跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 19:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:石楷弘
研究生(外文):Shih,Kai-Hung
論文名稱:高深寬比結構對微弧氧化膜層厚度均勻性之影響
論文名稱(外文):The Influence of High Aspect Ratio Structure on The Uniformity of The Layer Thickness by Micro-arc Oxidation Process
指導教授:馬廣仁
指導教授(外文):Ma,Kung-Jeng
口試委員:陳盈同趙崇禮
口試委員(外文):Chen,Ying-TongChao,Choung-Lii
口試日期:2015-07-30
學位類別:碩士
校院名稱:中華大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:70
中文關鍵詞:微弧氧化高深寬比結構電流密度
外文關鍵詞:Micro-arc oxidation (MAO)high aspect ratio structurescurrent density
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
  鋁合金均溫板需要在其表面製作高深寬比結構並具超親水及耐蝕等特性,以傳統乾式及濕式鍍膜製程不易解決此問題。微弧氧化技術可輕易在鋁表面製作超親水及耐蝕之膜層,但該技術在高深寬比結構下的成膜特性仍不清楚,值得進行研究。

  先用CNC加工,在鋁板表面製作出高深寬比結構,再進行微弧氧化在微結構表面形成保護膜層。並擷取斷面分析膜層生成情形。掃描式電子顯微鏡用於分析不同深寬比結構微弧氧化膜層的厚度及均勻性。微弧氧化過程中消耗電解液並產生大量氣體,會顯著影響氧化膜層厚度,當深寬比較小或開放空間越大時,電解液快速補足,使膜層成長較快長,膜層厚度均勻性較佳。反之膜層成長較慢,膜層厚度均勻性較差;微結構深寬比愈大,使電解液接觸試片總表面積增加,使電流密度降低,也會導致微弧氧化膜層的厚度較薄。
The aluminum alloy vapor chamber requires fabricating a high aspect ratio structure on aluminum surface and provides super-hydrophilic and anti-corrosion properties, which is not easy obtained by traditional dry and wet coating process. The super-hydrophilic and anti-corrosion properties can be achieved by micro-arc oxidation (MAO) process on aluminum alloy. However, the characteristics of MAO film on high aspect ratio structure are still not clear, which worth to be studied.
The CNC machining was used to produce a high aspect ratio structure on aluminum surface, and followed by MAO process to obtain a protective coating on structured surface. The scanning electron microscope was utilized to investigate the thickness and uniformity of MAO layer covered on high aspect ratio structure. The consumption of electrolyte solution and production of large amounts of hydrogen gas in MAO process significantly influence the thickness of oxide layer. A lower aspect ratio structure with a larger open space allows fast supplement of the electrolyte solution and diffusion of hydrogen gas, which favors the growth of MAO layer with a faster speed and a better uniformity of layer thickness. A thinner oxide layer and worse uniformity of layer thickness was obtained for the sample with a higher aspect ratio structure. The alloy surface with a higher aspect ratio structure provides a higher surface area, which leads to a lower current density across the sample and may lead to a thinner coating.

摘要.................................................................................................................................. I
ABSTRACT...................................................................................................................... II
致謝.................................................................................................................................. III
目錄.................................................................................................................................. IV
圖目錄............................................................................................................................... VI
表目錄............................................................................................................................... IX
第一章 前言.................................................................................................................... 1
1.1 緒論.................................................................................................................... 1
1.2 研究目的............................................................................................................ 1
第二章 文獻回顧............................................................................................................ 3
2.1 熱導管............................................................................................................... 3
2.2 均溫板............................................................................................................... 3
2.3 微弧氧化技術................................................................................................... 5
2.3.1 微弧氧化之原理................................................................................... 5
2.3.2 電解液對膜層之影響............................................................................ 7
2.3.3 製程參數對膜層之影響........................................................................ 8
2.3.4 添加劑對微弧氧化膜層之影響及其應用............................................ 9
2.3.5 微弧氧化膜層的熱物理特性................................................................ 9
2.4高深寬比結構於電鍍及電鑄等面臨的問題.................................................... 10
第三章 實驗設備及步驟................................................................................................ 12
3.1 實驗規劃........................................................................................................... 12
3.1.1 材料準備................................................................................................ 11
3.1.2 藥品準備................................................................................................ 19
3.1.3 實驗設備.. ............................................................................................ 19
3.2 實驗步驟.......................................................................................................... 22
3.2.1前處理.................................................................................................... 23
3.2.2 電解液準備........................................................................................... 23
3.2.3 實驗參數............................................................................................... 23
3.2.4 微弧氧化流程....................................................................................... 24
3.2.5 試片裁切............................................................................................... 24
3.2.6 試片研磨及腐蝕.................................................................................... 25
3.2.7 膜層表面及斷面分析........................................................................... 26
第四章 結果與討論........................................................................................................ 28
4.1 陣列結構表面微結構觀察............................................................................... 28
4.2 陣列結構斷面微結構觀察............................................................................... 31
4.2.1 表面及深處膜厚比較-陣列結構0.5mm-溝槽深度0.3 mm................ 32
4.2.2 表面及深處膜厚比較-陣列結構0.5mm-溝槽深度1.0 mm................ 39
4.2.3 表面及深處膜厚比較-陣列結構0.3mm-溝槽深度0.3 mm................ 46
4.2.4表面及深處膜厚比較-陣列結構0.3mm-溝槽深度1.0 mm................ 48
4.3 孔洞結構表面微結構觀察............................................................................... 52
4.4 孔洞結構斷面微結構觀察............................................................................... 53
4.4.1 通孔........................................................................................................ 54
4.4.2 盲孔........................................................................................................ 59
4.5 高深寬比結構對微弧氧化的影響................................................................... 64
第五章 結論.................................................................................................................... 66
第六章 參考文獻............................................................................................................ 68

