|
1. Dajcs, J.J., et al., The effectiveness of tobramycin and Ocuflox in a prophylaxis model of Staphylococcus keratitis. Curr Eye Res, 2001. 23(1): p. 60-3. 2. Sadrai, Z., et al., Effect of topical azithromycin on corneal innate immune responses. Investigative ophthalmology & visual science, 2011. 52(5): p. 2525-2531. 3. Callegan, M.C., et al., Topical antibiotic therapy for the treatment of experimental Staphylococcus aureus keratitis. Invest Ophthalmol Vis Sci, 1992. 33(11): p. 3017-23. 4. Bodor, N. and P. Buchwald, Ophthalmic drug design based on the metabolic activity of the eye: soft drugs and chemical delivery systems. AAPS J, 2005. 7(4): p. E820-33. 5. Severin, A., et al., High level oxacillin and vancomycin resistance and altered cell wall composition in Staphylococcus aureus carrying the staphylococcal mecA and the enterococcal vanA gene complex. J Biol Chem, 2004. 279(5): p. 3398-407. 6. Tamber, S., J. Schwartzman, and A.L. Cheung, Role of PknB kinase in antibiotic resistance and virulence in community-acquired methicillin-resistant Staphylococcus aureus strain USA300. Infect Immun, 2010. 78(8): p. 3637-46. 7. Kasetsuwan, N., P. Tanthuvanit, and U. Reinprayoon, The efficacy and safety of 0.5% Levofloxacin versus fortified Cefazolin and Amikacin ophthalmic solution for the treatment of suspected and culture-proven cases of infectious bacterial keratitis: a comparative study. Asian Biomedicine, 2011. 5(1): p. 77-83. 8. Sensoy, D., et al., Bioadhesive sulfacetamide sodium microspheres: evaluation of their effectiveness in the treatment of bacterial keratitis caused by Staphylococcus aureus and Pseudomonas aeruginosa in a rabbit model. Eur J Pharm Biopharm, 2009. 72(3): p. 487-95. 9. Jonsson, P., et al., Virulence of Staphylococcus aureus in a mouse mastitis model: studies of alpha hemolysin, coagulase, and protein A as possible virulence determinants with protoplast fusion and gene cloning. Infect Immun, 1985. 49(3): p. 765-9. 10. Callegan, M.C., et al., Corneal virulence of Staphylococcus aureus: roles of alpha-toxin and protein A in pathogenesis. Infect Immun, 1994. 62(6): p. 2478-82. 11. Lan, W., et al., Nuclear Factor-kappaB: central regulator in ocular surface inflammation and diseases. Ocul Surf, 2012. 10(3): p. 137-48. 12. Schaefer, F., et al., Bacterial keratitis: a prospective clinical and microbiological study. Br J Ophthalmol, 2001. 85(7): p. 842-7. 13. Green, S.N., et al., Protection from Streptococcus pneumoniae keratitis by passive immunization with pneumolysin antiserum. Invest Ophthalmol Vis Sci, 2008. 49(1): p. 290-4. 14. Marquart, M.E. and R.J. O'Callaghan, Infectious Keratitis: Secreted Bacterial Proteins That Mediate Corneal Damage. Journal of Ophthalmology, 2013. 15. Zhang, Z., et al., Plasminogen kringle 5 inhibits alkali-burn-induced corneal neovascularization. Invest Ophthalmol Vis Sci, 2005. 46(11): p. 4062-71. 16. Mochimaru, H., et al., Suppression of alkali burn-induced corneal neovascularization by dendritic cell vaccination targeting VEGF receptor 2. Invest Ophthalmol Vis Sci, 2008. 49(5): p. 2172-7. 17. BenEzra, D., et al., Topical formulations of novel angiostatic steroids inhibit rabbit corneal neovascularization. Invest Ophthalmol Vis Sci, 1997. 38(10): p. 1954-62. 18. Carnahan, M.C. and D.A. Goldstein, Ocular complications of topical, peri-ocular, and systemic corticosteroids. Curr Opin Ophthalmol, 2000. 11(6): p. 478-83. 19. Rai, M., A. Yadav, and A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 2009. 27(1): p. 76-83. 20. Gong, P., et al., Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology, 2007. 18(28). 21. Kumar, A., et al., Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nature Materials, 2008. 7(3): p. 236-241. 22. Gurunathan, S., et al., Antiangiogenic properties of silver nanoparticles. Biomaterials, 2009. 30(31): p. 6341-6350. 23. Kalishwaralal, K., et al., Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces, 2009. 73(1): p. 51-7. 