跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/20 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡妤芯
研究生(外文):Yu-Hsin Jian
論文名稱:不同體型之孩童與成人電腦斷層劑量長度積轉換有效劑量因數評估
論文名稱(外文):Size-specific Conversion Factors Used to Evaluate Effective Dose from Dose-Length Product for Children and Adult at CT Scans: Phantoms Study
指導教授:陳拓榮陳拓榮引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生物醫學科學學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:112
中文關鍵詞:電腦斷層有效直徑劑量長度積有效劑量轉換因數
外文關鍵詞:CTeffective diameterDLPeffective doseconversion factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臨床電腦斷層(computed tomography, CT)檢查前後,在其操作的螢幕端能顯示該次掃描的劑量資訊-劑量長度乘積(dose-length product, DLP)。惟DLP僅是直徑限制在16公分或32公分壓克力假體的劑量參數,尚不能直接代表不同體型或胖瘦的有效劑量。藉由DLP轉換有效劑量的因數,或稱k值,可將DLP換算成有效劑量,但仍受限於不同的體型大小。因此本研究的目的是提供一種簡易可對應不同體型的轉換因數,方便將電腦斷層掃描後的DLP直接換算成有效劑量。我們將分析孩童與成人對應之頭、頸、胸、腹部、骨盆和全身六個電腦斷層掃描部位的劑量長度乘積轉換有效劑量因數。本研究使用擬人假體實驗和蒙地卡羅模擬兩種方式,進行六個掃描部位k值的評估。我們將校正後的熱發光劑量計填放至1、5、10歲和成人擬人假體內,進行掃描取得掃描之DLP和有效劑量後,進而分析實驗的k值(k-factorE)。另以蒙地卡羅劑量模擬軟體,取得1、5、10歲和成人數學假體掃描之劑量結果,再針對模擬的k值(k-factorM)進行分析,其中模擬的掃描參數與掃描範圍均參考擬人假體實驗。由兩種方式分析的k-factorE與k-factorM結果顯示,頭部掃描的k值皆為六個掃描部位中最小的,k值最大的部位皆為胸部或腹部。另外隨著假體體型越小其k-factor會越大,上述擬人實驗與模擬之k值有相同現象。綜合k-factorE與k-factorM的結果,我們導入AAPM第204號報告的有效直徑概念,推估得到不同有效直徑的假體,進行電腦斷層掃描時六個部位的轉換因數函數。期待藉由臨床直接量測和估算病人體型的有效直徑,簡便地對應於掃描部位的k值函數,能提供DLP對應不同體型病患之有效劑量,以利醫師或放射技術師對施做該檢查的參考。

The computed tomography (CT) terminal can show dose-length product (DLP) on the monitor before and after clinical scan. However, DLP only presents the dose information for the diameter of 16 cm or 32 cm acrylic phantoms. It cannot be directly represented the effective dose (ED) for different size body. Using conversion factor, or k- factor, DLP can be simply converted into effective dose, but it is still limited to some assigned body sizes or weights. The purpose of this study is to provide k-factors which directly convert the DLP into ED for specific-size of the body. This study would analyze the k-factor, which may correspond to different size of children and adult, for six clinical CT scan ranges, that are head, neck, chest, abdomen, pelvis and whole body (WB). The k-factor was studied by two methods. One is experimental method with the anthropomorphic phantom equipped with thermoluminescent dosimeters (TLD), and the other is simulation method with mathematical phantom and Monte Carlo calculation. In the phantom experiment, the phantoms aged of 1, 5, 10 years and adult underwent the CT scans individually. After acquiring the DLP and ED, the experimental k-factor, k-factorE, can be obtained. In the simulation method, the simulated k-factor, k-factorM, can be obtained after analyzing the DLP and ED that derived from the CT Monte Carlo simulation software. The head scan shows a lowest value and the chest or abdomen shows a highest value of k-factors. The trend of experimental and simulation shows the lower of body size and higher of k-factor value. Finally, this study introduces the concept of effective diameter that mentioned in the AAPM Report no.204. We combine k-factor and the effective diameter estimated by the anthropomorphic and mathematical phantoms. The k-factor functions of effective diameter for six scanned regions were presented. They can be easily and practically applied to evaluate the effective dose of the patients after measuring the physical size of the patient on the scanned region. The k-factor function for specific-size of body could be a convenient dose reference for physician, radiologist or radiology technician in CT clinical scan procedure.