[1] www.heatpipe.nlindex.phppage=heatpipe&lang=EN
[2] 陳萬益,微弧氧化銅/鋁散熱片之熱擴散模擬研究,碩士論文,私立中華大學,2013。
[3] Shung-Wen Kang, Sheng-Hong Tsai, Ming-Han Ko,“Metallic micro heat pipe heat spreader fabrication” Applied Thermal Engineering 24 (2004) 299–309
[4] P. Gupta, G. Tenhundfeld, E.O. Daigle, and D. Ryabkov, “Electrolytic Plasma Technology: Science and Engineering-An Overview,” Surf. Coat. Technol., Vol.201 ,pp. 8746-8760, 2007.
[5] V.I. Chernenko, L.A Snezhko, I.I. Papanova, Coating by Anodic Spark Electrolysis, Khimiya, Leningrad, (in Russian, ISBN 5-7245-0588-6), 1991.
[6] P.S. Gordienko, S.V. “Gnedenkov, Microarc Oxidation of Titanium and its Alloys, Dal’nauka, Vladivostok”, (in Russian, ISBN 5-7442-0922-0) , 1997.
[7]劉榮明、郭鋒、張妍、李鵬飛,內蒙古工業大學學報,矽酸鹽體系電解液組成對鋁合金微弧氧化的影響,26 ,pp.101-104, 2007.
[8] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey, “ Plasma Electrolysis for Surface Engineering” , Surface and Coatings Technology, 122, 73 ,1999.
[9] 中華人民共和國發明專利第CN102230205 A號-鋁合金微弧氧化膜及其製備方法.
[10] 張以忱、徐輝、董連俊,微弧氧化過程中電流密度對膜層性能的影響,第八屆全國真空冶金與表面工程學術會議,瀋陽:中國真空學會,2007.246-251.
[11] Weng Hai-Feng, Chen Qiu-long, Cai Xun, Bao Ming-Dong, Surface Technology,34 ,pp.59-62, 2005.
[12] Y. M. Wang, B. L. Jiang, T. Q. Lei, L. X. Guo, “Microarc Oxidation Coatings Formed on Ti6Al4V in Na2SiO3 System Solution: Microstructure, Mechanical and Tribological Properties”, Surface and Coatings Technology, Vol. 201, pp. 82-89, 2006.
[13] B. H. Long, H. H. Wu, et al, “Characteristics of Electric Parameters on Aluminum Alloy MAO Coating Process”, Applied Physics, Vol. 38, pp. 3491-3496, 2005.
[14] F. Mecuson, T. Czerwiec, T. Belmonte, L. Dujardin, A. Viola, G. Henrion, Surface & Coatings Technology, 200 pp.804-808, 2005.
[15] Al Bosta, Mohannad, Keng-Jeng Ma, and Hsi-Hsin Chien. "The effect of MAO processing time on surface properties and low temperature infrared emissivity of ceramic coating on aluminium 6061 alloy." Infrared Physics & Technology 60 , pp. 323-334, 2013.
[16] 熊仁章、楊生榮等人,添加劑對鋁合金微弧氧化陶瓷塗層結構和耐磨性能的影響,兵器材料科學 與工程,第25卷,第3 期,第17-18 頁,2002。
[17] Xue W.B. et al. “Corrosion Behaviorsand Galvanic Studies of Microarc Oxidation Films on Al–Zn–Mg–Cu Alloy” ,Surface and Coatings Technology 201,pp.8695-8701, 2007.
[18] V. N. Malyshev, K. M. Zorin, “Features of Microarc Oxidation Coatings Formation Technology in Slurry Electrolytes”, Applied Surface Science, Vol. 254, pp. 1511–1516, 2007.
[19] X. Nie, L. Wang, E. Konca, A.T. Alpas , “Tribological Behaviour of Oxide/Graphite Composite Coatings Deposited Using Electrolytic Plasma Process”, Surface & Coatings Technology, Vol. 188–189 pp. 207– 213, 2004.
[20] X. H. Wu, W. Qin, Y. Guo, Z. Y. Xie “Self-Lubricative Coating Grown by Micro-Plasma Oxidation on Aluminum Alloys in the Solution of Aluminate–Graphite” , Applied Surface Science, Vol. 254, pp. 6395–6399, 2008.
[21] Curran, J. A., and T. W. Clyne. “Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. ” Surface and Coatings Technology199.2 ,pp. 168-176, 2005.
[22] Curran, James A. “Thermal and Mechanical Properties of Plasma Electrolytic Oxide Coatings. ” Cambridge (September) ,2005.
[23] Wang, Z. W., et al. “Microstructure and infrared emissivity property of coating containing TiO2 formed on titanium alloy by microarc oxidation. ”Current Applied Physics 11.6 , pp. 1405-1409, 2011.
[24] Tang, Hui, et al. “Influence of FeSO4 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation. ” Applied Surface Science 257.24 , pp.10839-10844, 2011.
[25] Tang, Hui, et al. “Influence of Co (CH 3COO)2 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation. ” Current Applied Physics 12.1 , pp. 284-290, 2012.
[26] 吳韋德,鋁片厚度對微弧氧化膜層紅外線放射率之影響,碩士論文,私立中華大學,2013。
[27] 陳鐵元,鎳合金電鑄高深寬比微結構成型技術研究,博士論文,國立雲林科技大學,2008。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top