跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳軍暉
研究生(外文):Chun Hui Chen
論文名稱:氧化銦鎵鋅薄膜光定址電位感測器之特性探討與製程
論文名稱(外文):Characterization and process of IGZO thin-film Light-Addressable Potentiometric Sensors
指導教授:楊家銘楊家銘引用關係
指導教授(外文):C. M. Yang
學位類別:碩士
校院名稱:長庚大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:光定址電位感測器氧化銦鎵鋅氫離子光電壓
外文關鍵詞:LAPSIGZOpHPhotovoltage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,利用反應式射頻濺鍍系統製備氧化銦鎵鋅,此應用為首次用於光定址電位感測器作為半導體層。此LAPS元件,使用ITO玻璃作為基板及背電極接觸,氧化銦鎵鋅薄膜利用反應式射頻濺鍍以調變三種不同參數,包含氬氣/氧氣流量比、厚度以及基板加熱溫度。接著再相同腔體內使用鈮靶材以反應式射頻濺鍍系統沉積氧化鈮, 最後以後製程快速熱退火在氧氣環境中使用溫度為500℃,時間為30秒之條件,為了改善感測特性。
使用氧化銦鎵鋅薄膜於光定址電位感測器,與傳統矽基板相較下光電壓有明顯增加,為了對pH溶液感測,以交流訊號之頻率並用紫外光發光二極體照光,此可以很容易提高至30 kHz。此氧化銦鎵鋅在基板溫度250℃下,氬氣/氧氣流量比為24/1 sccm、厚度為300 nm為最佳化條件,在pH 4到10範圍下,此氧化銦鎵鋅光定址電位感測器元件對氫離子感測度和線性度分別為64 mV/pH及99.8%,而時漂係數與遲滯寬分別為1.4 mV/h及50.7 mV。
此氧化銦鎵鋅薄膜光定址電位感測器對氫離子感測特性是目前值得探討之研究,在二維化學影像上具有較高的掃描速度及信噪比並有助於生物醫學之應用。

In the study, In-Ga-Zn-O layer prepared by reactive radio frequency (rf) sputtering is firstly applied as the semiconductor layer of light-addressable potentiometric sensor. To have the LAPS device, ITO/glass is used as substrate and back-side contact. Reactive rf sputtering of IGZO layers were modified by 3 different parameters including Ar/O2 flow rate, thickness and substrate heating temperature. Then niobium oxide (NbOx) was also deposited by reactive rf sputter on pure Nb target in the same chamber. A post deposition rapid thermal annealing in O2 ambience at 500oC for 30 seconds was performed to improve the sensing performance. With IGZO thin-film LAPS, photovoltage can be increased comparing to conventional Si substrate. Frequency of AC signal applied to illuminated UV light-emitting diode (LED) could be easily increased to 30 kHz for pH sensing. The optimized condition of IGZO is Ar/O2=24/1 in sccm, thickness of 300 nm with substrate temperature at 250 oC. In the pH range from 4 to 10, pH sensitivity and linearity of this IGZO LAPS is 64 mV/pH and 99.8%, respectively. Drift coefficient and hysteresis width is 1.4 mV/h and 50.7 mV, respectively. Current pH sensing performance of this developed IGZO thin-film LAPS is a potential candidate for two dimensional (2D)chemical images with a high speed and signal-to-noise ratio in biomedical applications.
