跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 14:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳俐樺
研究生(外文):Li Hua Wu
論文名稱:有氧間隔與連續中等運動訓練對血小板粒線體及左心室功能之影響
論文名稱(外文):Effects of Aerobic Interval and Moderate Continuous Exercise Training on Platelets Mitochondrial and Left Ventricular Functions
指導教授:王鐘賢王鐘賢引用關係
指導教授(外文):J. S. Wang
學位類別:碩士
校院名稱:長庚大學
系所名稱:物理治療學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:132
中文關鍵詞:運動血小板粒線體電子傳遞鏈心臟超音波
外文關鍵詞:exerciseplateletsmitochondriaelectron transport chainechocardiography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:426
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
背景與目的:缺血性心臟病是目前全球死亡率第一名的疾病。冠狀動脈缺血會引起心肌受損,甚至影響心臟的收縮功能,最後導致心臟收縮不協同和左心室射出率的異常。血栓是造成缺血性心臟病的主因,因此血小板扮演重要的角色,而血小板的活化則是會受到粒線體所調控。研究顯示較高的心肺適能會降低心血管疾病死亡率的相對風險,普遍認為規律的運動對於健康是有好處的,但最佳的運動模式其實還沒有被定義出來。相較於運動時間,運動的強度對於心臟的益處是影響較大的。有氧間隔式運動訓練(aerobic interval training, AIT)是由高強度運動中間穿插動態的恢復期,相較於連續中等運動訓練(moderate continue training, MCT),AIT更能促進最大攝氧量和心臟重塑、增加心臟功能。另外也有研究有發現運動訓練可以改善心肌梗塞後大鼠心肌的粒線體功能、降低血小板的活性。因此本研究想探討MCT與AIT對於血小板粒線體功能,以及左心室心臟動力學的改變。實驗方法:收取46位20~28歲的坐式生活健康年輕男性,隨機分派為控制組(無運動訓練)10位,及運動訓練組36位。運動訓練組再隨機分為有氧間隔性運動訓練( AIT,最大攝氧量之40%及80%交替間隔五回,30分鐘/天,5天/週,連續6週)與中度持續性運動訓練( MCT,60 %最大攝氧量持續30分鐘/天,5天/週,連續6週)。運動訓練前後,皆會進行最大運動測試、低氧運動測試,以及常氧和低氧心臟超音波測試,並在最大運動與低氧運動測試前及結束後立即收集血液樣本,用於血小板粒線體功能及凝血酶生成之實驗。結果:經過六週後AIT組與MCT組的最大運動能力皆有顯著進步。兩種運動模式也能鈍化因為低氧造成的凝血酶生成速率和單位時間生成量的增加。另外,AIT運動訓練顯著的增加左心室功能,包括舒張末期容積、左心室射出率、心輸出量、心臟做功量,同時還會降低SDI與DDI。AIT運動還可以增加血小板粒線體ATP-linked和ETS的耗氧速率,但沒辦法完全鈍化因為運動測試造成的耗氧速率降低。結論:兩種運動模式皆可以促進心肺適能,還可以減緩因為低氧造成的凝血酶增加。另外,AIT訓練可以大幅的促進左心室功能以及增加血小板粒線體功能。

Background: Ischemic heart disease is the leading cause of death in the world. Ischemia induced cardiac muscle damage would affect the contraction and myocardial synergy. Besides, left ventricular dysfunction leads to less ejection fraction and higher systolic dyssynchrony index. Thrombosis is the main cause to cardiac ischemia It is well recognized that platelets mitochondria regulate the cell function and play a key role in arterial thrombosis. Nutrient oxidation provides the substrates for mitochondrial electron transport and pumping protons into the intermembrane space. The proton gradient difference between mitochondrial inner membrane and intermembrane space generate the mitochondrial membrane potential and proton motive force, which is essential for ATP synthesis. The mitochondrial membrane potential also positively regulates calcium uptake as well as mitochondrial ROS production. Mitochondrial ROS and high calcium concentration promote the formation of mitochondrial permeability transition pore, which mediates both platelet activation and apoptosis. Activated platelets may clump together to form thrombus. Exercise intensity, rather than duration, is the