24. Grabowska, E., et al., Modification of Titanium(IV) Dioxide with Small Silver Nanoparticles: Application in Photocatalysis. Journal of Physical Chemistry C, 2013. 117(4): p. 1955-1962. 25. Ye, X.M., et al., Fluoro-Jade and silver methods: application to the neuropathology of scrapie, a transmissible spongiform encephalopathy. Brain Research Protocols, 2001. 8(2): p. 104-112. 26. Farajzadeh, M. and A.A. Matin, A new PVC-activated charcoal fiber coated on silver wire; Application in determination of n-alkanes in the headspace of soil samples by SPME-GC. Analytical Sciences, 2002. 18(1): p. 77-81. 27. Madaria, A.R., A. Kumar, and C.W. Zhou, Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology, 2011. 22(24). 28. Wang, X.Q., et al., Silver deposits in cutaneous burn scar tissue is a common phenomenon following application of a silver dressing. Journal of Cutaneous Pathology, 2009. 36(7): p. 788-792. 29. Jarrett, F., S. Ellerbe, and R. Demling, Acute leukopenia during topical burn therapy with silver sulfadiazine. Am J Surg, 1978. 135(6): p. 818-9. 30. Yuce, K., et al., Outpatient Management of Bartholin Gland Abscesses and Cysts with Silver-Nitrate. Australian & New Zealand Journal of Obstetrics & Gynaecology, 1994. 34(1): p. 93-96. 31. Brook, I., W.J. Martin, and S.M. Finegold, Effect of silver nitrate application on the conjunctival flora of the newborn: and the occurrence of clostridial conjunctivitis. J Pediatr Ophthalmol Strabismus, 1978. 15(3): p. 179-83. 32. Kim, T.H. and A.Y. Sung, Effects of Ag/Pt nanoparticles on the physical properties of copolymers containing 2-fluoro-5-methylanisole. J Nanosci Nanotechnol, 2013. 13(9): p. 5966-75. 33. Bazzaz, B.S.F., et al., Preparation, characterization and antimicrobial study of a hydrogel (soft contact lens) material impregnated with silver nanoparticles. Contact Lens & Anterior Eye, 2014. 37(3): p. 149-152. 34. Samanta, T., et al., N, N '-Olefin Functionalized Bis-Imidazolium Gold(I) Salt Is an Efficient Candidate to Control Keratitis-Associated Eye Infection. Plos One, 2013. 8(3). 35. Samuel, U. and J.P. Guggenbichler, Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents, 2004. 23 Suppl 1: p. S75-8. 36. Chen, J., et al., [Effect of silver nanoparticle dressing on second degree burn wound]. Zhonghua Wai Ke Za Zhi, 2006. 44(1): p. 50-2. 37. Ahlberg, S., et al., Comparison of silver nanoparticles stored under air or argon with respect to the induction of intracellular free radicals and toxic effects toward keratinocytes. Eur J Pharm Biopharm, 2014. 88(3): p. 651-7. 38. AshaRani, P.V., et al., Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009. 3(2): p. 279-90. 39. Ahamed, M., M.S. Alsalhi, and M.K. Siddiqui, Silver nanoparticle applications and human health. Clin Chim Acta, 2010. 411(23-24): p. 1841-8. 40. McQuillan, J.S., et al., Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology, 2012. 6: p. 857-66. 41. Hernandez, M.E. and D.K. Newman, Extracellular electron transfer. Cellular and Molecular Life Sciences, 2001. 58(11): p. 1562-1571. 42. Hochkoeppler, A., et al., Membrane-associated cytochrome cy of Rhodobacter capsulatus is an electron carrier from the cytochrome bc1 complex to the cytochrome c oxidase during respiration. J Bacteriol, 1995. 177(3): p. 608-13. 43. Morones, J.R., et al., The bactericidal effect of silver nanoparticles. Nanotechnology, 2005. 16(10): p. 2346-53. 44. Loo, S.L., et al., Bactericidal mechanisms revealed for rapid water disinfection by superabsorbent cryogels decorated with silver nanoparticles. Environ Sci Technol, 2015. 49(4): p. 2310-8. 45. Liu, H.L., et al., Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane. International Journal of Nanomedicine, 2010. 5: p. 1017-1028. 46. Beer, C., et al., Toxicity of silver nanoparticles - nanoparticle or silver ion? Toxicol Lett, 2012. 208(3): p. 286-92. 47. Pal, S., Y.K. Tak, and J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 2007. 73(6): p. 1712-1720. 48. Sintubin, L., et al., The antibacterial activity of biogenic silver and its mode of action. Applied Microbiology and Biotechnology, 2011. 