跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/26 00:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧郁淳
研究生(外文):YU,CHUN-LU
論文名稱:以半生合成方式生產之Aspergillus terreus 二次代謝物生物活性分析
論文名稱(外文):Bioassay of Secondary Metabolites Produced in an Aspergillus terreus Semi-Biosynthesis System
指導教授:劉坤湘
指導教授(外文):KUN,HSIANG-LIU
口試委員:李冠漢陳倩琪劉坤湘
口試委員(外文):KUAN,HAN-LEECHIEN,CHI-CHENKUN,HSIANG-LIU
口試日期:2016-07-15
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:化粧品應用與管理系
學門:民生學門
學類:美容學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:152
中文關鍵詞:土麴菌半生合成acetylaszonalenin抗腫瘤抗氧化
外文關鍵詞:Aspergillus terreussemi-biosynthesisacetylaszonaleninantitumorantioxidant
相關次數:
  • 被引用被引用:2
  • 點閱點閱:594
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
絲狀真菌產生的二次代謝物 (secondary metabolites) 來源豐富、具有不同結構及廣泛生物活性,對於生技、食品、醫療上發揮相當大的作用。近年來,運用基因工程產生二次代謝物漸具應用潛力且可取代化學合成。本研究利用土麴菌 (Aspergillus terreus) 中ana基因叢集的anaPS進行基因剔除,於合成二次代謝物acetylaszonalenin途徑中,由人工合成的前驅物餵養突變株取代途徑前半段,後半段以 A. terreus 完成之半生合成方式,產生結構複雜的acetylaszonalenin。隨後調整環境因子如pH值、溫度、轉速等,優化目標產物acetylaszonalenin的產率,同時探討二次代謝物的抗癌活性及抗氧化能力。以前驅物benzodiazepinedione及其衍生物餵養A. terreus之anaPS基因剔除株,經由HPLC及LC-ESI-MS分析,可由此半生合成方式產生最終目標產物,並證明anaPS基因參與 acetylaszonalenin生合成路徑。針對提升目標產物的產量改變環境因子,發現以液態培養優於固態培養,且提高溫度、維持原本的pH值及降低轉速則可使acetylaszonalenin二次代謝物產率提高。經由RT-PCR實驗分析,改變環境因子因而增加目標產物的產量,有可能是因為ana基因叢集的基因表現增加,使轉譯出的酵素增加,而令生合成路徑進行更順暢所致。以30℃與37℃培養A. terreus NIH2624及基因剔除株之粗萃物,具顯著毒殺人類大腸直腸癌細胞之能力;純化之目標產物acetylaszonalenin於200 uM濃度下,具毒殺大腸直腸癌細胞能力。以30℃ 與37℃培養A. terreus基因剔除株及前驅物benzodiazepinedione餵養基因剔除株之粗萃物,皆具DPPH自由基清除能力,且37℃培養所產生之粗萃物,在50 ug/ml濃度以下,對於人類角質層細胞不具毒性。綜合上述實驗結果,我們不僅成功建立並優化半生物合成系統以生產真菌之二次代謝物外,此等二次代謝物並具有生物活性,未來可應用於藥粧的領域。


Filamentous fungi produce secondary metabolites with distinct structures and various biological activities for a wide range in biotechnology, food, and medical fields. In recent years, secondary metabolites produced by biosynthetic engineering are found to be greater potential and can replace synthetic chemicals. The precursor of acetylaszonalenin, benzodiazepinedione, catalyzed by anaPS of ana gene cluster in the biosynthetic pathway of acetylaszonalenin was chemically synthesized. The anaPS deletion mutant was cultured with benzodiazepinedione in the semi-biosynthesis of acetylaszonalenin from A. terreus. On the other hand, the semi-biosynthesis of acetylaszonalenin was studied in the feeding of precursor and its analogues, benzodiazepinedione, and adaption of environmental factors such as pH value, temperature, rotation speed. Secondary metabolites extracted from A. terreus were identified by HPLC and LC-ESI-MS. Acetylazonalenin was successfully obtained in A. terreus anaPS deletion mutant after feeding benzodiazepinedione.The yield of acetylaszonalenin in submerged fermentation is better than solid state fermentation. The original pH value, raising temperature and reducing the speed of the acetylaszonalenin could increase the yield of acetylazonalenin. The changes of the yield of the target product extracted in various environmental conditions were possibly due to the levels of gene expression in ana gene clusters evaluated by RT-PCR analysis. The results also indicated that there is cytotoxicity when primary colorectal adenocarcinoma SW480 cell and lymph node metastasis SW620 cell were treated with the crude extracts of NIH2624 or anaPS deletion mutant. In addition, crude extracts of anaPS deletion mutant, and benzodiazepinedione-feeding anaPS deletion mutant were shown the antioxidant capacity. The semi-biosynthetic system we successfully established and should be useful for the application of biological activity and the cosmeceutical of fungal secondary metabolites.