目 錄
指導教授推薦書
口試委員會審定書
誌謝 iii
中文摘要 iv
英文摘要 v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 簡介 - 1 -
1.1 研究背景 - 1 -
1.2 離子感測場效電晶體原理 - 2 -
1.3電解液-絕緣層-半導體層(EIS)電容結構 - 6 -
1.4光定址電位感測器(LAPS) - 7 -
1.5氧化銦鎵鋅(IGZO)材料簡介與運用 - 11 -
1.6 研究動機與方法 - 13 -
第二章 氧化銦鎵鋅薄膜成分比例與厚度於光定址電位感測器之探討 - 22 -
2.1 簡介 - 22 -
2.2 實驗 - 22 -
2.2.1 氧化鈮/氧化銦鎵鋅於ITO玻璃之LAPS元件製程 - 22 -
2.2.2 量測設定條件 - 23-
2.2.3 材料分析 - 24-
2.3 結果與討論 - 22-
2.3.1氧化銦鎵鋅不同Ar/O2比例之光電效應與氫離子感測特性 - 27-
2.3.2氧化銦鎵鋅厚度調變之光電效應與氫離子感測特性 - 29-
2.3.3 材料分析 - 31-
2.4 結論 - 33-
第三章 基板加熱與退火製程對氧化銦鎵鋅薄膜主動層於光定址電位感測器之最佳化 - 47 -
3.1 簡介 - 47 -
3.2 實驗 - 47 -
3.2.1 氧化鈮/氧化銦鎵鋅於ITO/Glass之LAPS元件製程 - 47 -
3.2.2 量測設定條件 - 49-
3.2.3 材料分析 - 49-
3.3 結果與討論 - 50-
3.3.1基板溫度250℃及快速熱退火500℃之光電效應特性 - 50-
3.3.2基板溫度250℃及經過基板溫度250℃搭配退火500℃之氫離子感測特性 - 51-
3.3.3 材料分析 - 54-
4.4 結論 - 56-
第四章 結論與未來展望 - 66-
4.1 總結 - 66-
4.2 未來展望 - 68-
附錄 - 70-
參考文獻 - 76-


圖目錄
第一章
圖1-1 離子感測場效電晶體結構圖 - 16-
圖1-2 鍵結模型理論示意圖 - 16-
圖1-3 電解液-絕緣層-矽半導體結構 - 17-
圖1-4 電容電壓特性曲線隨氫離子濃度變化偏移圖 - 17-
圖1-5 LAPS的(a)結構圖(b)電位分布(c)等效電路圖(d)pH值的特性反應曲線 - 18-
圖1-6 射頻濺鍍製作IGZO在不同氧分壓製備之UV-Vis特性曲線 - 19-
圖1-7 射頻濺鍍製作IGZO在不同氧流量之載子濃度和遷移率 - 19-
圖1-8 IGZO 結構圖 - 20-
圖1-9 IGZO薄膜在不同組成比例之(a)載子遷移率和(b)對結晶與非晶之關係圖 - 20-
圖1-10 論文架構圖 - 21-
圖2-1 NbOx/IGZO-LAPS (a)不同Ar/O2比例、(b)不同厚度之IGZO- LAPS製程流程圖 - 35-
圖2-2 NbOx/IGZO-LAPS元件結構(a)示意圖(b)實際圖 - 36-
圖2-3 LAPS(a)量測系統示意圖(b)LabVIEW操作介面 - 37-
圖2-4 在1 kHz條件下對IGZO不同氣體比例製作之LAPS感測特性比較 - 38-
圖2-5 IGZO LAPS在Ar/O2=24/1條件下對不同頻率之光電壓比較 .- 38-
圖2-6 IGZO為Ar/O2=24/1製備厚度300 nm之LAPS元件,在1 kHz條件下不同氫離子之(a)特性曲線及(b)感測度計算 - 39-
圖2-7 IGZO在Ar/O2=24/1下,IGZO厚度對不同頻率光電壓之比較 - 40-
圖2-8 IGZO薄膜不同厚度,在1 kHz下之感測特性 - 40-
圖2-9 IGZO為Ar/O2=24/1製備之LAPS元件,不同厚度在1 kHz條件下之感測度與線性度比較 - 41-
圖2-10 在1 kHz條件下不同厚度IGZO LAPS之遲滯現象之分析:(a)100 nm、(b)300 nm及(c)500 nm - 42-
圖2-11 Ar/O2=24/1製備之IGZO LAPS在1 kHz及pH 7條件下不同厚度之時漂特性之分析:(a)100 nm、(b)300 nm及(c)500 nm - 43-
圖2-12 以UV-vis確認在Ar/O2=24/1條件下對不同厚度之穿透度 - 44-
圖2-13 IGZO薄膜在不同厚度之原子力顯微鏡分析 - 45-
圖2-14 IGZO薄膜在不同厚度之X-射線繞射分析 - 46-
圖3-1 NbOx/IGZO-LAPS (a)未經過處理、基板溫度250℃ 及基板溫度250℃搭配退火500℃之製程流程圖及(b)結構示意圖 - 57-
圖3-2 LAPS量測系統示意圖 - 58-
圖3-3 IGZO薄膜厚度300 nm經過基板溫度250℃及經過基板溫度250℃搭配退火500℃後對頻率光電壓之比較 - 58-
圖3-4 以1 kHz量測不同快速熱退火條件下氫離子之(a)特性曲線及(b)感測特性 - 59-
圖3-5 以30 kHz量測不同快速熱退火條件下氫離子之(a)特性曲線及(b)感測特性 - 60-
圖3-6 以1 kHz量測不同快速熱退火條件下之遲滯現象分析:(a)未經過處理及(b)經過基板溫度250℃ - 61-
圖3-7 以1 kHz量測不同快速熱退火條件下在pH 7溶液中之時漂特性: (a)經過基板溫度250℃及(b)經過基板溫度250℃搭配退火500℃ - 62-
圖3-8 以1 kHz量測經過基板溫度250℃及經過基板溫度250℃搭配退火500℃之IGZO LAPS對環境中可見光影響 - 63-
圖3-9 以UV-vis對IGZO薄膜未經過處理、經過基板溫度250℃及經過基板溫度250℃搭配退火500℃量測所得穿透度 - 63-
圖3-10 在不同熱退火條件下IGZO薄膜之原子力顯微鏡分析:(a) 未經過處理、(b) 經過基板溫度250℃及(c) 經過基板溫度250℃搭配退火500℃ - 64-
