the future.," Int. J. Hydrogen Energy, vol. 30, p. 521-544, 2005.
[21] K.Maeda and K.Domen, "New Non-oxide Photocatalysts Designed for Overall Water Splitting under Visible Light," J. Phys. Chem. C, vol. 111, p. 7851-7861, 2007.
[22] J. A. Turner, "A Realizable Renewable Energy Future," Science, vol. 30, p. 687-689, 1999.
[23] KRI, KRI report No. 8 of Solar cell. Japan: Kansai Research Institute Inc, 2005.
[24] B. Pejova, M. Najdoski, I. Grozdanov, and S. K. Dey, "Chemical bath deposition of nanocrystalline (111) textured Ag2Se thin films," Mater. Lett., vol. 43, p. 269-273, 2000.
[25] V. Rakovics, Zs. J. Horváth, Zs. E. Horcáth, I. Bársony, C. Frigeri, and T. Besagni, "Investigation of CdS/InP heterojunction prepared by chemical bath deposition," Physica Status Solidi C, vol. 4, p. 1490-1493, 2007.
[26] C. J. Tseng, C. H. Wang, and K. W. Cheng, "Photoelectrochemical performance of gallium-doped AgInS2 photoelectrodes prepared by electrodeposition process.," Sol. Energy Mater. Sol. Cells, vol. 96, p. 33-42, 2012.
[27] K.W.Cheng, C.H.Jhuang, and L. Y. Yeh, "Influence of gallium on the growth and photoelectrochemical performances of AgIn5S8 photoelectrodes.," Thin Solid Films, vol. 524, p. 238-244, 2012.
[28] K. W. Cheng and S. C. Wang, "Effects of complex agents on the physical properties of Ag–In–S ternary semiconductor films using chemical bath deposition.," Mater. Chem. Phys, vol. 115, p. 14-20, 2009.
[29] K. W. Cheng, Y. H. Cheng, and M. S. Fan, "Photoelectrochemical study of ZnIn2Se4 electrodes fabricated using selenization of RF magnetron sputtered Zn–In metal precursors.," Int. J. Hydro. Energ, vol. 37, p. 13763-13769, 2012.
[30] P. O'Brien and J. Mcaleese, "Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS.," J. Mater. Chem., vol. 8, p. 2309-2314, 1998.
[31] R. S. Mane and C. D. Lokhande, "Chemical deposition method for metal chalcogenide thin films.," Mater. Chem. Phys., vol. 65, p. 1-31, 2000.
[32] P. K. Nair, V. M. Garcia, G. D. O, and M. T. S. Nair, "High thin-film yield achieved at small substrate separation in chemical bath deposition of semiconductor thin films.," Semicond. Sci. Technol, vol. 16, p. 855-863, 2001.
[33] T. P. Niesen and M. R. De Guire, "Review: deposition of ceramic thin films at low temperatures from aqueous solutions.," Solid State Ionics, vol. 151, p. 61-68, 2002.
[34] C. Hubert, N. Naghavi, B. Canava, A. Etcheberry, and D. Lincot, "Thermodynamic and experimental study of chemical bath deposition of Zn(S,O,OH) buffer layers in basic aqueous ammonia solutions. Cell results with electrodeposited CuIn(S,Se)2 absorbers.," Thin Solid Films, vol. 515, p. 6032-6035, 2007.
[35] K. Yamaguchi, T. Yoshida, D. Lincot, and H. Minoura, "Mechanistic Study of Chemical Deposition of ZnS Thin Films from Aqueous Solutions Containing Zinc Acetate and Thioacetamide by Comparison with Homogeneous Precipitation.," J. Phys. Chem. B, vol. 107, p. 387-397, 2003.
[36] J. C. Manifacier, M. De Murcia, J. P. Fillard, and E. Vicario, "Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure.," Thin Solid Films, vol. 41, p. 127-135, 1977.
[37] J. I. Pankove, Optical processes in semiconductors: Prentice-Hall, Englewood Cliffs, 1971.
[38] M. Radecka, K. Zakrzewska, M. Wierzbicka, A. Gorzkowska, and S. Komornicki, "Study of the TiO2-Cr2O3 system for photoelectrolytic decomposition of water.," Solid State Ionics, vol. 157, p. 379-386, 2003.
[39] R. Loef, A. J. Houtepen, E. Talgorn, J. Schoonman, and A. Goossens, "Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells.," Nano Letters, vol. 9, p. 856-859, 2009.
[40] N. Naghavi, R. Henriquez, V. Laptev, and D. Lincot, "Growth studies and characterisation of In2S3 thin films deposited by atomic layer deposition (ALD)." Appl. Surf. Sci., vol. 222, p. 65-73, 2004.
