跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 12:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭羽喬
研究生(外文):Yu Chiao Hsiao
論文名稱:直接以大腸直腸癌病患血液循環腫瘤細胞進行K-ras基因突變檢測
論文名稱(外文):Cell-direct and rare cell mutation detection of K-ras gene using the circulating tumor cells from the patients with colorectal cancer
指導教授:曾慶平
指導教授(外文):C. P. Tseng
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:52
中文關鍵詞:抗表皮生長因子受體標靶治療K-ras 基因突變直接使用細胞循環腫瘤細胞PowerMag-PNA-PCR
外文關鍵詞:anti-EGFR targeted therapyK-ras mutationcell-directcirculating tumor cellsPowerMag-PNA-PCR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
K-ras 基因突變影響癌症病程與治療效果,大腸直腸癌中以抗表皮生長因子受體標靶治療藥物治療,但 K-ras 基因的突變導致治療效果不佳,因此檢測病患是否具有 K-ras 基因的突變可作為療程選擇及效果的指標。為了分析腫瘤,傳統上採取侵入性較高的手術來取得細胞或組織,但此方法對患者的身體帶來較大的負擔,採樣的次數亦受到限制,相對地抽血是侵入性相對較低的方式,血液中的循環腫瘤細胞 (circulating tumor cells, CTCs) 可作為臨床病人即時檢體,了解癌症病患病程進展以及治療藥物的選擇。本研究建立了利用 PowerMag 系統純化血液中的循環腫瘤細胞不經過核酸萃取直接使用細胞進行肽鏈核酸探針 (peptide nucleic acid, PNA) 即時聚合酶連鎖反應 (PNA-PCR) 檢測 K-ras 基因突變。不經過核酸萃取直接使用細胞的情況下 PNA-PCR 可偵測到 10 顆具有 G34A、G34T、G34C、G35A、G35T、G35C、G37T 與 G38A K-ras 基因突變的細胞,上述八種突變型涵蓋了 codon 12 與 13 中約 90 % 的突變。將具有 K-ras 基因突變的細胞加入 5000 顆白血球或健康人血液經 PowerMag 系統處理後的產物中,模擬實際檢體情況,在有 5000 顆白血球或健康人血液經 PowerMag 系統處理後的產物中若有 10 顆具有 K-ras 基因突變的細胞亦可被偵測到。最後使用臨床大腸直腸癌病人的血液檢體進行初步測試,16 個檢體中有 2 個 PowerMag-PNA-PCR 檢測結果顯示其循環腫瘤細胞具有 K-ras 基因突變。以目前測試結果來說 PowerMag-PNA-PCR 可以提供侵入性較低的方法進行 K-ras 基因突變檢測,以利了解臨床病人的腫瘤情況與協助訂定治療方法。
K-ras mutation in the cancer cells is associated with the resistance to the anti-epidermal growth factor receptor (EGFR) targeted therapy, an innovative strategy for treatment of patients with colorectal cancer. Tumor tissues are the primary resource for K-ras mutation detection. However, tumor tissues are not available for the patients who are not suitable for surgical operation or who are under recurrence long after surgical operation. Circulating tumor cells (CTCs) provide an alternative resource to unveil the mutation status. In this study, we established a method (PowerMag-PNA-PCR) for the combined use of the PowerMag CTC isolation system and the peptide nucleic acid (PNA)-PCR to enrich CTCs from the cancer patients followed by cell-direct and rare cell detection common K-ras codon 12 and 13 mutations without DNA purification. A method for cell lysis without interference of the assay was established to facilitate cell-direct PNA-PCR analysis. As less as 10 cells carrying the K-ras mutation of G34A, G34T, G34C, G35A, G35T, G35C, G37T, and G38A that covered more than 90% of the codon 12 and 13 mutations can be revealed. To mimic the condition of clinical specimens, K-ras mutant cells were spiked into various numbers of white blood cell (WBC) or the PowerMag eluted cell fraction from the healthy donors’ peripheral blood. The detection limit of cell-direct PCR was reached with 10 K-ras mutant cells in a background of 5000 WBCs or the eluted cell fraction. A pilot study using the peripheral blood from the patients (n = 16) with colorectal cancer showed that 2 of the patients carried the K-ras gene mutation. The PowerMag-PNA-PCR assay provides a novel and non-invasive approach for K-ras mutation detection in CTC and facilitates the decision making of anti-EGFR targeted therapy.