目錄……………………………………………………………………………..........Ⅰ
圖目錄………………………………………………………………………...…...…Ⅲ
表目錄…………………………………………………………………………...…...Ⅳ
中文摘要………………………………………………………………………...…...Ⅷ
Abstract………………………………………………………………………..….….Ⅸ
謝誌……………………………………………………………………………..........Ⅹ
第一章 前言……………………………………………………………………...…...1
一、 研究動機………………………………………………………………..…..1
二、 文獻回顧………………………………………………………………..…..4
三、 研究目的……………………………………………………………….…...5
第二章 研究材料………………………………………………………………….….6
一、 實驗流程圖…………………………………………………………………6
二、 電腦斷層儀…………………………………………………………………7
1. Siemens電腦斷層儀…………………………………………………..7
2. Toshiba電腦斷層儀…………………………………...………………8
三、 擬人型假體…………………………………………………………………9
四、 熱發光劑量計……………………………………………………………..10
五、 蒙地卡羅劑量模擬軟體………………………………………….……….11
1. ImpactDOSE…………………………………………….……………..11
2. ImPACT CT……………………………………………………………13
第三章 研究方法………………………………………………………….………...15
一、 熱發光劑量計的使用…………………………………….………………..15
1. TLD校正…………………………………….………………………..15
2. 迴火…………….…………………………….………………………..16
3. 計讀…………….…………………………….………………………..16
二、 熱發光劑量計佈點方式………………………………………………...…17
三、 電腦斷層掃描範圍與參數……………………………………………...…18
1. 掃描範圍………………….………………………………………...…18
2. 掃描參數………………….………………………………………...…19
四、 假體實驗有效劑量與k-factor計算…………………………………...…..20
1. 有效劑量計算……………………...……………………………...…..20
2. k-factor計算……………………...……………………………...…….21
五、 蒙地卡羅有效劑量與k-factor計算…...………………………..……….21
六、 有效直徑…...……………………………..……………………..…...…….22
第四章 研究結果………………………………………...………………………….23
一、 器官劑量-擬人假體實驗……………………..………………………….23
1. 1歲假體……………….…………………..………………………….23
2. 5歲假體……………….…………………..………………………….26
3. 10歲假體…………….…………………..…………………………...29
4. topogram分析比較….…………………..…………………………....32
二、 器官劑量-蒙地卡羅模擬…..…………………………..............35
1. 1歲假體…..…………………………………….……………………...35
2. 5歲假體…..…………………………………….……………………...35
3. 10歲假體…..…………………………………….…………………….38
4. 成人假體…..…………………………………….…………………….38
三、 計算有效直徑之擬人假體體寬與體厚量測……….…………………...41
第五章 分析與討論…..…………………………………….……………………….45
一、 有效劑量-擬人假體實驗……………………….….…………………….45
1. 1歲假體……………………...……………….……………………….45
2. 5歲假體……………………...……………….……………………….46
3. 10歲假體……………………...……………….……………………...46
4. topogram分析比較…………...……………….……………………....53
二、 有效劑量-蒙地卡羅模擬………………………………………...………56
1. 1歲假體……………………..………………………………...………56
2. 5歲假體……………………..………………………………...………57
3. 10歲假體……………………..………………………………...……..58
4. 成人假體……………………..………………………………...……...59
三、 k-factor分析…………………………...……...................61
1. 擬人假體實驗....................................61
2. 蒙地卡羅模擬...............................66
四、 不同體型k-factor對應...........................73
五、 研究限制................................77
第六章 結論............................................78
第七章 參考文獻...................................79
附件..............................83


1.Evens RG, Mettler FA, National CT use and radiation exposure: United States 1983. AJR Am J Roentgenol, 1985, 144(5): 1077–1081.
2.Bahador B, Trends in diagnostic imaging to 2000. London: Financial Times Pharmaceuticals and Healthcare Publishing, 1996.
3.Mettler FA, Jr, Wiest PW, Locken JA, Kelsey CA. CT scanning: patterns of use and dose. J Radiol Prot, 2000, 20(4): 353-359.
4.Brix G, Nagel HD, Stamm G, Veit R, Lechel U, Griebel J, Galanski M, Radiation exposure in multi-slice versus single-slice spiral CT: results of a nationwide survey. Eur Radiol, 2005, 13(8): 1979–1979.
5.UNSCEAR, 2000, United Nations Scientific Committee on the Effects of Atomic Radiation. Source and Effects of Ionizing Radiation. UNSCEAR 2000 Report to the General Assembly. Annex D: Medical Radiation Exposures. United Nations, New York, NY.
