|
1.Yang C, Chien LY, Tai CJ. Use of complementary and alternative medicine among patients with cancer receiving outpatient chemotherapy in Taiwan. J. Altern. Complement. Med. 2008;14:413-416. 2.Olaku O, White JD. Herbal therapy use by cancer patients: A literature review on case reports. Eur. J.Cancer. 2011;47:508-514. 3.Umeno A, Horie M, Murotomi K, et al. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules. 2016;21:708. 4.Pan MH, Lai CS, Ho CT. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 2010;1:15-31. 5.Thangapazham RL, Singh AK, Sharma A, et al. Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett. 2007;245:232-241. 6.Conklin KA. Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects. Nutr. Cancer 2000;37:1-18. 7.Yu CS, Lai KC, Yang JS, et al. Quercetin inhibited murine leukemia WEHI??3 cells in vivo and promoted immune response. Phytother. Res. 2010;24:163-168. 8.Yu CP, Wu PP, Hou YC, et al. Quercetin and rutin reduced the bioavailability of cyclosporine from Neoral, an immunosuppressant, through activating P-glycoprotein and CYP 3A4. J. Agric. Food Chem. 2011;59:4644-4648. 9.Yang SY, Tsai SY, Hou YC, et al. Inductive modulation on P-glycoprotein and cytochrome 3A by resveratrol, a constituent of grapes. Food Chem. 2012;133:683-688. 10.Hsieh YW, Huang CY, Yang SY, et al. Oral intake of curcumin markedly activated CYP 3A4: in vivo and ex-vivo studies. Sci. Rep. 2014;4:6587. 11.Paci A, Veal G, Bardin C, et al. Review of therapeutic drug monitoring of anticancer drugs part 1--cytotoxics. Eur. J. Cancer 2014;50:2010-2019. 12.Barnes J. St John''s wort ( L.): a review of its chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol.2001;53:583-600. 13.Tedeschi E, Menegazzi M, Margotto D, et al. Anti-inflammatory actions of St. John''s wort: Inhibition of human inducible nitric-oxide synthase expression by down-regulating signal transducer and activator of transcription-1 alpha (STAT-1 alpha) activation. J. Pharmacol. Exp. Ther. 2003;307:254-261. 14.Gaster B, Holroyd J. St John''s wort for depression: a systematic review. Arch. Intern. Med. 2000;160:152-156. 15.Deng G, Cassileth BR. Integrative oncology: complementary therapies for pain, anxiety, and mood disturbance. CA Cancer J. Clin. 2005;55:109-116. 16.Moore LB, Goodwin B, Jones SA, et al. St. John''s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl. Acad. Sci. U.S.A. 2000;97:7500-7502. 17.Mathijssen RHJ, Verweij J, de Bruijn P, et al. Effects of St. John''s wort on irinotecan metabolism. J. Natl. Cancer Inst. 2002;94:1247-1249. 18.Komoroski BJ, Parise RA, Egorin MJ, et al. Effect of the St. John''s wort constituent hyperforin on docetaxel metabolism by human hepatocyte cultures. Clin. Cancer Res. 2005;11:6972-6979. 19.Goey AK, Meijerman I, Rosing H, et al. The effect of St John''s wort on the pharmacokinetics of docetaxel. Clin. Pharmacokinet. 2014;53:103-110. 20.Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12:489-495. 21.Santarpia L, Contaldo F, Pasanisi F. Nutritional screening and early treatment of malnutrition in cancer patients. J. Cachexia Sarcopeni. 2011;2:27-35. 22.Trobec K, Kerec Kos M, von Haehling S, et al. Pharmacokinetics of drugs in cachectic patients: a systematic review. Plos One. 2013;8:e79603. 23.Trobec K, Kerec Kos M, Trontelj J, et al. Influence of cancer cachexia on drug liver metabolism and renal elimination in rats. J. Cachexia Sarcopeni. 2015;6:45-52. 24.Medic J, Atkinson C, Hurburgh CR. Current knowledge in soybean composition. J. Am. Oil.Chem. Soc. 2014;91:363-384. 25.Bos C, Metges CC, Gaudichon C, et al. Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J. Nutr. 2003;133:1308-1315. 