中文摘要 I
Abstract III
誌謝 V
目錄 VII
圖目錄 XIV
英文縮寫對照表 XXI
第一章、緒論 1
1.1 麴菌屬 (Aspergillus sp. ) 簡介 1
1.2.真菌代謝物 1
1.2.1 生合成基因叢集biosynthetic gene clusters (BGCs) 5
1.2.2 二次代謝物生合成路徑 6
1.3 影響二次代謝物生產之環境因子 7
1.4 土麴菌 (Aspergillus terreus) 9
1.4.1 Aspergillus terreus之benzodiazepinedione 11
1.4.2 Aspergillus terreus之acetylaszonalenin 12
1.5 費式麴菌 (Neosartorya fischeri) 13
1.6 癌症 13
1.6.1 Aspergillus terreus二次代謝物之抑癌活性 15
1.7 抗氧化與抗老化 16
1.8 研究動機與目的 19
1.9 實驗流程圖 21
第二章、材料與方法 22
2.1 材料 22
2.1.1 藥品 22
2.1.2 儀器 24
2.1.3 軟體 25
2.1.4 真菌 26
2.1.5 哺乳動物細胞株 26
2.1.6 餵養真菌基因剔除株之前驅物及其衍生物 26
2.1.7 前驅物及衍生物合成方法 28
2.2 Aspergillus terreus之培養 32
2.2.1 Aspergillus terreus培養基 32
2.2.2 Aspergillus terreus固態培養 33
2.2.3 Aspergillus terreus液態培養 35
2.2.4 Aspergillus terreus繼代培養 35
2.3 餵養Aspergillus terreus前驅物及其衍生物之方法 35
2.3.1 固態培養 35
2.3.2 液態培養 35
2.4 液態培養1-14天目標產物acetylaszonalenin之分析 36
2.5 液態培養二次代謝物之優化條件測試 36
2.5.1 pH值 36
2.5.2 溫度 36
2.5.3 轉速 36
2.6 真菌二次代謝產物萃取方法 37
2.6.1 真菌固態培養之二次代謝物萃取 37
2.6.2 真菌液態培養之二次代謝物萃取 37
2.7 高效能液相層析 38
2.8 串聯式液相層析電灑游離質譜儀 40
2.9 Aspergillus terreus二次代謝物之細胞生物活性檢測 40
2.9.1 細胞培養 40
2.9.2 細胞冷凍保存 41
2.9.3細胞解凍 42
2.9.4 細胞計數 42
2.9.5 Aspergillus terreus粗萃物稀釋 42
2.9.6 目標產物acetylaszonalenin稀釋 43
2.9.7 細胞存活率分析 (MTT assay) 43
2.10 DPPH自由基清除能力試驗 (DPPH free radical scavenging activity) 43
2.11 anaPS、anaPT、anaAT基因表現之分析 45
2.11.1 Total RNA之萃取 45
2.11.2 cDNA合成 46
2.11.3 anaPS、anaPT、anaAT 引子設計與基因表現分析 46
2.11.4 瓊脂凝膠電泳 48
第三章、結果 49
3.1 Aspergillus terreus固態及液態培養之型態 49
3.2 Aspergillus terreus固態培養二次代謝產物分析 49
3.3 Aspergillus terreus液態培養二次代謝產物分析 50
3.4 Aspergillus terreus液態培養及餵養前驅物二次代謝物分析 50
3.5 目標產物acetylaszonalenin之質譜圖 52
3.6 Aspergillus terreus液態培養1-14天之二次代謝產物分析 52
3.7 Aspergillus terreus液態培養條件優化之二次代謝產物分析 52
3.8 Aspergillus terreus液態培養二次代謝產物對SW480細胞之影響 53
3.9 Aspergillus terreus液態培養二次代謝產物對SW620細胞之影響 55
3.10 Aspergillus terreus液態培養二次代謝產物對HaCaT細胞之影響 56
3.11目標產物acetylaszonalenin對SW620細胞之影響 58
3.12 Aspergillus terreus液態培養二次代謝產物之抗氧化活性評估 58
3.13 Aspergillus terreus液態培養菌絲體之anaPS、anaPT、anaAT基因表現 59
第四章、討論 60