91(1): p. 153-162. 49. Kalishwaralal, K., et al., Silver nano - a trove for retinal therapies. J Control Release, 2010. 145(2): p. 76-90. 50. Leonhardt, U., Optical metamaterials - Invisibility cup. Nature Photonics, 2007. 1(4): p. 207-208. 51. Trick of the light. Nature, 2014. 506(7486): p. 6. 52. Lead, J.R. and K.J. Wilkinson, Aquatic colloids and nanoparticles: Current knowledge and future trends. Environmental Chemistry, 2006. 3(3): p. 159-171. 53. Hough, R.M., R.R.P. Noble, and M. Reich, Natural gold nanoparticles. Ore Geology Reviews, 2011. 42(1): p. 55-61. 54. Sousa, E.C., et al., In-field Mossbauer study of disordered surface spins in core/shell ferrite nanoparticles. Journal of Applied Physics, 2009. 106(9). 55. Oates, T.W.H., Real time spectroscopic ellipsometry of nanoparticle growth. Applied Physics Letters, 2006. 88(21). 56. Bell, I.R. and M. Koithan, A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system. Bmc Complementary and Alternative Medicine, 2012. 12. 57. Wang, Y. and N. Herron, Nanometer-Sized Semiconductor Clusters - Materials Synthesis, Quantum Size Effects, and Photophysical Properties. Journal of Physical Chemistry, 1991. 95(2): p. 525-532. 58. Oluwafemi, O.S., et al., A facile completely 'green' size tunable synthesis of maltose-reduced silver nanoparticles without the use of any accelerator. Colloids and Surfaces B-Biointerfaces, 2013. 102: p. 718-723. 59. Ledwith, D.M., A.M. Whelan, and J.M. Kelly, A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. Journal of Materials Chemistry, 2007. 17(23): p. 2459-2464. 60. Xia, X.H., et al., Quantitative Analysis of the Role Played by Poly(vinylpyrrolidone) in Seed-Mediated Growth of Ag Nanocrystals. Journal of the American Chemical Society, 2012. 134(3): p. 1793-1801. 61. Brown, K.R., D.G. Walter, and M.J. Natan, Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chemistry of Materials, 2000. 12(2): p. 306-313. 62. Burns, C., et al., Solution ionic strength effect on gold nanoparticle solution color transition. Talanta, 2006. 69(4): p. 873-876. 63. Nel, A., et al., Toxic potential of materials at the nanolevel. Science, 2006. 311(5761): p. 622-627. 64. Chithrani, B.D., A.A. Ghazani, and W.C.W. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 2006. 6(4): p. 662-668. 65. Heiligtag, F.J. and M. Niederberger, The fascinating world of nanoparticle research. Materials Today, 2013. 16(7-8): p. 262-271. 66. Cai, X., S. Conley, and M. Naash, Nanoparticle applications in ocular gene therapy. Vision Res, 2008. 48(3): p. 319-24. 67. Rana, S., Y.C. Yeh, and V.M. Rotello, Engineering the nanoparticle-protein interface: applications and possibilities. Curr Opin Chem Biol, 2010. 14(6): p. 828-34. 68. Sharma, A., S.V. Madhunapantula, and G.P. Robertson, Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opin Drug Metab Toxicol, 2012. 8(1): p. 47-69. 69. Jia, L.F., et al., Monolayer-Protected Gold Nanoparticle Surface-Bound Catalysts: Preparation and Application. Chinese Journal of Catalysis, 2010. 31(11): p. 1307-1315. 70. Christopher, P. and S. Linic, Shape- and Size-Specific Chemistry of Ag Nanostructures in Catalytic Ethylene Epoxidation. Chemcatchem, 2010. 2(1): p. 78-83. 71. Gratton, S.E.A., et al., The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(33): p. 11613-11618. 72. Cao-Milan, R. and L.M. Liz-Marzan, Gold nanoparticle conjugates: recent advances toward clinical applications. Expert Opinion on Drug Delivery, 2014. 11(5): p. 741-752. 73. Butler, M.R., et al., Topical Silver Nanoparticles Result in Improved Bleb Function by Increasing Filtration and Reducing Fibrosis in a Rabbit Model of Filtration Surgery. Investigative Ophthalmology & Visual Science, 2013. 54(7): p. 4982-4990. 74. Pehlivan, S.B., et al., Preparation and in vitro/in vivo evaluation of cyclosporin A-loaded nanodecorated ocular implants for subconjunctival application. J Pharm Sci, 2015. 104(5): p. 1709-20. 75. Qazi, Y., et al., Nanoparticle-mediated delivery of shRNA.VEGF-a plasmids regresses corneal neovascularization. Invest Ophthalmol Vis Sci, 2012. 