26.Siddiqui R, Pandya D, Harvey K, et al. Nutrition modulation of cachexia/proteolysis. Nutr. Clin. Pract. 2006;21:155-167. 27.Inui A. Cancer anorexia-cachexia syndrome: Current issues in research and management. Ca-Cancer J. Clin. 2002;52:72-91. 28.Tsang YW, Chi KH, Hu CJ, et al. Chemotherapy-induced immunosuppression is restored by a fermented soybean extract: A proof of concept clinical trial. Nutr. Res. 2007;27:679-684. 29.Nahas EA, Nahas-Neto J, Orsatti FL, et al. Efficacy and safety of a soy isoflavone extract in postmenopausal women: A randomized, double-blind, and placebo-controlled study. Maturitas. 2007;58:249-258. 30.Taku K, Umegaki K, Sato Y, et al. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am. J. Clin. Nutr. 2007;85:1148-1156. 31.Taku K, Melby MK, Kurzer MS, et al. Effects of soy isoflavone supplements on bone turnover markers in menopausal women: Systematic review and meta-analysis of randomized controlled trials. Bone. 2010;47:413-423. 32.Ryan-Borchers TA, Park JS, Chew BP, et al. Soy isoflavones modulate immune function in healthy postmenopausal women. Faseb. J. 2004;18:A1111-A1112. 33.Li Z, Li J, Mo B, et al. Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway. Toxicol. In Vitro. 2008;22:1749-1753. 34.Song MZ, Tian XL, Lu M, et al. Genistein exerts growth inhibition on human osteosarcoma MG-63 cells via PPAR gamma pathway. Int J Oncol. 2015;46:1131-1140. 35.Mizushina Y, Shiomi K, Kuriyama I, et al. Inhibitory effects of a major soy isoflavone, genistein, on human DNA topoisomerase II activity and cancer cell proliferation. Int J Oncol. 2013;43:1117-1124. 36.Varinska L, Gal P, Mojzisova G, et al. Soy and breast cancer: Focus on angiogenesis. Int. J. Mol. Sci. 2015;16:11728-11749. 37.Setchell KDR, Cassidy A. Dietary isoflavones: Biological effects and relevance to human health. J. Nutr. 1999;129:758s-767s. 38.Rafii F. The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol. Metabolites. 2015;5:56-73. 39.Hu M, Krausz K, Chen J, et al. Identification of CYP1A2 as the main isoform for the phase I hydroxylated metabolism of genistein and a prodrug converting enzyme of methylated isoflavones. Drug Metab. Dispos. 2003;31:924-931. 40.Liu Y, Hu M. Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model. Drug Metab. Dispos. 2002;30:370-377. 41.姬盈璋. 大豆異黃酮代謝動力學及與西藥之交互作用. 中國醫藥大學 藥物化學研究所 , 2005. 42.Hou YC, Chi YC, Tsai SY, et al. Isoflavone urine kinetics after giving soymilk to healthy adults in Taiwan. J. Food. Drug Anal. 2011;19:355-361. 43.Zamek-Gliszczynski MJ, Hoffmaster KA, Nezasa K, et al. Integration of hepatic drug transporters and phase II metabolizing enzymes: Mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur. J. Pharm. Sci. 2006;27:447-486. 44.Kato K, Kusuhara H, Kumagai Y, et al. Association of multidrug resistance-associated protein 2 single nucleotide polymorphism rs12762549 with the basal plasma levels of phase II metabolites of isoflavonoids in healthy Japanese individuals. Pharmacogenet. Genomics 2012;22:344-354. 45.Basheer L, Kerem Z. Interactions between CYP3A4 and dietary polyphenols. Oxid. Med. Cell Longev. 2015;2015:15. 46.Burnett BP, Pillai L, Bitto A, et al. Evaluation of CYP450 inhibitory effects and steady-state pharmacokinetics of genistein in combination with cholecalciferol and citrated zinc bisglycinate in postmenopausal women. Int. J. Wom. Health 2011;3:139-150. 47.Yu CP, Hsieh YW, Lin SP, et al. Potential modulation on P-glycoprotein and CYP3A by soymilk and miso: in vivo and ex-vivo studies. Food Chem. 2014;149:25-30. 48.Rowinsky EK, Donehower RC. Paclitaxel (Taxol). N. Engl. J. Med. 1995;332:1004-1014. 49.Spratlin J, Sawyer MB. Pharmacogenetics of paclitaxel metabolism. Crit. Rev. Oncol. Hematol. 