4.1 Aspergillus terreus固態及液態培養之菌絲體型態 60
4.2 Aspergillus terreus不同餵養方式固態培養二次代謝產物之分析 60
4.3 Aspergillus terreus固態及液態培養二次代謝產物之比較分析 61
4.4 Aspergillus terreus液態培養及餵養前驅物培養二次代謝產物之分析 62
4.5 目標之二次代謝產物acetylaszonalenin之分析 63
4.6 Aspergillus terreus液態培養1-14天目標產物acetylaszonalenin之分析 64
4.7 Aspergillus terreus液態優化培養二次代謝產物之分析 64
4.8 Aspergillus terreus液態培養之二次代謝產物對細胞存活率與外觀型態之影響 65
4.9 Acetylaszonalenin二次代謝產物對細胞存活率與外觀型態之影響 70
4.10 Aspergillus terreus液態培養二次代謝產物之抗氧化活性評估 70
4.11 Aspergillus terreus之anaPS、anaPT、anaAT基因表現分析 72
第五章、結論 74
參考文獻 76
1.Tamano K. Enhancing microbial metabolite and enzyme production: current strategies and challenges. Frontiers in Microbiology. 2014;5:718. doi:10.3389/fmicb.2014.00718.
2.Marahiel MA, Stachelhaus T, Mootz HD. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev. 1997;97:2651-2674.
3.Strieker M, Tanovic A, Marahiel MA. Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol. 2010;20:234-240.
4.Bhetariya PJ, Madan T, Basir SF, Varma A, Usha SP. Allergens/antigens, toxins and polyketides of important Aspergillus species. Indian Journal of Clinical Biochemistry. 2011;26:104-119. doi:10.1007/s12291-011-0131-5.
5.Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2013;11:21-32.
6.Marui J, Ohashi-Kunihiro S, Ando T, Nishimura M, Koike H, Machida M, et al. Penicillin biosynthesis in Aspergillus oryzae and its overproduction by genetic engineering. J Biosci Bioeng. 2010;110:8-11.
7.Marui J, Yamane N, Ohashi-Kunihiro S. Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn(II)2Cys6 transcriptional activator and induced by kojic acid at the transcriptional level. J Biosci Bioeng. 2011;112:40-43.
8.Reen FJ, Romano S, Dobson ADW, O’Gara F. The sound of silence: activating silent biosynthetic gene clusters in marine microorganisms. Marine Drugs. 2015;13:4754-4783. doi:10.3390/md13084754.
9.Guo CJ, Wang CC. Recent advances in genome mining of secondary metabolites in Aspergillus terreus. Frontiers in Microbiology. 2014;5:717. doi:10.3389/fmicb.2014.00717.