key factor in determining cardiac benefits. Aerobic interval training (AIT) consists of bouts of high-intensity exercise separated by active recovery phases, which may improve lactic acid removing from working muscles and prolong the tolerable exercise time. Some research showed that AIT had greater improvement in VO2max and cardiac remodeling than moderate continue training (MCT). The purpose of this study is to investigate the effects of AIT and MCT on mitochondrial oxidative phosphorylation and LV function of platelets. Methods: Forty-six sedentary males were randomized to to control group (n=10) or perform perform either AIT (3-minute intervals at 40% and 80%VO2max, n=18) or MCT (sustained 60%VO2max, n=18) for 30 minutes/day, 5 days/week for 6 weeks. The pre-test and post-test measurements include mitochondrial function, analyzed by a high resolution respirometer (Oxygraph-2k), and LV function, analyzed by 3D echocardiography. Result: Both AIT and MCT groups had improvement in maximal exercise performance. Also, both protocols could alleviate the peak height and generation rate of thrombin which were increased due to hypoxia exercise test. In addition, AIT could improve in muscle mass, EF, SV, CO, synergy and cardiac power of left ventricular. After training, the OCR of ATP-linked and ETS were improved in AIT group in resting, but were not changed in MCT group. However, the trend of decrease was the same after training in both groups. Conclusion: This two exercise protocols exhibits similar improvement in cardiopulmonary fitness. Otherwise, both protocols could alleviate the thrombin generation which were increased due to hypoxia. In addition, AIT could improve more left ventricular function. Also, AIT improved substrate dependent mitochondrial function in resting, but not after exercise tests. Therefore, AIT is a more effective exercise for improving LV and platelets mitochondrial functions.

指導教授推薦書
口試委員會審定書
致謝 iii
中文摘要 v
英文摘要 vii
第一章 緒論 - 1 -
1.1 研究背景及目的 - 1 -
1.2 研究假設 - 4 -
第二章 文獻回顧 - 5 -
2.1 血小板與血栓形成 - 5 -
2.2 血小板與粒線體 - 10 -
2.3 血小板、粒線體與疾病 - 12 -
2.4 運動與心肺適能 - 14 -
2.5 運動對於血小板以及粒線體的影響 - 19 -
第三章 實驗設計 - 21 -
3.1. 實驗材料 - 21 -
3.1.1. 試劑 - 21 -
3.1.2. 儀器 - 24 -
3.2. 研究方法 - 27 -
3.2.1. 受測者招募 - 27 -
3.2.2. 實驗流程 - 27 -
3.2.3. 運動訓練 - 33 -
3.2.4. 血液實驗 - 33 -
3.3. 統計分析 - 38 -
第四章 實驗結果 39
4.1. 受試者基本資料 39
4.2. 運動訓練對運動表現之影響 40
4.3. 運動訓練對於常氧下左心室功能之影響 42
4.4. 運動訓練對於低氧下左心室功能之影響 45
4.5. 粒線體對凝血酶生成之影響 46
4.6. 運動對於凝血酶生成之影響 48
4.7. 最大運動測試與AIT及MCT訓練對內源性血小板粒線體功能之影響 52
4.8. 最大運動測試與AIT及MCT訓練對通透性血小板粒線體功能之影響 54
4.9. 低氧運動測試與AIT及MCT訓練對內緣內源性血小板粒線體功能之影響 55
4.10. 低氧運動測試與AIT及MCT訓練對通透性血小板粒線體功能之影響 56
第五章 討論 58
5.1. 運動對於左心室功能之影響 58
5.2. 運動訓練後凝血酶產生量的下降 60
5.3. 運動訓練影響粒線體功能 60
5.4. 研究限制 62
第六章 結論 63
參考資料 64
圖表 73
附錄 107

圖目錄
圖 一 實驗流程圖 75