2007;61:222-229. 50.Walle T, Walle UK, Kumar GN, et al. Taxol metabolism and disposition in cancer-patients. Drug Metab. Dispos. 1995;23:506-512. 51.Sparreboom A, van Asperen J, Mayer U, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. U.S.A. 1997;94:2031-2035. 52.Lagas JS, Vlaming ML, van Tellingen O, et al. Multidrug resistance protein 2 is an important determinant of paclitaxel pharmacokinetics. Clin. Cancer Res. 2006;12:6125-6132. 53.Zamek-Gliszczynski MJ, Bedwell DW, Bao JQ, et al. Characterization of SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats using loperamide, paclitaxel, sulfasalazine, and carboxydichlorofluorescein pharmacokinetics. Drug Metab. Dispos. 2012;40:1825-1833. 54.Kang MH, Figg WD, Ando Y, et al. The P-glycoprotein antagonist PSC 833 increases the plasma concentrations of 6alpha-hydroxypaclitaxel, a major metabolite of paclitaxel. Clin. Cancer Res. 2001;7:1610-1617. 55.Monsarrat B, Chatelut E, Royer I, et al. Modification of paclitaxel metabolism in a cancer patient by induction of cytochrome P450 3A4. Drug Metab. Dispos. 1998;26:229-233. 56.Vaclavikova R, Horsky S, Simek P, et al. Paclitaxel metabolism in rat and human liver microsomes is inhibited by phenolic antioxidants. N-S Arch. Pharmacol. 2003;368:200-209. 57.Liu XX, Li SH, Chen JZ, et al. Effect of soy isoflavones on blood pressure: a meta-analysis of randomized controlled trials. Nutr.Metab. Cardiovasc. Dis. 2012;22:463-470. 58.Erba D, Casiraghi MC, Martinez-Conesa C, et al. Isoflavone supplementation reduces DNA oxidative damage and increases O-beta-N-acetyl-D-glucosaminidase activity in healthy women. Nutr. Res. 2012;32:233-240. 59.Rufer CE, Kulling SE. Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J. Agric. Food Chem. 2006;54:2926-2931. 60.Yoon GA, Park S. Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutr. Res. Pract. 2014;8:618-624. 61.Morito K, Aomori T, Hirose T, et al. Interaction of phytoestrogens with estrogen receptors alpha and beta (II). Biol. Pharm. Bull. 2002;25:48-52. 62.Carmignani LO, Pedro AO, Costa-Paiva LH, et al. The effect of dietary soy supplementation compared to estrogen and placebo on menopausal symptoms: A randomized controlled trial. Maturitas. 2010;67:262-269. 63.Lagari VS, Levis S. Phytoestrogens for menopausal bone loss and climacteric symptoms. J. Steroid Biochem. 2014;139:294-301. 64.Lydeking-Olsen E, Beck-Jensen JE, Setchell KDR, et al. Soymilk or progesterone for prevention of bone loss - A 2 year randomized, placebo-controlled trial. Eur. J. Clin. Nutr. 2004;43:246-257. 65.Zhang XL, Shu XO, Li HL, et al. Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch. Intern. Med. 2005;165:1890-1895. 66.More MI, Freitas U, Rutenberg D. Positive effects of soy lecithin-derived phosphatidylserine plus phosphatidic acid on memory, cognition, daily functioning, and mood in elderly patients with Alzheimer''s disease and dementia. Adv. Ther. 2014;31:1247-1262. 67.Haytowitz SBaDB. USDA Database for the Isoflavone Content of Selected Foods Release 2.1: U.S. Department of Agriculture Agricultural Research Service Beltsville Human Nutrition Research Center Nutrient Data Laboratory; 2015. 68.Nakamura Y, Tsuji S, Tonogai Y. Determination of the levels of isoflavonoids in soybeans and soy-derived foods and estimation of isoflavonoids in the Japanese daily intake. J. Aoac. Int. 2000;83:635-650. 69.Anupongsanugool E, Teekachunhatean S, Rojanasthien N, et al. Pharmacokinetics of isoflavones, daidzein and genistein, after ingestion of soy beverage compared with soy extract capsules in postmenopausal Thai women. BMC Clin. Pharmacol. 2005;5:1-10. 