10.Guo CJ, Knox BP, Sanchez JF, Chiang YM, Bruno KS, Wang CC, et al. Application of an efficient gene targeting system linking secondary metabolites to their biosynthetic genes in Aspergillus terreus. Organic letters. 2013;15:10.1021/ol401384v. doi:10.1021/ol401384v.
11.Yin WB, Grundmann A, Cheng J, Li SM. Acetylaszonalenin biosynthesis in Neosartorya fischeri. identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation. J Biol Chem. 2009;284:100-109.
12.Ames BD, Walsh CT. Anthranilate-activating modules from fungal nonribosomal peptide assembly lines. Biochemistry. 2010;49:3351-3365. doi:10.1021/bi100198y.
13.Thakur D, Bora TC, Bordoloi GN, Mazumdar S. Influence of nutrition and culturing conditions for optimum growth and antimicrobial metabolite production by Streptomyces sp. 201. Journal de Mycologie Médicale/Journal of Medical Mycology. 2009;19:161-167.
14.Bhattacharyya PN, Jha DK. Optimation of cultural conditions growth and improved bioactive metabolite production by a subsurface Aspergillus strain 146. International Journal of Applied Biology and Pharmaceutical Technolog. 2011;2:113-141
15.Luchese RH, Harrigan WF. Biosynthesis of aflatoxin the role of nutritional factors. J Appl Bacteriol. 1993;74:5-14.
16.Keller NP, Nesbitt C, Sarr B, Phillips TD, Burow GB. pH Regulation of sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytopathology. 1997;87:643-648.
17.Gruber AD. Establishment of infection models and insights into the pathogenesis of invasive aspergillosis mediated by Aspergillus terreus. Institute of veterinary pathology. 2011.
18.Lai L-ST, Tsai T-H, Wang TC, Cheng T-Y. The influence of culturing environments on lovastatin production by Aspergillus terreus in submerged cultures. Enzyme and Microbial Technology. 2005;36:737-748.
19.Miranda RU, Gomez-Quiroz LE, Mejia A, Gonzalez JB. Oxidative state in idiophase links reactive oxygen species (ROS) and lovastatin biosynthesis: differences and similarities in submerged and solid state fermentations. Fungal Biol. 2013;117:85-93.
20.Faseleh Jahromi M, Liang JB, Ho YW, Mohamad R, Goh YM, Shokryazdan P, et al. Lovastatin production by Aspergillus terreus using agro biomass as substrate in solid state fermentation. Journal of Biomedicine and Biotechnology. 2012;20:196-264. doi:10.1155/2012/196264.
21.Banos JG, Tomasini A, Szakacs G, Gonzalez JB. High lovastatin production by Aspergillus terreus in solid state fermentation on polyurethane foam: an artificial inert support. J Biosci Bioeng. 2009;108:105-110.
22.Papagianni M, Joshi N, Young MM. Comparative studies on extracellular protease secretion and glucoamylase production by free and immobilized Aspergillus niger cultures. J Ind Microbiol Biotechnol. 2002;29:259-263.
23.Arabatzis M, Velegraki A. Sexual reproduction in the opportunistic human pathogen Aspergillus terreus. Mycologia. 2013;105:71-79.
24.Baddley JW, Pappas PG, Smith AC, Moser SA. Epidemiology of Aspergillus terreus at a University Hospital. Journal of Clinical Microbiology. 2003;41:5525-5529. doi:10.1128/JCM.41.12.5525-5529.2003.
25.Schimmel TG, Coffman AD, Parsons SJ. Effect of butyrolactone I on the producing fungus, Aspergillus terreus. Applied and Environmental Microbiology. 1998;64:3707-3712.
26.Casas López JL, Sánchez Pérez JA, Fernández Sevilla JM, Acién Fernández FG, Molina Grima E, Chisti Y, et al. Production of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme and Microbial Technology. 2003;33:270-277.
27.Hajjaj H, Niederberger P, Duboc P. Lovastatin Biosynthesis by Aspergillus terreus in a Chemically Defined Medium. Applied and Environmental Microbiology. 2001;67:2596-2602. doi:10.1128/AEM.67.6.2596-2602.2001.