53(6): p. 2837-44. 76. Ustundag-Okur, N., et al., Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur J Pharm Sci, 2014. 63: p. 204-15. 77. Niu, F., et al., Hydrothermal Synthesis of BiFeO3 Nanoparticles for Visible Light Photocatalytic Applications. Journal of Nanoscience and Nanotechnology, 2015. 15(12): p. 9693-9698. 78. Vargas-Lara, F., et al., Intrinsic conductivity of carbon nanotubes and graphene sheets having a realistic geometry. J Chem Phys, 2015. 143(20): p. 204902. 79. Ashkarran, A.A., et al., Bacterial Effects and Protein Corona Evaluations: Crucial Ignored Factors in the Prediction of Bio-Efficacy of Various Forms of Silver Nanoparticles. Chemical Research in Toxicology, 2012. 25(6): p. 1231-1242. 80. Lai, J.Y., Biofunctionalization of gelatin microcarrier with oxidized hyaluronic acid for corneal keratocyte cultivation. Colloids Surf B Biointerfaces, 2014. 122: p. 277-86. 81. Carlson, C., et al., Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species. Journal of Physical Chemistry B, 2008. 112(43): p. 13608-13619. 82. Lai, J.Y. and L.J. Luo, Antioxidant Gallic Acid-Functionalized Biodegradable in Situ Gelling Copolymers for Cytoprotective Antiglaucoma Drug Delivery Systems. Biomacromolecules, 2015. 16(9): p. 2950-63. 83. Collins, A.R., The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol, 2004. 26(3): p. 249-61. 84. Piao, M.J., et al., Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett, 2011. 201(1): p. 92-100. 85. Shrivastava, S., et al., Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 2007. 18(22). 86. Mondalek, F.G., et al., Inhibition of angiogenesis- and inflammation-inducing factors in human colon cancer cells in vitro and in ovo by free and nanoparticle-encapsulated redox dye, DCPIP. J Nanobiotechnology, 2010. 8: p. 17. 87. Tong, Y.G., et al., Anti-angiogenic effects of Shiraiachrome A, a compound isolated from a Chinese folk medicine used to treat rheumatoid arthritis. European Journal of Pharmacology, 2004. 494(2-3): p. 101-109. 88. Roy, A.M., et al., Antiangiogenic activity of 4 '-thin-beta-D-arabinofuranosylcytosine. Molecular Cancer Therapeutics, 2006. 5(9): p. 2218-2224. 89. Hao, X., et al., Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res, 2007. 75(1): p. 178-85. 90. Yang, C.F., et al., Experimental corneal neovascularization by basic fibroblast growth factor incorporated into gelatin hydrogel. Ophthalmic Res, 2000. 32(1): p. 19-24. 91. Oksuz, H., et al., Effect of propolis in the treatment of experimental Staphylococcus aureus keratitis in rabbits. Ophthalmic Research, 2005. 37(6): p. 328-334. 92. Callegan, M.C., et al., Topical Antibiotic-Therapy for the Treatment of Experimental Staphylococcus-Aureus Keratitis. Investigative Ophthalmology & Visual Science, 1992. 33(11): p. 3017-3023. 93. Malhotra, A., et al., Ethylene glycol toxicity : MRI brain findings. Clin Neuroradiol, 2016. 94. Carney, E.W., et al., The impact of dose rate on ethylene glycol developmental toxicity and pharmacokinetics in pregnant CD rats. Toxicol Sci, 2011. 119(1): p. 178-88. 95. Orton, D.J., et al., One-step extraction and quantitation of toxic alcohols and ethylene glycol in plasma by capillary gas chromatography (GC) with flame ionization detection (FID). Clin Biochem, 2016. 49(1-2): p. 132-8. 96. Ahlberg, S., et al., PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. Beilstein J Nanotechnol, 2014. 5: p. 1944-65. 97. Wiley, B., et al., Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry-a European Journal, 2005. 11(2): p. 454-463. 98. Christopher, P., et al., Shape- and Size-Specific Chemistry of Ag Nanostructures in Catalytic Ethylene Epoxidation. ChemCatChem, 2010. 2(1): p. 78-83. 99. Carrington, L.M. and M. Boulton, Hepatocyte growth factor and keratinocyte growth factor regulation of epithelial and stromal corneal wound healing. J Cataract Refract Surg, 2005. 31(2): p. 412-23. 100. Avalos, A., et al., Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J Appl Toxicol, 2014. 