跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳琬蓁
研究生(外文):Wan-Chen Chen
論文名稱:開發一介孔洞矽酸鈣奈米微粒於根管填充材料使用
論文名稱(外文):The Mesoporous Calcium–Silicate Nanoparticles Properties for Endodontic Material
指導教授:黃翠賢
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:牙醫學系碩士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:42
中文關鍵詞:藥物釋放載體牙本質再生介孔洞矽酸鈣牙髓細胞
外文關鍵詞:Drug-deliveryodontogenicmesoporouscalcium silicatedental pulp cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以矽酸鈣為主的材料在臨床應用上扮演了很重要角色,此類的材料不僅可以誘導骨/牙骨質組織再生,甚至還可以抑制細菌的生長能力。本研究的目的是製備出一新式介孔洞矽酸鈣奈米微粒(mesoporous calcium–silicate,MCS),除了具有優異的磷灰石礦化性質,甚至具有良好的成骨性質、藥物載體釋放和抗菌特性等特性,以符合用於牙髓充填材料的應用。MCS奈米微粒主要是藉由溶膠-凝膠法所製備而成。此外,介孔洞結構、比表面積、孔洞體積以及奈米微粒的體積和型態都進行了詳細的分析。而磷灰石礦化能力、體外促進細胞分化、藥物傳送釋放機制以及抗菌功能也會有更進一步的研究。結果顯示,本研究中使用此簡便模板的方法所合成出的MCS奈米微粒的大小約為200 nm,並具有極高的表面積和孔洞體積,平均內孔徑約為3.05 nm。另外,在MCS奈米微粒也可被做作藥物載體,以維持慶大霉素的持續釋放。也可從牙本質生成的相關蛋白分析證實MCS奈米微粒可促進細胞分化為牙本質。根據上述的結果顯示,MCS奈米微粒是一具有極佳生物相容性且可促進牙本質組織再生的生醫,未來應可應用於臨床上作為牙髓根管充填材料的使用。


Calcium silicate-based materials were playing an important role in endodontic materials, inducing bone/ cementum tissue regeneration and inhibiting bacterial viability. The aim of this study is to prepare novel mesoporous calcium–silicate (MCS) nanoparticles with excellent apatite-mineralization, as well as osteogenic, drug-delivery and antibacterial characteristics for endodontic materials. The MCS nanoparticles were prepared by sol-gel methods. In addition, the mesoporous structure, specific surface area, pore volume and morphology of MCS nanoparticles were been analyzed. The apatite-mineralization ability, in vitro odontogenic differentiation, drug delivery and antibacterial properties were further investigated. The results indicate that MCS nanoparticles with a size of 200 nm were synthesized using a facile template method and showed a high specific surface area and pore volume, with internal mesopores (average pore size: 3.05 nm). Furthermore, the MCS nanoparticles can be used as a drug carrier to maintain the sustained release of gentamicin. Differentiation into odontoblasts was confirmed by odontogenic-related protein. Based on this work, the MCS nanoparticles are potentially useful endodontic materials for dental pulp tissue regenerative materials with biocompatibility and odontogenesis.


Contents
Abstract I
Chinese Abstract II
Contents III
List of Figures V
Chapter 1 Introduction 1
Calcium Silicate Materials 1
Si Effects 3
Nanoparticle 4
Growth Factors 5
Hypothesis 6
Chapter 2 Materials and Methods 7
Synthesis and Characterization of Mesoporous CS Nanoparticles 7
In Vitro Soaking 7
Gentamicin Loading and Release Kinetic 8
Antibacterial Properties 9
HDPCs Isolation and Culture 10
Cell Viability 10
Cell Morphology 11
FGF-2 Loading 11
Alkaline Phosphatase Activity Assay 12
The Enzyme-Linked Immunosorbent Assay 12
Statistical Analysis 13
Chapter 3 Results 14
Physicochemical Properties 14
Apatite Formation of CS and MesoCS Cements 14
Antibacterial Activity of Gentamycin-loaded Cements 15
Cell Adhesion and Proliferation 16
Odontogenesis differentiation 17
Chapter 4 Discussion 19
Chapter 5 Conclusion 22
References 23

List of Figures
Fig 1. TEM micrographs of CS powder and MesoCS powder 31
Fig 2. Small-angle XRD patterns of CS and MesoCS. 32
Fig 3. Wide-range XRD patterns of CS and MesoCS. 33
Fig 4. Pore-size distribution in MesoCS calculated from N2 adsorption–desorption data using the BET method. V: volume of adsorbed N2; D: pore diameter. 34
Fig 5. The evolution of Ca and Si ions concentration in SBF with CS and MesoCS cements as a function of immersion time. 35
Fig 6. SEM micrographs of cements before and after soaking in SBF. 36