28.Kaur N. An insight into medicinal and biological significance of privileged scaffold: 1,4-Benzodiazepine. Int J Pharm Bio Sci. 2013;4:318-337.
29.Leonard K, Marugan JJ, Raboisson P. Novel 1,4-benzodiazepine-2,5-diones as Hdm2 antagonists with improved cellular activity. Bioorg Med Chem Lett. 2006;16:463-3468.
30.Singh RK, Prasad DN, Bhardwaj TR. Design, synthesis and in vitro cytotoxicity study of benzodiazepine-mustard conjugates as potential brain anticancer agents. Journal of Saudi Chemical Society. 2013.
31.Walsh CT, Haynes SW, Ames BD, Gao X, Tang Y. Short pathways to complexity generation: fungal peptidyl alkaloid multicyclic scaffolds from anthranilate building blocks. ACS chemical biology. 2013;8:1366-1382. doi:10.1021/cb4001684.
32.Koblish HK, Zhao S, Franks CF. Benzodiazepinedione inhibitors of the Hdm2: p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol Cancer Ther. 2006;5:160-169.
33.Fader LD, Landry S, Morin S. Optimization of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of HIV capsid assembly inhibitors 1: addressing configurational instability through scaffold modification. Bioorg Med Chem Lett. 2013;23:3396-3400.
34.Eamvijarn A, Gomes NM, Dethoup T. Bioactive meroditerpenes and indole alkaloids from the soil fungus Neosartorya fischeri (KUFC 6344), and the marine derived fungi Neosartorya laciniosa (KUFC 7896) and Neosartorya tsunodae (KUFC 9213). Tetrahedron. 2013;69:8583-8591.
35.Weldhagen GF, du Plooy M, Clay CG, Havenga Y. Molecular identification and mitochondrial cytochrome b gene analysis of a clinical isolate of Neosartorya fischeri. Clin Microbiol Newsl. 2008;30:100-104.
36.Sun Q, Wang H, Zhang H, et al. Heterologous production of an acidic thermostable lipase with broad-range pH activity from thermophilic fungus Neosartorya fischeri P1. J Biosci Bioeng. 2016.
37.Viragh M, Voros D, Kele Z, et al. Production of a defensin-like antifungal protein NFAP from Neosartorya fischeri in Pichia pastoris and its antifungal activity against filamentous fungal isolates from human infections. Protein Expr Purif. 2014;94:79-84.
38.Kovacs L, Viragh M, Tako M, Papp T, Vagvolgyi C, Galgoczy L. Isolation and characterization of Neosartorya fischeri antifungal protein (NFAP). Peptides. 2011;32:1724-1731.
39.Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70.
40.Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69-90.
41.Anand P, Kunnumakara AB, Sundaram C. Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharmaceutical Research. 2008;25:2097-2116. doi:10.1007/s11095-008-9661-9.
42.Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671-674.
43.Folkman, J. Clinical applications of research on angiogenesis. N. Engl. J. Med. 1995;333:1757-1763.
44.Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559-1564.
45.Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442-454.
46.Raymond WS, Aidan F, Ramaswamy S. Genome-wide views of cancer metastasis. Drug Discov. 2005;2:165-169.
47.Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58-62.
48.Brooks PC, Montgomery AM, Rosenfeld M. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994;79:1157-1164.
49.Bischoff J. Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol. 1995;5:69-74.
50.Ferlay J, Parkin DM, Steliarova Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765-781.
51.Ferlay J, Foucher ES, Tieulent JL. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49:1374-1403.
52.Le Marchand L, Hankin JH, Wilkens LR, Kolonel LN, Englyst HN, Lyu LC, et al. Dietary fiber and colorectal cancer risk. Epidemiology. 1997;8:658-665.
53.Shen Y, Zou J, Xie D, Ge H, Cao X, Dai J, et al. Butyrolactone and cycloheptanetrione from mangrove-associated fungus Aspergillus terreus. Chem Pharm Bull (Tokyo). 2012;60:1437-1441.