70.National Center for Biotechnology Information. PubChem Compound Database; CID=107971, https://pubchem.ncbi.nlm.nih.gov/compound/107971. 71.Xie CI, Lin RC, Antony V, et al. Daidzin, an antioxidant isoflavonoid, decreases blood-alcohol levels and shortens sleep time induced by ethanol intoxication. Alcohol Clin. Exp. Res. 1994;18:1443-1447. 72.Lowe ED, Gao GY, Johnson LN, et al. Structure of daidzin, a naturally occurring anti-alcohol-addiction agent, in complex with human mitochondrial aldehyde dehydrogenase. J. Med. Chem. 2008;51:4482-4487. 73.Lee CH, Yang L, Xu JZ, et al. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem. 2005;90:735-741. 74.National Center for Biotechnology Information. PubChem Compound Database; CID=5281708, https://pubchem.ncbi.nlm.nih.gov/compound/5281708. 75.Lamartiniere CA, Wang J, Smith-Johnson M, et al. Daidzein: Bioavailability, potential for reproductive toxicity, and breast cancer chemoprevention in female rats. Toxicol.Sci. 2002;65:228-238. 76.Cho KW, Lee OH, Banz WJ, et al. Daidzein and the daidzein metabolite, equol, enhance adipocyte differentiation and PPAR gamma transcriptional activity. J. Nutr. Biochem. 2010;21:841-847. 77.Jin S, Zhang QY, Kang XM, et al. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Ann. Oncol. 2010;21:263-268. 78.National Center for Biotechnology Information. PubChem Compound Database; CID=5281377, https://pubchem.ncbi.nlm.nih.gov/compound/5281377. 79.Wong RW, Rabie AB. Effect of genistin on bone formation. Front. Biosci. 2010;2:764-770. 80.Russo A, Cardile V, Lombardo L, et al. Genistin inhibits UV light-induced plasmid DNA damage and cell growth in human melanoma cells. J. Nutr. Biochem.2006;17:103-108. 81.National Center for Biotechnology Information. PubChem Compound Database; CID=5280961, https://pubchem.ncbi.nlm.nih.gov/compound/5280961. 82.Kapiotis S, Hermann M, Held I, et al. Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscl. Throm. Vas. 1997;17:2868-2874. 83.Schmidt F, Knobbe CB, Frank B, et al. The topoisomerase II inhibitor, genistein, induces G2/M arrest and apoptosis in human malignant glioma cell lines. Oncol. Rep. 2008;19:1061-1066. 84.Sfakianos J, Coward L, Kirk M, et al. Intestinal uptake and biliary excretion of the isoflavone genistein in rats. J. Nutr. 1997;127:1260-1268. 85.Watanabe S, Yamaguchi M, Sobue T, et al. Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (kinako). J. Nutr. 1998;128:1710-1715. 86.National Center for Biotechnology Information. PubChem Compound Database; CID=36314, https://pubchem.ncbi.nlm.nih.gov/compound/36314. 87.Cragg GM. Paclitaxel (Taxol ??): A success story with valuable lessons for natural product drug discovery and development. Med. Res. Rev. 1998;18:315-331. 88.Rowinsky EK. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu. Rev. Med. 1997;48:353-374. 89.Haldar S, Chintapalli J, Croce CM. Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 1996;56:1253-1255. 90.Morales-Cano D, Calvino E, Rubio V, et al. Apoptosis induced by paclitaxel via Bcl-2, Bax and caspases 3 and 9 activation in NB4 human leukaemia cells is not modulated by ERK inhibition. Exp. Toxicol. Pathol. 2013;65:1101-1108. 91.Jang SH, Wientjes MG, Au JLS. Kinetics of P-glycoprotein-mediated efflux of paclitaxel. J. Pharmacol. Exp. Ther. 2001;298:1236-1242. 92.Monsarrat B, Mariel E, Cros S, et al. Taxol metabolism. Isolation and identification of three major metabolites of taxol in rat bile. Drug Metab. Dispos. 1990;18:895-901. 93.Anderson CD, Wang JY, Kumar GN, et al. Dexamethasone induction of taxol metabolism in the rat. Drug Metab. Dispos. 1995;23:1286-1290. 94.Baker AF, Dorr RT. Drug interactions with the taxanes: clinical implications. Cancer Treat. Rev. 2001;27:221-233. 