34(4): p. 413-23. 101. Wang, Z., et al., Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells. ACS Nano, 2013. 7(5): p. 4171-86. 102. Pramanik, S., et al., Unraveling the Interaction of Silver Nanoparticles with Mammalian and Bacterial DNA. J Phys Chem B, 2016. 120(24): p. 5313-24. 103. Das, P., C.D. Metcalfe, and M.A. Xenopoulos, Interactive effects of silver nanoparticles and phosphorus on phytoplankton growth in natural waters. Environ Sci Technol, 2014. 48(8): p. 4573-80. 104. Qiu, L., et al., A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett, 2015. 15(1): p. 457-63. 105. Senapati, V.A., et al., ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: A mechanistic approach. Food Chem Toxicol, 2015. 85: p. 61-70. 106. Berthelot-Ricou, A., et al., Genotoxicity assessment of mouse oocytes by comet assay before vitrification and after warming with three vitrification protocols. Fertility and Sterility, 2013. 100(3): p. 882-888. 107. Reidy, B., et al., Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials, 2013. 6(6): p. 2295-2350. 108. Gurunathan, S., et al., Antiangiogenic properties of silver nanoparticles. Biomaterials, 2009. 30(31): p. 6341-50. 109. Ge, H., et al., A C-terminal fragment BIGH3 protein with an RGDRGD motif inhibits corneal neovascularization in vitro and in vivo. Exp Eye Res, 2013. 112: p. 10-20. 110. Meyer, N. and C.A. Akdis, Vascular Endothelial Growth Factor as a Key Inducer of Angiogenesis in the Asthmatic Airways. Current Allergy and Asthma Reports, 2013. 13(1): p. 1-9. 111. Vacha, R., F.J. Martinez-Veracoechea, and D. Frenkel, Receptor-Mediated Endocytosis of Nanoparticles of Various Shapes. Nano Letters, 2011. 11(12): p. 5391-5395. 112. Gao, H.J., Probing mechanical principles of cell-nanomaterial interactions. Journal of the Mechanics and Physics of Solids, 2014. 62: p. 312-339. 113. Barua, S., et al., Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci U S A, 2013. 110(9): p. 3270-5. 114. Dajcs, J.J., et al., Corneal pathogenesis of Staphylococcus aureus strain Newman. Investigative Ophthalmology & Visual Science, 2002. 43(4): p. 1109-1115. 115. Meyers-Elliott, R.H. and P.A. Chitjian, Immunopathogenesis of corneal inflammation in herpes simplex virus stromal keratitis: role of the polymorphonuclear leukocyte. Invest Ophthalmol Vis Sci, 1981. 20(6): p. 784-98. 116. McClintic, S.M., et al., Visual Outcomes in Treated Bacterial Keratitis: Four Years of Prospective Follow-up. Investigative Ophthalmology & Visual Science, 2014. 55(5): p. 2935-2940. 117. Kim, H.J. and S.W. Oh, Performance Comparison of 5 Selective Media Used to Detect Staphylococcus aureus in Foods. Food Science and Biotechnology, 2010. 19(4): p. 1097-1101. 118. Hume, E.B., et al., Staphylococcus corneal virulence in a new topical model of infection. Invest Ophthalmol Vis Sci, 2001. 42(12): p. 2904-8. 119. Isnard, N., et al., Studies on corneal wound healing. Effect of fucose on iodine vapor-burnt rabbit corneas. Ophthalmologica, 2005. 219(6): p. 324-33. 120. Kowalski, R.P., et al., Intracameral Vigamox (moxifloxacin 0.5%) is non-toxic and effective in preventing endophthalmitis in a rabbit model. Am J Ophthalmol, 2005. 140(3): p. 497-504. 121. Lai, H.J., et al., Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater, 2014. 10(10): p. 4156-66. 122. Kwan, K.H., et al., Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing. Nanomedicine, 2011. 7(4): p. 497-504. 123. Mei, L., et al., Bioconjugated nanoparticles for attachment and penetration into pathogenic bacteria. Biomaterials, 2013. 34(38): p. 10328-37. 124. Grigor'eva, A., et al., Fine mechanisms of the interaction of silver nanoparticles with the cells of Salmonella typhimurium and Staphylococcus aureus. Biometals, 2013. 26(3): p. 479-88. 125. Sun, J., et al., Platelet endothelial cell adhesion molecule-1 (PECAM-1) homophilic adhesion is mediated by immunoglobulin-like domains 1 and 2 and depends on the cytoplasmic domain and the level of surface expression. J Biol Chem, 1996. 271(31): p. 18561-70.
|