圖 二 運動訓練模式 76
圖 三 常氧運動超音波下三組之心跳、心搏量、心輸出量變化 77
圖 四 常氧心臟超音波下三組之左心室舒張末期容積與收縮末期容積之變化,及左心室射出率和心臟做功量之變化 78
圖 五 常氧心臟超音波下三組之左心室體積與速度層面的收縮協同性變化 79
圖 六 常氧心臟超音波下三組之左心室體積與速度層面的舒張協同性變化 80
圖 七 低氧心臟超音波下三組之心跳、心搏量、心輸出量變化 87
圖 八 低氧心臟超音波下三組之左心室舒張末期容積與收縮末期容積之變化,及左心室射出率和心臟做功量之變化 88
圖 九 低氧心臟超音波下三組之左心室體積與速度層面的收縮協同性變化 89
圖 十 低氧心臟超音波下三組之左心室體積與速度層面的舒張協同性變化 90
圖 十一 常氧運動超音波下AIT組之左心室各層舒張末期容積與收縮末期容積及心搏量之變化 81
圖 十二 常氧運動超音波下AIT組之左心室各層cardiac power之變化 82
圖 十三 常氧運動超音波下AIT組之左心室各層體積與速度層面的收縮協同性變化 83
圖 十四 常氧運動超音波下AIT組之左心室各層體積與速度層面的舒張協同性變化 84
圖十五 最大運動測試與AIT及MCT訓練對內源性血小板粒線體功能之影響 99
圖十六 最大運動測試與AIT及MCT訓練對通透性血小板粒線體功能與BHI之影響 101
圖十七 低氧運動測試與AIT及MCT訓練對內源性血小板粒線體功能之影響 103
圖十八 最大運動測試與AIT及MCT訓練對通透性血小板粒線體功能與BHI之影響 105
圖 十九 抑制劑對於凝血酶生成的各個參數之影響 91
圖 二十 流式細胞儀測得粒線體內超氧化物與血小板表面磷脂絲胺酸(PS)之結果 92
圖 二十一 加入穀胱甘肽與FCCP對凝血酶生成之影響 93
圖 二十二 運動訓練對凝血酶開始生成的時間之影響 94
圖 二十三 運動訓練對總時間內所生成的總凝血酶數量之影響 95
圖 二十四 運動訓練對凝血酶生成之最大量的影響 96
圖 二十五 運動訓練對凝血酶生成最大量的時間之影響 97
圖 二十六 運動訓練影響凝血酶開始生成時與生成最大量時之間的斜率 98

表目錄
表一 人體基本測量數值 73
表二 運動測試表現 74

Ades, P. A., Savage, P. D., Brawner, C. A., Lyon, C. E., Ehrman, J. K., Bunn, J. Y., & Keteyian, S. J. (2006). Aerobic capacity in patients entering cardiac rehabilitation. Circulation, 113(23), 2706-2712.
Aksu, I., Topcu, A., Camsari, U. M., & Acikgoz, O. (2009). Effect of acute and chronic exercise on oxidant-antioxidant equilibrium in rat hippocampus, prefrontal cortex and striatum. Neurosci Lett, 452(3), 281-285.
Archer, E., & Blair, S. N. (2011). Physical activity and the prevention of cardiovascular disease: from evolution to epidemiology. Prog Cardiovasc Dis, 53(6), 387-396.
Avila, C., Huang, R., Stevens, M., Aponte, A., Tripodi, D., Kim, K., & Sack, M. (2012). Platelet mitochondrial dysfunction is evident in type 2 diabetes in association with modifications of mitochondrial anti-oxidant stress proteins. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology [and] German Diabetes Association, 120(4), 248-251.
Bishop, D. J., Granata, C., & Eynon, N. (2014). Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochim Biophys Acta, 1840(4), 1266-1275.
Buckberg, G. D. (2002). Basic science review: the helix and the heart. J Thorac Cardiovasc Surg, 124(5), 863-883.
Cardoso, S. M., Proenca, M. T., Santos, S., Santana, I., & Oliveira, C. R. (2004). Cytochrome c oxidase is decreased in Alzheimer's disease platelets. Neurobiol Aging, 25(1), 105-110.
Cerqueira, M. D., Weissman, N. J., Dilsizian, V., Jacobs, A. K., Kaul, S., Laskey, W. K., . . . Verani, M. S. (2002). Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging, 18(1), 539-542.
Chacko, B. K., Kramer, P. A., Ravi, S., Benavides, G. A., Mitchell, T., Dranka, B. P., . . . Bailey, S. M. (2014). The Bioenergetic Health Index: a new concept in mitochondrial translational research. Clin Sci (Lond), 127(6), 367-373.