Fig 7. Release amount of gentamycin from CS and MesoCS cements in PBS (pH 7.4) at 37°C. 37
Fig 8. The antibacterial activity of Gen-loaded CS and MesoCS cements against S. aureus. #Statistically significant difference (P < .05) from the cements without loading Gen; *Statistically significant difference (P < .05) from the Gen-CS cement. 38
Fig 9. (A) Adhesion and (B) proliferation of hDPCs cultured on different cements. *Statistically significant difference (P < .05) from the Ctl group. 39
Fig 10. Fluorescent images of nuclei (blue) and cytoskeleton (red) staining in hDPCs cultured on cements for 6 h; and SEM micrographs of hDPCs cultured on cements for 1 and 3 days. 40
Fig 11. (A) ALP activity of hDPCs cultured on specimens for 3 and 7 days. (B) OC, (C) DMP-1 and (D) DSP concentration of hDPCs cultured on CS with various hinokitiol concentrations for 7 and 14 days. # Significant difference (p < 0.05) compared with raw material. * Significant difference (p < 0.05) compared with CS-FGF2. 41
Fig 12. The patient gave informed consent, and approval from the Ethics Committee of the Chung Shan Medicine University Hospital was obtained (CSMUH No. CS14117). 42



References
[1]S.C. Huang, B.C. Wu, C.T. Kao, T.H. Huang, C.J. Hung, M.Y. Shie, Role of the p38 pathway in mineral trioxide aggregate-induced cell viability and angiogenesis-related proteins of dental pulp cell in vitro, Int Endod J. 48 (2015) 236–245.
[2]C.H. Liu, T.H. Huang, C.J. Hung, W.Y. Lai, C.T. Kao, M.Y. Shie, The synergistic effects of fibroblast growth factor-2 and mineral trioxide aggregate on an osteogenic accelerator in vitro, Int Endod J. 47 (2014) 843–853.
[3]C.J. Hung, C.T. Kao, M.Y. Shie, T.H. Huang, Comparison of host inflammatory responses between calcium-silicate base material and intermediate restorative material, J Dent Sci. 9 (2014) 158–164.
[4]T.T. Hsu, C.H. Yeh, C.T. Kao, Y.W. Chen, T.H. Huang, J.J. Yang, et al., Antibacterial and odontogenesis efficacy of mineral trioxide aggregate combined with CO2 laser treatment, J Endod. 41 (2015) 1073–1080.
[5]M.H. Huang, Y.F. Shen, T.T. Hsu, T.H. Huang, M.Y. Shie, Physical characteristics, antimicrobial and odontogenesis potentials of calcium silicate cement containing hinokitiol, Mater Sci Eng C Mater Biol Appl. 65 (2016) 1–8.
[6]M.H. Huang, C.T. Kao, Y.W. Chen, T.T. Hsu, D.E. Shieh, T.H. Huang, et al., The synergistic effects of chinese herb and injectable calcium silicate/b-tricalcium phosphate composite on an osteogenic accelerator in vitro, J Mater Sci: Mater Med. 26 (2015) 161.
[7]T.T. Hsu, C.T. Kao, Y.W. Chen, T.H. Huang, J.J. Yang, M.Y. Shie, The synergistic effects of CO2 laser treatment with calcium silicate cement of antibacterial, osteogenesis and cementogenesis efficacy, Laser Phys Lett. 12 (2015) 055602.
[8]W.Y. Lai, Y.W. Chen, C.T. Kao, T.T. Hsu, T.H. Huang, M.Y. Shie, Human dental pulp cells responses to apatite precipitation from dicalcium silicates, Materials. 8 (2015) 4491–4504.
[9]Y.W. Chen, C.H. Yeh, M.Y. Shie, Stimulatory effects of the fast setting and degradable Ca–Si–Mg cement on both cementogenesis and angiogenesis differentiation of human periodontal ligament cells, J Mater Chem B. 3 (2015) 7099–7108.
[10]M.G. Tu, Y.W. Chen, M.Y. Shie, Macrophage-mediated osteogenesis activation in co-culture with osteoblast on calcium silicate cement, J Mater Sci: Mater Med. 26 (2015) 276.
[11]Y.W. Chen, T.T. Hsu, K. Wang, M.Y. Shie, Preparation of the fast setting and degrading Ca-Si-Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells, Mater Sci Eng C Mater Biol Appl. 60 (2016) 374–383.