指導教授推薦書
口試委員審定書
致謝 iii
中文摘要 iv
英文摘要 v
縮寫表 vi
目錄 vii
圖目錄 ix
表目錄 x
第一章、 緒論 1
1.1 K-ras 基因與其蛋白質功能 1
1.2 K-ras 基因突變造成蛋白質功能變異 1
1.3 K-ras基因在癌症上的意義 2
1.4 K-ras 基因突變在大腸直腸癌中的影響 3
1.5 K-ras基因突變檢測技術 4
1.6 周邊血液循環腫瘤細胞在臨床上的意義及其相關研究 5
1.7 利用負向篩選的方式分離周邊血液循環腫瘤細胞 6
1.8 實驗目的 8
第二章、 材料與方法 10
2.1 材料 10
2.2 方法 11
2.2.1 細胞培養 11
2.2.2 細胞株核酸純化 11
2.2.3 直接使用細胞進行 PNA-PCR 之偵測極限 12
2.2.4 健康人與臨床大腸直腸癌病人血液樣本收集 12
2.2.5 模擬實際檢體情況進行 K-ras 基因突變檢測 12
2.2.6 臨床大腸直腸癌病人血液檢體進行 K-ras 基因突變檢測 13
第三章、 結果 15
3.1 PNA-PCR 可以偵測不同突變型的 K-ras 基因 15
3.2 比較直接將細胞加入 PCR 反應中與使用 QIAGEN 萃取 DNA 進行 K-ras 基因突變檢測的效率 15
3.3 直接使用細胞進行 PNA-PCR 的偵測極限 15
3.4 將具有 K-ras 突變的細胞加入健康人全血經 PowerMag 系統處理後的產物中以模擬臨床檢體 16
3.5 經 PowerMag 系統處理後殘留不表現 EpCAM 的有核細胞對 PNA-PCR 檢測 K-ras 突變的影響 16
3.6 臨床大腸直腸癌病患血液檢體測試結果 17
第四章、 討論 18
參考文獻 22
圖表附件 29


圖目錄
圖一、K-RAS 訊號傳遞路徑 29
圖二、PNA-PCR 可以偵測不同突變型的 K-ras 基因 30
圖三、比較直接使用細胞與使用QIAGEN萃取 DNA 進行進行 K-ras 基因突變檢測的效率 31
圖四、直接使用細胞進行 PNA-PCR 的偵測極限 32
圖五、將具有K-ras 突變的細胞加入健康人全血經PowerMag系統處理後的產物中以模擬臨床檢體進行 K-ras 突變檢測 33
圖六、野生型 K-ras 細胞對 PNA-PCR 檢測 K-ras 突變的影響 35
圖七、臨床大腸直腸癌病患血液檢體 K-ras 基因突變測試結果 36


表目錄
表一、K-ras 基因突變與細胞株 38
表二、經 PowerMag 系統處理後殘留不表現 EpCAM 的有核細胞 數目 39
表三、臨床檢體分析結果 40


Jancik S, Drabek J, Radzioch D et al. Clinical relevance of KRAS in human cancers. Journal of Biomedicine and Biotechnology 2010; 2010: 150960.
Custodio A, Feliu J. Prognostic and predictive biomarkers for epidermal growth factor receptor-targeted therapy in colorectal cancer: Beyond KRAS mutations. Critical Reviews in Oncology Hematology 2013; 85: 45-81.
Siddiqui AD, Piperdi B. KRAS mutation in colon cancer: a marker of resistance to EGFR-I therapy. Annals of Surgical Oncology 2010; 17: 1168-1176.
Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Research 2012; 72: 2457-2467.
Vaughn CP, Zobell SD, Furtado LV et al. Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer 2011; 50: 307-312.
Cox AD, Fesik SW, Kimmelman AC et al. Drugging the undruggable RAS: Mission possible? Nature Reviews Drug Discovery 2014; 13: 828-851.
Neumann J, Zeindl-Eberhart E, Kirchner T et al. Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal ,cancer. Pathology - Research and Practice 2009; 205: 858-862.
Normanno N, Tejpar S, Morgillo F et al. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nature Review 2009; 6: 519-527.
Pao W, Wang TY, Riely GJ et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Medicine 2005; 2: e17.
Massarelli E, Varella-Garcia M, Tang X et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clinical Cancer Research 2007; 13: 2890-2896.
Zhu CQ, da Cunha Santos G, Ding K et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. Journal of Clinical Oncology 2008; 26: 4268-4275.