6.Chen TR, Tyan YS, Teng PS, Chou JH, Yeh CY, Shao CH, Tung CJ, Population dose from medical exposure in Taiwan for 2008. Med Phys, 2011, 38(6): 3139-3148.
7.Frush DP, Donnelly LF, Helical CT in children: technical considerations and body applications. Radiology, 1998, 209(1): 37–48.
8.Coren ME, Ng V, Rubens M, Rosenthal M, Bush A, The value of ultrafast computed tomography in the investigation of pediatric chest disease. Pediatr Pulmonol, 1998, 26(6): 389–395.
9.Frush DP, Applegate K, Computed tomography and radiation: understanding the issues, J Am Coll Radiol, 2004, 1(2): 113-119.
10.BEIR V (Committee on the Biological Effects of Ionizing Radiations). Health effects of exposure to low levels of ionizing radiation. Washington,DC: National Academy Press, 1990.
11.Brenner D, Elliston C, Hall E, Berdon W, Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol, 2001, 176(2): 289-296.
12.Hunold P, Vogt FM, Schmermund A, Debatin JF, Kerkhoff G, Budde T, Erbel R, Ewen K, Barkhausen J, Radiation exposure during cardiac CT: Effective doses at multi-detector row CT and electron-beam CT. Radiology, 2003, 226(1): 145-52.
13.Kalender WA, Schmidt B, Zankl M, Schmidt M, A PC program for estimating organ dose and effective dose values in computed tomography. European Radiology, 1999, 9(3): 555-562.
14.EUR16262, 1999, European Guidelines on Quality Critieria for Computed Tomography, EUR Report 16262, Luxembourg, Office for Official Publications of the European Communities.
15.AAPM, 2008, The measurement, reporting, and management of radiation dose in CT. Report of AAPM Task Group 23: CT Dosimetry Diagnostic Imaging Council CT Committee. AAPM Report No. 96.
16.ICRP, 1991, The 1990 recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann ICRP 21 (1-3).
17.ICRP, 2007, The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 37 (2-4).
18.Deak PD, Smal Y, Kalender WA, Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology, 2010, 257(1): 158-166.
19.Huda W, Ogden KM, Khorasani MR, Converting dose-length product to effective dose at CT. Radiology, 2008, 248(3): 995-1003.
20.Saltybaeva N, Jafari ME, Hupfer M, Kalender WA, Estimates of effective dose for ct scans of the lower extremities. Radiology, 2014, 273(1): 153-159.
21.America Association of Physicists in Medicine, 2011, Size Specific Dose Estimates (SSDE) in Pediatric and Adult Body CT Examinations. AAPM No. 204 (2-4).
22.Duan X, Wang J, Christner JA, Leng S, Grant KL, McCollough CH, Dose reduction to anterior surfaces with organ-based tube-current modulation: evaluation of performance in a phantom study. AJR Am J Roentgenol, 2011, 197(3): 689-695.
23.Ketelsen D, Buchgeister M, Fenchel M, Schmidt B, Flohr TG, Syha R, Thomas C, Tsiflikas I, Claussen CD, Heuschmid M, Automated Computed Tomography Dose-Saving Algorithm to Protect Radiosensitive Tissues. Invest Radiol, 2012, 47(2): 148–152.
24.洪世凱、黃正仲主譯,分子輻射生物,2版,新北:藝軒,頁188-192,2013。
25.Yamauchi-Kawaura C1, Yamauchi M, Imai K, Ikeda M, Aoyama T, Image quality and age-specific dose estimation in head and chest CT examinations with organ-based tube-current modulation. Radiat Prot Dosimetry, 2013, 157(2): 193-205.
26.張育誠,台灣電腦斷層掃描劑量參數調查與國民平均年有效劑量評估,中山醫學大學生物醫學科學學系碩士論文,台中,2015。
27.Christianne L, Bernhard S, Dose Reduction in Computed Tomography Siemens Perspective. Radiation Dose from Multidetector CT, Part of the series Medical Radiology, 2012, 603-615.
28.Cristy M, Mathematical phantoms representing children of various ages for use in estimates of internal dose. U.S. Nuclear Regulatory Commission Rep.1980 NUREG/CR-1159 (also Oak Ridge National Laboratory Rep. ORNL/NUREG/TM-367).
29.Cristy M, Acitive marrow distribution versus age. Phys Med Biol, 1981, 26(3): 389-400.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