[12]N.J. Chang, Y.W. Chen, D.E. Shieh, H.Y. Fang, M.Y. Shie, The effects of injectable calcium silicate-based composites with the Chinese herb on an osteogenic accelerator in vitro, Biomed Mater. 10 (2015) 055004.
[13]E. Carlisle, Silicon: a possible factor in bone calcification, Science. 167 (1970) 279–280.
[14]E. Carlisle, Silicon: an essential element for the chick, Science. 178 (1972) 619–621.
[15]E.A. Effah Kaufmann, P. Ducheyne, I.M. Shapiro, Evaluation of osteoblast response to porous bioactive glass (45S5) substrates by RT-PCR analysis, Tissue Eng. 6 (2000) 19–28.
[16]I. Xynos, A.J. Edgar, L.D.K. Buttery, J.M. Polak, Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis, Biochem Biophys Res Commun. 276 (2000) 461–465.
[17]J.E. Gough, J.R. Jones, L.L. Hench, Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold, Biomaterials. 25 (2004) 2039–2046.
[18]O. Tsigkou, J.R. Jones, J.M. Polak, M.M. Stevens, Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements, Biomaterials. 30 (2009) 3542–3550.
[19]M.Y. Shie, S.J. Ding, H.C. Chang, The role of silicon in osteoblast-like cell proliferation and apoptosis, Acta Biomater. 7 (2011) 2604–2614.
[20]S.L. Godwin, S.P. Soltoff, Extracellular calcium and platelet-derived growth factor promote receptor-mediated chemotaxis in osteoblasts through different signaling pathways, J Biol Chem. 272 (1997) 11307–11312.
[21]S.D. McCullen, J. Zhan, M.L. Onorato, S.H. Bernacki, E.G. Loboa, Effect of varied ionic calcium on human adipose-derived stem cell mineralization, Tissue Eng Part A. 16 (2010) 1971–1981.
[22]P. Wilsonjr, H. Amstutz, A. CZERNIECKI, E. Salvati, D. Mendes, Total hip replacement with fixation by acrylic cement, J Bone Joint Surg Am. 54 (1972) 207–221.
[23]X. Shi, V. Castranova, B. Halliwell, V. Vallyathan, Reactive oxygen species and silica‐induced carcinogenesis, J Toxicol Environ Health B Crit Rev. 1 (1998) 181–197.
[24]M. Ding, X. Shi, Z. Dong, F. Chen, Y. Lu, V. Castranova, et al., Freshly fractured crystalline silica induces activator protein-1 activation through ERKs and p38 MAPK, J Biol Chem. 274 (1999) 30611–30616.
[25]M.S. Islam, H.N. Choi, W.S. Choi, H.J. Lee, Polyelectrolyte-mediated hierarchical mesoporous calcium silicates: a platform for drug delivery carrier with ultrahigh loading capacity and controlle release behavior, J Mater Chem B. 3 (2015) 1001–1009.
[26]Q. Gan, J. Zhu, Y. Yuan, H. Liu, J. Qian, Y. Li, et al., A dual-delivery system of pH-responsive chitosan-functionalized mesoporous silica nanoparticles bearing BMP-2 and dexamethasone for enhanced bone regeneration, J Mater Chem B. 3 (2014) 2056–2066.
[27]C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature. 359 (1992) 710–712.
[28]L. Xiong, X. Du, B. Shi, J. Bi, F. Kleitz, S.Z. Qiao, Tunable stellate mesoporous silica nanoparticles for intracellular drug delivery, J Mater Chem B. 3 (2015) 1712–1721.
[29]C.C. Su, C.T. Kao, C.J. Hung, Y.J. Chen, T.H. Huang, M.Y. Shie, Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate, Mater Sci Eng C Mater Biol Appl. 37 (2014) 156–163.
[30]C.C. Ho, S.J. Ding, The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery, J Mater Sci: Mater Med. 24 (2013) 2381–2390.
[31]N. Shadjou, M. Hasanzadeh, Bone tissue engineering using silica-based mesoporous nanobiomaterials: Recent progress, Mater Sci Eng C Mater Biol Appl. 55 (2015) 401–409.
[32]F.Y. Hsu, M.R. Lu, R.C. Weng, H.M. Lin, Hierarchically biomimetic scaffold of a collagen-mesoporous bioactive glass nanofiber composite for bone tissue engineering, Biomed Mater. 10 (2015) 025007.
[33]Y.F. Shen, C.C. Ho, M.Y. Shie, K. Wang, H.Y. Fang, Hinokitiol-loaded mesoporous calcium silicate nanoparticle induce apoptotic cell death through regulation of the function of MDR1 in lung adenocarcinoma cells, Materials. 9 (2016) 306.
