[1] www.heatpipe.nlindex.phppage=heatpipe&lang=EN
[2] 陳萬益,微弧氧化銅/鋁散熱片之熱擴散模擬研究,碩士論文,私立中華大學,2013。[3] Shung-Wen Kang, Sheng-Hong Tsai, Ming-Han Ko,“Metallic micro heat pipe heat spreader fabrication” Applied Thermal Engineering 24 (2004) 299–309
[4] P. Gupta, G. Tenhundfeld, E.O. Daigle, and D. Ryabkov, “Electrolytic Plasma Technology: Science and Engineering-An Overview,” Surf. Coat. Technol., Vol.201 ,pp. 8746-8760, 2007.
[5] V.I. Chernenko, L.A Snezhko, I.I. Papanova, Coating by Anodic Spark Electrolysis, Khimiya, Leningrad, (in Russian, ISBN 5-7245-0588-6), 1991.
[6] P.S. Gordienko, S.V. “Gnedenkov, Microarc Oxidation of Titanium and its Alloys, Dal’nauka, Vladivostok”, (in Russian, ISBN 5-7442-0922-0) , 1997.
[7]劉榮明、郭鋒、張妍、李鵬飛,內蒙古工業大學學報,矽酸鹽體系電解液組成對鋁合金微弧氧化的影響,26 ,pp.101-104, 2007.
[8] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey, “ Plasma Electrolysis for Surface Engineering” , Surface and Coatings Technology, 122, 73 ,1999.
[9] 中華人民共和國發明專利第CN102230205 A號-鋁合金微弧氧化膜及其製備方法.
[10] 張以忱、徐輝、董連俊,微弧氧化過程中電流密度對膜層性能的影響,第八屆全國真空冶金與表面工程學術會議,瀋陽:中國真空學會,2007.246-251.
[11] Weng Hai-Feng, Chen Qiu-long, Cai Xun, Bao Ming-Dong, Surface Technology,34 ,pp.59-62, 2005.
[12] Y. M. Wang, B. L. Jiang, T. Q. Lei, L. X. Guo, “Microarc Oxidation Coatings Formed on Ti6Al4V in Na2SiO3 System Solution: Microstructure, Mechanical and Tribological Properties”, Surface and Coatings Technology, Vol. 201, pp. 82-89, 2006.
[13] B. H. Long, H. H. Wu, et al, “Characteristics of Electric Parameters on Aluminum Alloy MAO Coating Process”, Applied Physics, Vol. 38, pp. 3491-3496, 2005.
[14] F. Mecuson, T. Czerwiec, T. Belmonte, L. Dujardin, A. Viola, G. Henrion, Surface & Coatings Technology, 200 pp.804-808, 2005.
[15] Al Bosta, Mohannad, Keng-Jeng Ma, and Hsi-Hsin Chien. "The effect of MAO processing time on surface properties and low temperature infrared emissivity of ceramic coating on aluminium 6061 alloy." Infrared Physics & Technology 60 , pp. 323-334, 2013.
[16] 熊仁章、楊生榮等人,添加劑對鋁合金微弧氧化陶瓷塗層結構和耐磨性能的影響,兵器材料科學 與工程,第25卷,第3 期,第17-18 頁,2002。
[17] Xue W.B. et al. “Corrosion Behaviorsand Galvanic Studies of Microarc Oxidation Films on Al–Zn–Mg–Cu Alloy” ,Surface and Coatings Technology 201,pp.8695-8701, 2007.
[18] V. N. Malyshev, K. M. Zorin, “Features of Microarc Oxidation Coatings Formation Technology in Slurry Electrolytes”, Applied Surface Science, Vol. 254, pp. 1511–1516, 2007.
[19] X. Nie, L. Wang, E. Konca, A.T. Alpas , “Tribological Behaviour of Oxide/Graphite Composite Coatings Deposited Using Electrolytic Plasma Process”, Surface & Coatings Technology, Vol. 188–189 pp. 207– 213, 2004.
[20] X. H. Wu, W. Qin, Y. Guo, Z. Y. Xie “Self-Lubricative Coating Grown by Micro-Plasma Oxidation on Aluminum Alloys in the Solution of Aluminate–Graphite” , Applied Surface Science, Vol. 254, pp. 6395–6399, 2008.
[21] Curran, J. A., and T. W. Clyne. “Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. ” Surface and Coatings Technology199.2 ,pp. 168-176, 2005.
[22] Curran, James A. “Thermal and Mechanical Properties of Plasma Electrolytic Oxide Coatings. ” Cambridge (September) ,2005.
[23] Wang, Z. W., et al. “Microstructure and infrared emissivity property of coating containing TiO2 formed on titanium alloy by microarc oxidation. ”Current Applied Physics 11.6 , pp. 1405-1409, 2011.
[24] Tang, Hui, et al. “Influence of FeSO4 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation. ” Applied Surface Science 257.24 , pp.10839-10844, 2011.
[25] Tang, Hui, et al. “Influence of Co (CH 3COO)2 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation. ” Current Applied Physics 12.1 , pp. 284-290, 2012.
[26] 吳韋德,鋁片厚度對微弧氧化膜層紅外線放射率之影響,碩士論文,私立中華大學,2013。[27] 陳鐵元,鎳合金電鑄高深寬比微結構成型技術研究,博士論文,國立雲林科技大學,2008。