95.Pirker R, Krajnik G, Zochbauer S, et al. Paclitaxel cisplatin in advanced non-small-cell lung cancer (NSCLC). Ann. Oncol. 1995;6:833-835. 96.Holmes FA, Madden T, Newman RA, et al. Sequence-dependent alteration of doxorubicin pharmacokinetics by paclitaxel in a phase I study of paclitaxel and doxorubicin in patients with metastatic breast cancer. J. Clin. Oncol. 1996;14:2713-2721. 97.Scripture CD, Figg WD. Drug interactions in cancer therapy. Nat. Rev. Cancer. 2006;6:546-558. 98.Loo TW, Clarke DM. Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J. Membr. Biol. 2005;206:173-185. 99.Marzolini C, Paus E, Buclin T, et al. Polymorphisms in human MDR1 (P-glycoprotein): Recent advances and clinical relevance. Clin. Pharmacol. Ther. 2004;75:13-33. 100.Silva R, Vilas-Boas V, Carmo H, et al. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy. Pharmacol. Ther. 2015;149:1-123. 101.Matheny CJ, Lamb MW, Brouwer KLR, et al. Pharmacokinetic and pharmacodynamic implications of P-glycoprotein modulation. Pharmacotherapy. 2001;21:778-796. 102.Keppler D. Multidrug resistance proteins (MRPs, ABCCs): Importance for pathophysiology and drug therapy. Handb. Exp. Pharmacol. 2011:299-323. 103.Deeley RG, Westlake C, Cole SPC. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol. Rev. 2006;86:849-899. 104.Chen ZS, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. Febs. J. 2011;278:3226-3245. 105.Zhang YK, Wang YJ, Gupta P, et al. Multidrug resistance proteins (MRPs) and cancer therapy. The AAPS journal. 2015;17:802-812. 106.Slot AJ, Molinski SV, Cole SPC. Mammalian multidrug-resistance proteins (MRPs). Essays Biochem. 2011;50:179-207. 107.Liu YH, Di YM, Zhou ZW, et al. Multidrug resistance-associated proteins and implications in drug development. Clin. Exp. Pharmacol. P. 2010;37:115-120. 108.Danielson PB. The cytochrome P450 superfamily: Biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab.2002;3:561-597. 109.Preissner S, Kroll K, Dunkel M, et al. SuperCYP: A comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res.2010;38:D237-243. 110.Pelkonen O, Turpeinen M, Hakkola J, et al. Inhibition and induction of human cytochrome P450 enzymes: current status. Arch. Toxicol. 2008;82:667-715. 111.Yonemoto H, Ogino S, Nakashima MN, et al. Determination of paclitaxel in human and rat blood samples after administration of low dose paclitaxel by HPLC-UV detection. Biomed. Chromatogr. 2007;21:310-317. 112.Shord SS, Camp JR. Intravenous administration of paclitaxel in Sprague-Dawley rats: What is a safe dose? Biopharm. Drug Dispos. 2006;27:191-196. 113.Vaclavikova R, Soucek P, Svobodova L, et al. Different in vitro metabolism of paclitaxel and docetaxel in humans, rats, pigs, and minipigs. Drug Metab. Dispos. 2004;32:666-674. 114.Wang Z, Wang L, Xia MM, et al. Pharmacokinetics interaction between imatinib and genistein in rats. Biomed. Res. Int. 2015 : 368976 115.Ronis MJ, Chen Y, Jo CH, et al. Diets containing soy protein isolate increase hepatic CYP3A expression and inducibility in weanling male rats exposed during early development. J. Nutr. 2004;134:3270-3276. 116.Sharom FJ, Liu RH, Qu Q, et al. Exploring the structure and function of the P-glycoprotein multidrug transporter using fluorescence spectroscopic tools. Semin. Cell Dev. Biol. 2001;12:257-265. 117.Huizing MT, Sparreboom A, Rosing H, et al. Quantification of paclitaxel metabolites in human plasma by high-performance liquid chromatography. J. Chromatogr. B. 1995;674:261-268. 118.Rahman A, Korzekwa KR, Grogan J, et al. Selective biotransformation of taxol to 6α-hydroxytaxol by human cytochrome P450 2C8. Cancer Res. 1994;54:5543-5546.
|