Armaghany T, Wilson JD, Chu Q, et al. Genetic alterations in colorectal cancer. Gastrointest Cancer Research 2012; 5: 19-27.
Liu X, Jakubowski M, Hunt JL. KRAS gene mutation in colorectal cancer is correlated with increased proliferation and spontaneous apoptosis. American Journal of Clinical Pathology 2011; 135: 245-252.
Arrington AK, Heinrich EL, Lee W et al. Prognostic and predictive roles of KRAS mutation in colorectal cancer. International Journal of Molecular Sciences 2012; 13: 12153-12168.
Lievre A, Bachet JB, Le Corre D et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Research 2006; 66: 3992-3995.
De Roock W, Jonker DJ, Di Nicolantonio F et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. Jama 2010; 304: 1812-1820.
Kimura T, Okamoto K, Miyamoto H et al. Clinical benefit of high-sensitivity KRAS mutation testing in metastatic colorectal cancer treated with anti-EGFR antibody therapy. Oncology 2012; 82: 298-304.
Phipps AI, Buchanan DD, Makar KW et al. KRAS-mutation status in relation to colorectal cancer survival: the joint impact of correlated tumour markers. British Journal of Cancer 2013; 108: 1757-1764.
Tian S, Simon I, Moreno V et al. A combined oncogenic pathway signature of BRAF, KRAS and PI3KCA mutation improves colorectal cancer classification and cetuximab treatment prediction. Gut 2013; 62: 540-549.
Kadowaki S, Kakuta M, Takahashi S et al. Prognostic value of KRAS and BRAF mutations in curatively resected colorectal cancer. World Journal of Gastroenterology 2015; 21: 1275-1283.
Laurent-Puig P, Pekin D, Normand C et al. Clinical relevance of KRAS-mutated subclones detected with picodroplet digital PCR in advanced colorectal cancer treated with anti-EGFR therapy. Clinical Cancer Research 2015; 21: 1087-1097.
Jo P, Konig A, Schirmer M et al. Heterogeneity of KRAS mutation status in rectal cancer. PLoS One 2016; 11: e0153278.
Tan C, Du X. KRAS mutation testing in metastatic colorectal cancer. World Journal of Gastroenterology 2012; 18: 5171-5180.
Ausch C, Buxhofer-Ausch V, Oberkanins C et al. Sensitive detection of KRAS mutations in archived formalin-fixed paraffin-embedded tissue using mutant-enriched PCR and reverse-hybridization. Journal of Molecular Diagnostics 2009; 11: 508-513.
Franklin WA, Haney J, Sugita M et al. KRAS mutation: comparison of testing methods and tissue sampling techniques in colon cancer. Journal of Molecular Diagnostics 2010; 12: 43-50.
Oh JE, Lim HS, An CH et al. Detection of low-level KRAS mutations using PNA-mediated asymmetric PCR clamping and melting curve analysis with unlabeled probes. Journal of Molecular Diagnostics 2010; 12: 418-424.
Tsiatis AC, Norris-Kirby A, Rich RG et al. Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J Mol Diagn 2010; 12: 425-432.
van Eijk R, Licht J, Schrumpf M et al. Rapid KRAS, EGFR, BRAF and PIK3CA mutation analysis of fine needle aspirates from non-small-cell lung cancer using allele-specific qPCR. PLoS One 2011; 6: e17791.
Didelot A, Le Corre D, Luscan A et al. Competitive allele specific TaqMan PCR for KRAS, BRAF and EGFR mutation detection in clinical formalin fixed paraffin embedded samples. Experimental and Molecular Pathology 2012; 92: 275-280.
Gonzalez de Castro D, Angulo B, Gomez B et al. A comparison of three methods for detecting KRAS mutations in formalin-fixed colorectal cancer specimens. British Journal of Cancer 2012; 107: 345-351.
Kang JY, Park CK, Yeo CD et al. Comparison of PNA clamping and direct sequencing for detecting KRAS mutations in matched tumour tissue, cell block, pleural effusion and serum from patients with malignant pleural effusion. Respirology 2015; 20: 138-146.
Luo JD, Chan EC, Shih CL et al. Detection of rare mutant K-ras DNA in a single-tube reaction using peptide nucleic acid as both PCR clamp and sensor probe. Nucleic Acids Research 2006; 34: e12.
Chiou CC, Luo JD, Chen TL. Single-tube reaction using peptide nucleic acid as both PCR clamp and sensor probe for the detection of rare mutations. Nature Protocol 2006; 1: 2604-2612.