54.Zhu T, Chen Z, Liu P, Wang Y, Xin Z, Zhu W, et al. New rubrolides from the marine derived fungus Aspergillus terreus OUCMDZ-1925. J Antibiot (Tokyo). 2014;67:315-318.
55.Porameesanaporn Y, Uthaisang Tanechpongtamb W, Jarintanan F, Jongrungruangchok S, Thanomsub Wongsatayanon B. Terrein induces apoptosis in HeLa human cervical carcinoma cells through p53 and ERK regulation. Oncol Rep. 2013;29:1600-1608.
56.Shen L, Zhu L, Luo Q. Fumigaclavine I, a new alkaloid isolated from endophyte Aspergillus terreus. Chin J Nat Med. 2015;13:937-941.
57.Yang T, Yao H, He G. Effects of lovastatin on MDA-MB-231 breast cancer cells: an antibody microarray analysis. Journal of Cancer. 2016;7:192-199. doi:10.7150/jca.13414.
58.Sun T, Zheng W, Peng H. A small molecule IFB07188 inhibits proliferation of human cancer cells by inducing G2/M cell cycle arrest and apoptosis. Biomed Pharmacother. 2012;66:512-518.
59.Okayasu R, Takahashi S, Yamada S, Hei TK, Ullrich RL. Asbestos and DNA double strand breaks. Cancer research. 1999;59:298-300.
60.Bowling AC, Beal MF. Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci. 1995;56:1151-1171.
61.Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis chemical reviews. 1995;95(1):69-96 DOI: 10.1021/cr00033a004
62.Jenner P, Dexter DT, Sian J, Schapira AH, Marsden CD. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. The royal kings and queens parkinson's disease research group. Ann Neurol. 1992;32:82-87.
63.Broe GA, Henderson AS, Creasey H. A case control study of Alzheimer's disease in Australia. Neurology. 1990;40:1698-1707.
64.Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov. 2002;1:153-161.
65.Sherrington R, Rogaev EI, Liang Y. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature. 1995;375:754-760.
66.Gutteridge JM, Mitchell J. Redox imbalance in the critically ill. Br Med Bull. 1999;55:49-75.
67.Larson RA. The antioxidants of higher plants. Phytochem. 1988;27:969-978.
68.Papas AM. Diet and antioxidant status. Food Chem Toxicol. 1999;37:999-1007.
69.Dewi RT, Tachibana S, Itoh K, Ilyas M. Isolation of Antioxidant Compounds from Aspergillus terreus LS01. J Microbial Biochem Technol. 2012;4:010-014. doi:10.4172/1948-5948.1000065
70.Dewi RT, Tachibana S, Darmawan A. Effect on α-glucosidase inhibition and antioxidant activities of butyrolactone derivatives from Aspergillus terreus MC751. Medicinal Chemistry Research. 2014;23:454-460.
71.Guo C-J, Yeh H-H, Chiang Y-M. Biosynthetic Pathway for Epipolythiodioxopiperazine acetylaranotin in Aspergillus terreus revealed by genome-based deletion analysis. Journal of the American Chemical Society. 2013;135:7205-7213. doi:10.1021/ja3123653.
72.Gerke J, Bayram Ö, Feussner K. Breaking the silence: protein stabilization uncovers silenced biosynthetic gene clusters in the fungus Aspergillus nidulans. Applied and Environmental Microbiology. 2012;78:8234-8244. doi:10.1128/AEM.01808-12.
73.Frisvad JC. Taxonomy, chemodiversity, and chemoconsistency of Aspergillus,Penicillium, and Talaromyces species. Frontiers in Microbiology. 2014;5:773. doi:10.3389/fmicb.2014.00773.
74.Subramaniyam R, Vimala R. Solid state and submerged fermentation for the production of bioactive substances: a comparative study. International Journal of Science and Nature. 2012;3:480-486.
75.Jia Z, Zhang X, Zhao Y, Cao X. Enhancement of lovastatin production by supplementing polyketide antibiotics to the submerged culture of Aspergillus terreus. Appl Biochem Biotechnol. 2010;160:2014-2025.