圖3-11 IGZO薄膜未經過處理、經過基板溫度250℃及經過基板溫度250℃搭配退火500℃之X射線繞射儀分析 - 65-
圖4-1 NbOx/Au/Cr/NbOx IGZO LAPS 的結構示意比較圖 - 68-
圖4-2 金在氧化矽上對 UV光的吸收度 - 69-

表目錄
表1-1 非晶矽與a-IGZO於薄膜電晶體上之特性比較表. - 15 -
表2-1 IGZO LAPS不同厚度之特性比較表 - 34-
[1] R. P. Buck and E. Lindner, “Peer Reviewed:Tracing the history of selective ion sensors”, Analytical Chemistry, 73, 3, 88A-97A (2001).
[2] P. Bergveld, ”Development of an ion-sensitive solid state device for neuro-physiological measurements”, IEEE Transactions on Biomedical Engineering, 17, 70-71 (1970).
[3] C. D. Fung, P. W. Cheung and W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor”, IEEE Transactions on Electron Devices, ED-33, 1, 8-18 (1986).
[4] G. Verzellesi, L. Colalongo, D. Passeri, B. Margesin, M. Rudan, G. Soncini and P. Ciampolini, “Numerical analysis of ISFET and LAPS devices”, Sensors and Actuators B: Chemical, 44, 402-408 (1997).
[5] P. R. Barabash, R. S. C. Cobbold and W. B. Wlodarski, “Analysis of the threshold voltage and its temperature dependence in electrolyte-insulator-semiconductor field-effect-transistors (EISFET’s)”, IEEE Transactions on Electron Devices, ED-34, 6, 1271-1282 (1987).
[6] L. Bousse, N. F. DE Rooij and P. Bergveld, “The influence of counter-ion adsorption on the ψ0/pH characteristics of insulator surfaces”, Surface Science, 135, 479-496 (1983).
[7] C. D. Fung, P. W. Chenug and W. H. Ko, “ Electrolyte-insulator-semiconductor field-effect transistor”, International Electron Devices Meeting, 26, 689-692 (1980).
[8] W. M. Siu and R. S. C. Cobbold, “Basic Properties of the Electrolyte-SiO2-Si System: Physical and Theoretical Aspects”, IEEE Transactions on Electron Devices, 26, 1805 (1979).
[9] A. Das, T. C. Chen, Y. T. Lin, C. S. Lai, Y. H. Liao and C. M. Yang,”Ultra-high scanning speed chemical image sensor based on light addressable potentiometric sensor with analog micro-mirror”, IEEE sensors, 161-166 (2013).
[10] P. Bergveld,” Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years”, Sensors and Actuators B, 88, 1-20 (2003).
[11] T. F. Lu, C. M. Yang, J. C. Wang, K. -I Ho, C. H. Chin, D. G. Pijanowska, B. Jaroszewicz and C. S. Lai, “Characterization of K and Na-sensitive membrane fabricated by CF4 plasma treatment on hafnium oxide thin films on ISFET”, Journal of The Electrochemical Society, 158, J91-J95 (2011).
[12] T. Yoshinobu, H. Ecken, A.B. Md., H. Iwasaki, H. Lüth and M. J. Schõning, “Chemical imaging sensor and its application to biological systems”, Electrochimica Acta, 47, 259-263 (2001).