Chacko, B. K., Kramer, P. A., Ravi, S., Benavides, G. A., Mitchell, T., Dranka, B. P., . . . Darley-Usmar, V. M. (2014). The Bioenergetic Health Index: a new concept in mitochondrial translational research. Clin Sci (Lond), 127(6), 367-373.
Chen, Y. C., Ho, C. W., Tsai, H. H., & Wang, J. S. (2015). Interval and continuous exercise regimens suppress neutrophil-derived microparticle formation and neutrophil-promoted thrombin generation under hypoxic stress. Clin Sci (Lond), 128(7), 425-436.
Cheng, Z., & Ristow, M. (2013). Mitochondria and metabolic homeostasis. Antioxid Redox Signal, 19(3), 240-242.
Cheung, Y. F., Yu, W., Li, S. N., Lam, W. W., Ho, Y. C., Wong, S. J., . . . Ha, S. Y. (2012). Dynamic dyssynchrony and impaired contractile reserve of the left ventricle in beta-thalassaemia major: an exercise echocardiographic study. PLoS One, 7(9), e45265.
Colman, R. W. (2006). Are hemostasis and thrombosis two sides of the same coin? J Exp Med, 203(3), 493-495.
Conraads, V. M., Pattyn, N., De Maeyer, C., Beckers, P. J., Coeckelberghs, E., Cornelissen, V. A., . . . Vanhees, L. (2015). Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: the SAINTEX-CAD study. Int J Cardiol, 179, 203-210.
Creighton, B. C., Kupchak, B. R., Aristizabal, J. C., Flanagan, S. D., Dunn-Lewis, C., Volk, B. M., . . . Kraemer, W. J. (2013). Influence of training on markers of platelet activation in response to a bout of heavy resistance exercise. Eur J Appl Physiol, 113(9), 2203-2209.
Davies, S. W., & Wedzicha, J. A. (1993). Hypoxia and the heart. Br Heart J, 69(1), 3-5.
Diffee, G. M., Seversen, E. A., & Titus, M. M. (2001). Exercise training increases the Ca(2+) sensitivity of tension in rat cardiac myocytes. J Appl Physiol (1985), 91(1), 309-315.
Elokda, A. S., & Nielsen, D. H. (2007). Effects of exercise training on the glutathione antioxidant system. Eur J Cardiovasc Prev Rehabil, 14(5), 630-637.
Exline, M. C., & Crouser, E. D. (2008). Mitochondrial mechanisms of sepsis-induced organ failure. Front Biosci, 13, 5030-5041.
Garcia-Souza, L. F., & Oliveira, M. F. (2014). Mitochondria: biological roles in platelet physiology and pathology. Int J Biochem Cell Biol, 50, 156-160.
Gawaz, M., Neumann, F. J., Ott, I., Schiessler, A., & Schomig, A. (1996). Platelet function in acute myocardial infarction treated with direct angioplasty. Circulation, 93(2), 229-237.
Geraldo, R. B., Sathler, P. C., Lourenco, A. L., Saito, M. S., Cabral, L. M., Rampelotto, P. H., & Castro, H. C. (2014). Platelets: still a therapeutical target for haemostatic disorders. Int J Mol Sci, 15(10), 17901-17919.
Gibbs, C. R., Blann, A. D., Edmunds, E., Watson, R. D., & Lip, G. Y. (2001). Effects of acute exercise on hemorheological, endothelial, and platelet markers in patients with chronic heart failure in sinus rhythm. Clin Cardiol, 24(11), 724-729.
Giordano, F. J. (2005). Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest, 115(3), 500-508.
Gnaiger, E. (2009). Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol, 41(10), 1837-1845.
Gram, A. S., Bladbjerg, E. M., Skov, J., Ploug, T., Sjodin, A., Rosenkilde, M., . . . Stallknecht, B. M. (2015). Three months of strictly controlled daily endurance exercise reduces thrombin generation and fibrinolytic risk markers in younger moderately overweight men. Eur J Appl Physiol, 115(6), 1331-1338.