76.Faseleh Jahromi M, Liang JB, Ho YW, Mohamad R, Goh YM, Shokryazdan P, et al. Lovastatin production by Aspergillus terreus using agro-biomass as substrate in solid state fermentation. Journal of Biomedicine and Biotechnology. 2012;12:196-264. doi:10.1155/2012/196264.
77.Nielsen MT, Nielsen JB, Anyaogu DC. Heterologous reconstitution of the intact geodin gene cluster in Aspergillus nidulans through a simple and versatile PCR based approach. Virolle M-J, ed. PLoS ONE. 2013;71:872-871. doi:10.1371/journal.pone.0072871.
78.Bizukojc M, Pawlak M, Boruta T, Gonciarz J. Effect of pH on biosynthesis of lovastatin and other secondary metabolites by Aspergillus terreus ATCC 20542. J Biotechnol. 2012;162:253-261.
79.Mahmoud GA, Koutb MM, Morsy FM, Bagy MK. Characterization of lipase enzyme produced by hydrocarbons utilizing fungus Aspergillus terreus. European Journal of Biological Research. 2015;5:70-77.
80.趙昱揚,費氏麴菌二次代謝物之培養最適化條件與生物活性研究,碩士論文。2012。
81.Shameem M, Kumar R, Krishna S. Synthetic modified pyrrolo[1,4] benzodiazepine molecules demonstrate selective anticancer activity by targeting the human ligase 1 enzyme: An in silico and in vitro mechanistic study. Chem Biol Interact. 2015;237:115-124.
82.Choi EJ, Park JS, Kim YJ. Apoptosis-inducing effect of diketopiperazine disulfides produced by Aspergillus sp. KMD 901 isolated from marine sediment on HCT116 colon cancer cell lines. J Appl Microbiol. 2011;110:304-313.
83.Wijeratne EM, Turbyville TJ, Zhang Z. Cytotoxic constituents of Aspergillus terreus from the rhizosphere of opuntia versicolor of the sonoran desert. J Nat Prod. 2003;66:1567-1573.
84.Wang F, Li Y, Ma Z, Wang X, Wang Y. Structural determinants of benzodiazepinedione/peptide-based p53-HDM2 inhibitors using 3D-QSAR, docking and molecular dynamics. J Mol Model. 2012;18:295-306.
85.Loudni L, Roche J, Potiron V. Design, synthesis and biological evaluation of 1,4-benzodiazepine-2,5-dione-based HDAC inhibitors. Bioorg Med Chem Lett. 2007;17:4819-4823.
86.Lazarova DL, Bordonaro M. Vimentin, colon cancer progression and resistance to butyrate and other HDACis. J Cell Mol Med. 2016;20:989-993.
87.Chen Y, Le V, Xu X, Shao X, Liu J, Li Z, et al. Discovery of novel 1,5-benzodiazepine-2,4-dione derivatives as potential anticancer agents. Bioorg Med Chem Lett. 2014;24:3948-3951.
88.Braccioa MD, Grossia G, Cerutib M, Roccob F, Loddoc R, Sannac G, Busonerac B, Murredduc M, Marongiuc ME, et al. 1,5-Benzodiazepines XIV. Synthesis of new substituted 9H-bis-[1,2,4]triazolo[4,3-a:3′,4′-d] [1,5]benzodiazepines and relate compounds endowed with in vitro cytotoxic properties. Il Farmaco.2005;60:113-125.
89.Dewi RT, Tachibana S, Fajriah S, Hanafi M. α-Glucosidase inhibitor compounds from Aspergillus terreus RCC1 and their antioxidant activity. Medicinal Chemistry Research. 2015;24:737-743.
90.Zhang P, Li XM, Wang JN, Li X, Wang BG. New butenolide derivatives from the marine-derived fungus Paecilomyces variotii with DPPH radical scavenging activity. Phytochemistry Letters. 2015;11:85-88.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