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011; 331: 1559-1564.
Nagrath S, Sequist LV, Maheswaran S et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007; 450: 1235-1239.
Harb W, Fan A, Tran T et al. Mutational Analysis of Circulating Tumor Cells Using a Novel Microfluidic Collection Device and qPCR Assay. Translational Oncology 2013; 6: 528-538.
Sanchez-Lorencio MI, Ramirez P, Saenz L et al. Comparison of Two Types of Liquid Biopsies in Patients With Hepatocellular Carcinoma Awaiting Orthotopic Liver Transplantation. Transplantation Proceedings 2015; 47: 2639-2642.
Lin HC, Hsu HC, Hsieh CH et al. A negative selection system PowerMag for effective leukocyte depletion and enhanced detection of EpCAM positive and negative circulating tumor cells. Clinica Chimica Acta 2013; 419: 77-84.
Welinder C, Jansson B, Lindell G et al. Cytokeratin 20 improves the detection of circulating tumor cells in patients with colorectal cancer. Cancer Letters 2015; 358: 43-46.
Miller MC, Doyle GV, Terstappen LW. Significance of circulating cumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer. Journal of Oncology 2010; 2010: 617421.
Huang XZ, Gao P, Song YX et al. Relationship between circulating tumor cells and tumor response in colorectal cancer patients treated with chemotherapy: a meta-analysis. BMC Cancer 2014; 14: 15.
Lin HC, Liou MJ, Hsu HL et al. Combined analysis of circulating epithelial cells and serum thyroglobulin for distinguishing disease status of the patients with papillary thyroid carcinoma. Oncotarget 2016; 7: 17242-17253.
Hedegaard J, Thorsen K, Lund MK et al. Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS One 2014; 9: e98187.
Kidess E, Heirich K, Wiggin M et al. Mutation profiling of tumor DNA from plasma and tumor tissue of colorectal cancer patients with a novel, high-sensitivity multiplexed mutation detection platform. Oncotarget 2015; 6: 2549-2561.
Begg CB, Cramer LD, Hoskins WJ et al. Impact of hospital volume on operative mortality for major cancer surgery. The Journal of the American Medical Association 1998; 280: 1747-1751.
Lacy AM, García-Valdecasas JC, Delgado S et al. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. The Lancet 2002; 359: 2224-2229.
Leroy J, Jamali F, Forbes L et al. Laparoscopic total mesorectal excision (TME) for rectal cancer surgery: long-term outcomes. Surgical Endoscopy 2004; 18: 281-289.
Sano T, Sasako M, Yamamoto S et al. Gastric cancer surgery: morbidity and mortality results from a prospective randomized controlled trial comparing D2 and extended para-aortic lymphadenectomy--Japan Clinical Oncology Group study 9501. Journal of Clinical Oncology 2004; 22: 2767-2773.
Fader AN, Seamon LG, Escobar PF et al. Minimally invasive surgery versus laparotomy in women with high grade endometrial cancer: a multi-site study performed at high volume cancer centers. Gynecologic Oncology 2012; 126: 180-185.
Alix-Panabieres C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clinical Chemistry 2013; 59: 110-118.
Gazzaniga P, Raimondi C, Nicolazzo C et al. The rationale for liquid biopsy in colorectal cancer: a focus on circulating tumor cells. Expert Review of Molecular Diagnostics 2015; 15: 925-932.
Lin HC, Hsu HC, Hsieh CH et al. A negative selection system PowerMag for effective leukocyte depletion and enhanced detection of EpCAM positive and negative circulating tumor cells. Clin Chim Acta 2013; 419: 77-84.
Denis JA, Patroni A, Guillerm E et al. Droplet digital PCR of circulating tumor cells from colorectal cancer patients can predict KRAS mutations before surgery. Molecular Oncology 2016.
Chen JY, Tsai WS, Shao HJ et al. Sensitive and specific biomimetic lipid coated microfluidics toisolate viable circulating tumor cells and microemboli for cancer detection. PLoS One 2016; 11: e0149633.
Buim ME, Fanelli MF, Souza VS et al. Detection of KRAS mutations in circulating tumor cells from patients with metastatic colorectal cancer. Cancer Biology & Therapy 2015; 16: 1289-1295.
Lyberopoulou A, Aravantinos G, Efstathopoulos EP et al. Mutational analysis of circulating tumor cells from colorectal cancer patients and correlation with primary tumor tissue. PLoS One 2015; 10: e0123902.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top