Greenamyre, J. T., MacKenzie, G., Peng, T.-I., & Stephans, S. E. (1999). Mitochondrial dysfunction in Parkinson’s disease. Paper presented at the Biochem Soc Symp.
Hambrecht, R., Niebauer, J., Fiehn, E., Kalberer, B., Offner, B., Hauer, K., . . . Schuler, G. (1995). Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol, 25(6), 1239-1249.
Handin, R. I., Karabin, R., & Boxer, G. J. (1977). Enhancement of platelet function by superoxide anion. J Clin Invest, 59(5), 959-965.
Hartung, G. H., & Rangel, R. (1981). Exercise training in post-myocardial infarction patients: comparison of results with high risk coronary and post-bypass patients. Arch Phys Med Rehabil, 62(4), 147-150.
Heber, S., & Volf, I. (2015). Effects of physical (in) activity on platelet function. BioMed research international, 2015.
Hwang, C. L., Wu, Y. T., & Chou, C. H. (2011). Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J Cardiopulm Rehabil Prev, 31(6), 378-385.
Ide, T., Tsutsui, H., Kinugawa, S., Utsumi, H., Kang, D., Hattori, N., . . . Takeshita, A. (1999). Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res, 85(4), 357-363.
Jiang, H. K., Wang, Y. H., Sun, L., He, X., Zhao, M., Feng, Z. H., . . . Zang, W. J. (2014). Aerobic interval training attenuates mitochondrial dysfunction in rats post-myocardial infarction: roles of mitochondrial network dynamics. Int J Mol Sci, 15(4), 5304-5322.
Kapetanakis, S., Kearney, M. T., Siva, A., Gall, N., Cooklin, M., & Monaghan, M. J. (2005). Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation, 112(7), 992-1000.
Keating, F. K., Schneider, D. J., Savage, P. D., Bunn, J. Y., Harvey-Berino, J., Ludlow, M., . . . Ades, P. A. (2013). Effect of exercise training and weight loss on platelet reactivity in overweight patients with coronary artery disease. J Cardiopulm Rehabil Prev, 33(6), 371-377.
Kramer, P. A., Ravi, S., Chacko, B., Johnson, M. S., & Darley-Usmar, V. M. (2014). A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: Implications for their use as bioenergetic biomarkers. Redox Biol, 2, 206-210.
Lee, P. W., Zhang, Q., Yip, G. W., Wu, L., Lam, Y. Y., Wu, E. B., & Yu, C. M. (2009). Left ventricular systolic and diastolic dyssynchrony in coronary artery disease with preserved ejection fraction. Clin Sci (Lond), 116(6), 521-529.
Lee, Y., Min, K., Talbert, E. E., Kavazis, A. N., Smuder, A. J., Willis, W. T., & Powers, S. K. (2012). Exercise protects cardiac mitochondria against ischemia-reperfusion injury. Med Sci Sports Exerc, 44(3), 397-405.
Lemieux, H., Semsroth, S., Antretter, H., Hofer, D., & Gnaiger, E. (2011). Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol, 43(12), 1729-1738.
Mancuso, M., Filosto, M., Bosetti, F., Ceravolo, R., Rocchi, A., Tognoni, G., . . . Murri, L. (2003). Decreased platelet cytochrome c oxidase activity is accompanied by increased blood lactate concentration during exercise in patients with Alzheimer disease. Exp Neurol, 182(2), 421-426.
Mann, V., Cooper, J., Krige, D., Daniel, S., Schapira, A., & Marsden, C. (1992). Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson's disease. Brain, 115(2), 333-342.
Medicine, A. C. o. S. (2013). ACSM's guidelines for exercise testing and prescription: Lippincott Williams & Wilkins.
Mustonen, P., Lepantalo, M., & Lassila, R. (1998). Physical exertion induces thrombin formation and fibrin degradation in patients with peripheral atherosclerosis. Arterioscler Thromb Vasc Biol, 18(2), 244-249.
Orbe, J., Zudaire, M., Serrano, R., Coma-Canella, I., Martinez de Sizarrondo, S., Rodriguez, J. A., & Paramo, J. A. (2008). Increased thrombin generation after acute versus chronic coronary disease as assessed by the thrombin generation test. Thromb Haemost, 99(2), 382-387.