[34]P.J. Marie, H. Miraoui, N. Sévère, FGF/FGFR signaling in bone formation: Progress and perspectives, Growth Factors. 30 (2012) 117–123.
[35]P.J. Marie, Fibroblast growth factor signaling controlling bone formation: An update, Gene. 498 (2012) 1–4.
[36]C.H. Liu, C.J. Hung, T.H. Huang, C.C. Lin, C.T. Kao, M.Y. Shie, Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway, Mater Sci Eng C Mater Biol Appl. 43 (2014) 359–366.
[37]A. Montero, Y. Okada, M. Tomita, M. Ito, H. Tsurukami, T. Nakamura, et al., Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation, J Clin Invest. 105 (2000) 1085–1093.
[38]M.Y. Shie, S.J. Ding, Integrin binding and MAPK signal pathways in primary cell responses to surface chemistry of calcium silicate cements, Biomaterials. 34 (2013) 6589–6606.
[39]H.J. Kim, J.H. Kim, S.C. Bae, J.Y. Choi, H.M. Ryoo, The protein kinase C pathway plays a central role in the fibroblast growth factor-stimulated expression and transactivation activity of Runx2, J Biol Chem. 278 (2003) 319–326.
[40]G. Xiao, D. Jiang, R. Gopalakrishnan, R.T. Franceschi, Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2, J Biol Chem. 277 (2002) 36181–36187.
[41]C.-H. David Chen, C.C. Chen, M.Y. Shie, C.-H. Huang, S.J. Ding, Controlled release of gentamicin from calcium phosphate/alginate bone cement, Mater Sci Eng C Mater Biol Appl. 31 (2011) 334–341. doi:10.1016/j.msec.2010.10.002.
[42]Y.W. Chen, C.C. Ho, T.H. Huang, T.T. Hsu, M.Y. Shie, The ionic products from Mineral Trioxide Aggregate induced odontogenic differentiation of dental pulp cells via activation of the Wnt/β-catenin signaling pathway, J Endod. (2016). doi:10.1016/j.joen.2016.04.019.
[43]C.T. Kao, T.H. Huang, Y.J. Chen, C.J. Hung, C.C. Lin, M.Y. Shie, Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement, Mater Sci Eng C Mater Biol Appl. 43 (2014) 126–134.
[44]Y. Zhou, C. Wu, Y. Xiao, The stimulation of proliferation and differentiation of periodontal ligament cells by the ionic products from Ca7Si2P2O16 bioceramics, Acta Biomater. 8 (2012) 2307–2316.
[45]C. Wu, J. Chang, Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application, Interface Focus. 2 (2012) 292–306.
[46]J. Anzai, M. Kitamura, T. Nozaki, T. Nagayasu, A. Terashima, T. Asano, et al., Effects of concomitant use of fibroblast growth factor (FGF)-2 with beta-tricalcium phosphate (β-TCP) on the beagle dog 1-wall periodontal defect model, Biochem Biophys Res Commun. 403 (2010) 345–350.
[47]R.A. Perez, A. El-Fiqi, J.H. Park, T.H. Kim, J.-H. Kim, H.W. Kim, Therapeutic bioactive microcarriers: co-delivery of growth factors and stem cells for bone tissue engineering, Acta Biomater. 10 (2014) 520–530.
[48]T. Nakamura, Y. Hara, M. Tagawa, M. Tamura, T. Yuge, H. Fukuda, et al., Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture, J Bone Miner Res. 13 (1998) 942–949.
[49]B.C. Wu, S.C. Youn, C.T. Kao, S.C. Huang, C.J. Hung, M.Y. Chou, et al., The effects of calcium silicate cement/fibroblast growth factor-2 composite on osteogenesis accelerator in human dental pulp cells, J Dent Sci. 10 (2015) 145–153.
[50]C.J. Hung, H.I. Hsu, C.C. Lin, T.H. Huang, B.C. Wu, C.T. Kao, et al., The role of integrin αv in proliferation and differentiation of human dental pulp cell response to calcium silicate cement, J Endod. 40 (2014) 1802–1809.
[51]S.H. Huang, Y.J. Chen, C.T. Kao, C.C. Lin, T.H. Huang, M.Y. Shie, Physicochemical properties and biocompatibility of silica doped β-tricalcium phosphate for bone cement, J Dent Sci. 10 (2014) 282–290.
[52]S.C. Huang, B.C. Wu, S.J. Ding, Stem cell differentiation-induced calcium silicate cement with bacteriostatic activity, J Mater Chem B. 3 (2015) 570–580.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top