[13] M. Grattarola, A. Cambiaso, S. Cenderelli and M. Tedesco, “Capacitive measurements in electrolyte-insulator- semiconductor (EIS) systems modified by biological materials”, Sensors and Actuators, 17, 451-459 (1989).
[14] D. G. Hafeman, J. W. Parce and H. M. McConnell, “Light –addressable potentiometric sensor for biochemical systems”, Science, 240, 1182-1185 (1988).
[15] M. George, W. J. Parak, I. Gerhardt, W. Moritz, F. Kaesen, H. Geiger, I. Eisele and H. E. Gaub, “Investigation of the spatial resolution of the light-addressable potentiometric sensor”, Sensors and Actuators, 86, 187-196 (2000).
[16] J. C. Owicki, L. J. Bousse, D. G. Hafeman, G. L. Kirk, J. D. Olson, H. G. Wada, and J. W. Parce “The light-addressable potentiometric sensor: Principles and biological applications”, Annual Review of Biophysics and Biomolecular Structure, 23, 87-114 (1994).
[17] Q. Zhang, “Theoretical analysis and design of submicron-LAPS”, Sensors and Actuators B, 105, 304-311 (2005).
[18] T. Wagner, C. F. Werner, K. Miyamoto, M. J. Schöning and T. Yoshinobu, “Development and characterisation of a compact light-addressable potentiometric sensor (LAPS) based on the digital light processing (DLP) technology for flexible chemical imaging”, Sensors and Actuators B, 170, 34-39, (2012).
[19] T. Yoshinobu, H Ecken, A.B Md. Ismail, H Iwasaki, H Lüth and M.J Schöning, “Chemical imaging sensor and its application to biological systems”, Electrochimica Acta 47, 259-263 (2001).
[20] R. Li, Y. C. Wu, W. M. Yan, P. Wang and X. X. Zheng, “The novel cell microphysiometer and its application screening drugs”‚ Chinese Journal of Biomedical Engineering‚ 21, 219-225, (2002).
[21] A. Das, Y. H. Lin and C. S. Lai, “Miniaturized amorphous-silicon based chemical imaging sensor system using a mini-projector as a simplified light-addressable scanning source”, Sensors and Actuators B: Chemical, 190, 664–672 (2014).
[22] T. Yoshinobu, M. J. Schöning, F. Finger, W. Moritz, and H. Iwasaki, “Fabrication of Thin-Film LAPS with Amorphous Silicon”, Sensors, 4, 163–169 (2004).
[23] W. Moritz, T. Yoshinobu, F. Finger, S. Krause, M. Martin-Fernandez, M. J. Schöning, “High resolution LAPS using amorphous silicon as the semiconductor material“, Sensors and Actuators B: Chemical, 103, 436–441 (2004).
[24] T. Kamiya, K. Nomura and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors”, Science and Technology of Advanced Materials, 11, 044305 (2010).
[25] M. Cao, M. Zhao, D. Zhuang, L. Guo, L.Ouyang, X. Li and J. Song, “Electronic Properties of Amorphous Indium-gallium-zinc Oxide Thin Film Fabricated by Magnetron Sputtering”, Chinese Journal of Materials Research, 29, 51-54 ( 2015).
[26] Y. S. Lee, Z. M. Dai, C. I. Lin and H. C. Lin, “Relationships between the crystalline phase of an IGZO target and electrical properties of a-IGZO channel film”, Ceramics International, 38S, S595-S599 (2012).
[27] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4”, Thin Solid Films, 486, 38 (2005).
[28] Y. J. Tak, D. H. Yoon, S. Yoon, U. Choi, M. M. Sabri, B. D. Ahn and H. J. Kim, “Enhanced Electrical Characteristics and Stability via Simultaneous Ultraviolet and Thermal Treatment of Passivated Amorphous In–Ga–Zn–O Thin-Film Transistors”, ACS Applied Materials and Interfaces, 6, 6399-6405 (2014).
[29] K. Nagamoto, T. Hara, H. Sakuma and K. Ishii, “Highly moisture resistant IGZO films with a barrier layer for flexible transparent conductive substrates”, IEEE CPMT Symposium Japan, 27-30 (2014).
[30] K. Nomur, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, 432, 488-492 (2004).
[31] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors”, Japanese Journal of Applied Physics, 45, 4303-4308 (2006).
[32] T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors”, NPG Asia Materials, 2, 15-22 (2010).