Ortiz-Perez, J. T., Rodriguez, J., Meyers, S. N., Lee, D. C., Davidson, C., & Wu, E. (2008). Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc Imaging, 1(3), 282-293.
Phielix, E., Meex, R., Moonen-Kornips, E., Hesselink, M. K., & Schrauwen, P. (2010). Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia, 53(8), 1714-1721.
Rondina, M. T., Weyrich, A. S., & Zimmerman, G. A. (2013). Platelets as cellular effectors of inflammation in vascular diseases. Circ Res, 112(11), 1506-1519.
Sjovall, F., Morota, S., Asander Frostner, E., Hansson, M. J., & Elmer, E. (2014). Cytokine and nitric oxide levels in patients with sepsis--temporal evolvement and relation to platelet mitochondrial respiratory function. PLoS One, 9(5), e97673.
Sjovall, F., Morota, S., Hansson, M. J., Friberg, H., Gnaiger, E., & Elmer, E. (2010). Temporal increase of platelet mitochondrial respiration is negatively associated with clinical outcome in patients with sepsis. Crit Care, 14(6), R214.
Sobotková, A., Mášová-Chrastinová, L., Suttnar, J., Štikarová, J., Májek, P., Reicheltová, Z., . . . Dyr, J. E. (2009). Antioxidants change platelet responses to various stimulating events. Free Radic Biol Med, 47(12), 1707-1714.
Stanley, W. C., Recchia, F. A., & Lopaschuk, G. D. (2005). Myocardial substrate metabolism in the normal and failing heart. Physiol Rev, 85(3), 1093-1129.
Starnes, J. W., Barnes, B. D., & Olsen, M. E. (2007). Exercise training decreases rat heart mitochondria free radical generation but does not prevent Ca2+-induced dysfunction. J Appl Physiol (1985), 102(5), 1793-1798.
Suzuki, T., Yamauchi, K., Yamada, Y., Furumichi, T., Furui, H., Tsuzuki, J., . . . Saito, H. (1992). Blood coagulability and fibrinolytic activity before and after physical training during the recovery phase of acute myocardial infarction. Clin Cardiol, 15(5), 358-364.
Torrent-Guasp, F., Ballester, M., Buckberg, G. D., Carreras, F., Flotats, A., Carrio, I., . . . Narula, J. (2001). Spatial orientation of the ventricular muscle band: physiologic contribution and surgical implications. J Thorac Cardiovasc Surg, 122(2), 389-392.
Versteeg, H. H., Heemskerk, J. W., Levi, M., & Reitsma, P. H. (2013). New fundamentals in hemostasis. Physiol Rev, 93(1), 327-358.
Walters, A. M., Porter, G. A., Jr., & Brookes, P. S. (2012). Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res, 111(9), 1222-1236.
Wang, J. S., & Chow, S. E. (2004). Effects of exercise training and detraining on oxidized low-density lipoprotein-potentiated platelet function in men. Arch Phys Med Rehabil, 85(9), 1531-1537.
Wang, K., Zuo, G., Zheng, L., Zhang, C., Wang, D., Cao, Z., . . . Du, X. (2015). Effects of tirofiban on platelet activation and endothelial function in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Cell Biochem Biophys, 71(1), 135-142.
Weeks, K. L., & McMullen, J. R. (2011). The athlete's heart vs. the failing heart: can signaling explain the two distinct outcomes? Physiology (Bethesda), 26(2), 97-105.
Wisloff, U., Ellingsen, O., & Kemi, O. J. (2009). High-intensity interval training to maximize cardiac benefits of exercise training? Exerc Sport Sci Rev, 37(3), 139-146.
Wisloff, U., Stoylen, A., Loennechen, J. P., Bruvold, M., Rognmo, O., Haram, P. M., . . . Skjaerpe, T. (2007). Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation, 115(24), 3086-3094.
Zharikov, S., & Shiva, S. (2013). Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochem Soc Trans, 41(1), 118-123.
The top 10 causes of death (n.d.). Retrieved October 20, 2015, from http://www.who.int/mediacentre/factsheets/fs310/en/
吳英黛(主編)(2010)。呼吸循環系統物理治療。新北市:金名圖書。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