[41] 葉琳雅, 利用化學水浴法製備I-IV-VI/I-II-IV-VI族半導體光觸媒材料與其光電化學分析及水分解產氫之應用 博士論文: 長庚大學, 2014.
[42] Lin-Ya Yeh and Kong Wei Cheng, "Preparation of chemical bath synthesized ternary Ag-Sn-S thin film as the photoelectrodes in photoelectrochemical cell," Journal of Power Sources, vol. 275, p. 750-759, 2015.
[43] M. G. Sousa, A. F. da Cunha, and P. A. Fernandes, "Annealing of RF-magnetron sputtered SnS2 precursors as a new route for single phase SnS thin films.," J. Alloys Compd., vol. 592, p. 80-85, 2014.
[44] Hongtao Cui, Xiaolei Liu, Fangyang Liu, Xiaojing Hao, Ning Song, and Chang Yan, "Boosting Cu2ZnSnS4 solar cells efficiency by a thin Ag intermediate layer between absorber and back contact," APPLIED PHYSICS LETTERS, vol. 104, 2014.
[45] Cornelis Klein, Cornelius S., and Hulburt Jr, Manual of Mineralogy (after James D. Dana), 20th ed., 1985.
[46] Yuchen Dong, Jun He, Xinran Li, Ye Chen, and L. Sun, "Study on the preheating duration of Cu2SnS3 thin film using RF magnetron sputtering techinque for photovoltaics," Journal of Alloys and Compounds, vol. 665, p. 69-75, 2016.
[47] T. Sasamura, T. Osaki, T. Kameyama, T. Sgibayama, A. Kudo, S. Kuwabata, et al., "Solution-phase Synthesis of Stannite-type Ag2ZnSnS4 Nanoparticles for Application to Photoelectrode Materials.," Chem. Lett, vol. 41, p. 1009-1011, 2012.
[48] P. A. Fernandes, P. M. P. Salome, and A. F. Da Cunha, "A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors.," J. Phys. D, Appl. Phys., vol. 43, p. 215403, 2010.
[49] M. Bouaziz, J. Ouerfelli, S. K. Srivastava, J. C. Bernède, and M. Amlouk, "Growth of Cu2SnS3 thin films by solid reaction under sulphur atmosphere.," Vacuum, vol. 85, p. 783-786, 2011.
[50] M. Bouaziz, M. Amlouk, and S. Belgacem, "Structural and optical properties of Cu2SnS3 sprayed thin films.," Thin Solid Films, vol. 517, p. 2527-2530, 2009.
[51] A. Amlouk, K. Boubaker, and M. Amlouk, "A new procedure to prepare semiconducting ternary compounds from binary buffer materials and vacuum-deposited copper for photovoltaic applications.," Vacuum, vol. 85, p. 60-64, 2010.
[52] D. M. Berg, R. Djemour, L. Gütay, G. Zoppi, S. Siebentritt, and P. J. Dale, "Thin film solar cells based on the ternary compound Cu2SnS3.," Thin Solid Films,, vol. 520, p. 6291-6294, 2012.
[53] T. A. Kuku and O. A. Fakolujo, "Photovoltaic characteristics of thin films of Cu2SnS3.," Sol. Energy Mater., vol. 16, p. 199-204, 1987.
[54] S. Fiechter, M. Martinez, G. Schmidt, W. Henrion, and Y. Tomm, "Phase relations and optical properties of semiconducting ternary sulfides in the system Cu–Sn–S.," J. Phys. Chem. Solids, vol. 64, p. 1859-1862, 2003.
[55] H. Feng, J. Wang, W. Fan, and C. Zhang, "Highly uniform matchstick-like Ag2S–ZnS hetero-nanorods using dodecanethiol as a sulfur source.," Mater. Lett., vol. 126, p. 67-70, 2014.
[56] B. Thangaraju and P. Kaliannan, "Spray pyrolytic deposition and characterization of SnS and SnS2 thin films.," J. Phys. D: Appl. Phys., vol. 33, p. 1054-1059, 2000.
[57] Z. Zhuang, Q. Peng, B. Zhang, and Y. Li, "Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice.," J. Am. Chem. Soc., vol. 130, p. 10482-10483, 2008.
[58] Kong Wei Cheng, Wei-Tseng Tsai, and Yu-Hsuan Wu, "Photo-enhanced salt-water splitting using orthorhombic Ag8SnS6 photoelectrodes in photoelectrochemical cells.," Journal of Power Sources, vol. 317, p. 81-92, 2016.
[59] Naoya Aihara, Hideaki Araki, Akiko Takeuchi, Kazuo Jimbo, and Hironori Katagiri, "Fabrication of Cu2SnS3 thin film by sulfurization of evaporated Cu-Sn precursors for solar cells.," Physica Status Solidi C, vol. 10, p. 1086-1092, 2013.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