[33] Y. Fujimoto, M. Uenuma, Y. Ishikawa and Y. Uraoka, “Analysis of thermoelectric properties of amorphous InGaZnO thin film by controlling carrier concentration”, AIP Advances, 5, 097209 (2015).
[34] T. Yoshikawa, T. Yagi, N. Oka, J. Jia, Y. Yamashita, K. Hattori, Y. Seino, N. Taketoshi, T. Baba and Y. Shigesato, “Thermal Conductivity of Amorphous Indium–Gallium–Zinc Oxide Thin Films”, Applied Physics Express, 6, 021101 (2013).
[35] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application”, Journal of Non-Crystalline Solids, 352, 851-858 (2006).
[36] J. W. Park, P. S. Jeong, S. H. Choi, H. Lee, b. H. Kong and H. K. Cho, “Optical and Structural Properties of Ion-Implanted InGaZnO Thin Films Studied with Spectroscopic Ellipsometry and Transmission Electron Microscopy”, Japanese Journal of Applied Physics, 48, 111603-1 - 111603-3 (2009).
[37] H. J. Chang, K. M. Huang, S. F. Chen, T. H. Huang and M. C. Wu, “RF Sputtered Low-Resistivity and High-Transmittance Indium Gallium Zinc Oxide Films for Near-UV Applications”, Electrochemical and Solid-State Letters, 14,H132-H134 ( 2011).
[38] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi1 and S. Kaneko, “Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors”, Japanese Journal of Applied Physics, 48, 010203 (2009).
[39] T. Kamiya, K. Nomura and H. Hosono, ”Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping”, Journal of Display Technology, 5, 273-288 (2009).
[40] A. Das, T. C. Chen, C. M. Yang and C. S. Lai, “ A high-speed, flexible-scanning chemical imaging system using a light-addressable potentiometric sensor integrated with an analog micromirror”, Sensors and Actuators B, 198, 225-232 (2014).
[41] C. M. Yang , T. W. Chiang, Y. T. Yeh, A. Das, Y. T. Lin and T. C. Chen, “ Sensing and pH-imaging properties of niobium oxide prepared by rapid thermal annealing for electrolyte–insulator–semiconductor structure and light-addressable potentiometric sensor”, Sensors and Actuators B, 207, 858-864 (2015).
[42] C. M. Yang, Y. H. Liao, C. H. Chen, T. C. Chen, C. S. Lai and D. G. Pijanowska, “ P-I-N amorphous silicon for thin-film light-addressable potentiometric sensors”, Sensors and Actuators B (2016). (in press)
[43] L. Bousse, S. Mostarshed, D. Hafeman, M. Sarore, M. Adami and C. Nicolini, “Investigation of carrier transport through silicon wafers by photocurrent measurements”, Journal of Applied Physics, 75, 4000-4008 (1994).
[44] C. Luigi and V. Giovanni, “Modeling of Light Addressable Potentiometric Sensor”, IEEE Transactions on Electron Devices, 44, 2083-2090 (1997).
[45] M. Sartore, M. Adami, and C. Nicolini, “Computer simulation and optimization of a light addressable potentiometric sensor,” Biosensors and Bioelectronics, 7, 57-64 (1992).
[46] G. Massobrio, S. Martinoia, and M. Grattarola, “Light-addressable chemical sensors: Modeling and computer simulations,” Sensors and Actuators B, 7, 484-487 (1992).
[47] C. S. Lai, C. M. Yang, T. F. Lu, “Thickness Effects on pH Response of HfO2 Sensing Dielectric Improved by Rapid Thermal Annealing”, Japanese Journal of Applied Physics, 45, 4B, 3807 ( 2006).
[48] M. Esashi and T. Matsuo, “Integrated Micro Multi Ion Sensor using Field Effect of Semiconductor”, IEEE Trans. on Biomedical Engineering, BME-25, 184-192 (1978).
[49] 廖元暉, “P-I-N Amorphous Silicon Light-Addressable Potentiometric Sensors For High-Resolution Chemical Image”,光電工程研究所, 長庚大學 (2014).
[50] 葉宸廷, “Two Dimensional Biomedical Image Sensor for Monitor on Directly Cell Culture and Nano Particle Toxicity”,光電工程研究所, 長庚大學 (2015).
[51] A. Ranjgar, R. Norouzi, A. Zolanvari and H. Sadeghi, “Characterization and Optical Absorption Properties of Plasmonic Nanostructured Thin Films”, Armenian Journal of Physics, 6, 198-203 (2013).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top