跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 17:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈思與
研究生(外文):Sih-Yu Shen
論文名稱:評估全景式乳房攝影與數位式乳房斷層攝影之劑量分布
論文名稱(外文):Measurement of dose distributions for full-field digital mammography and digital breast tomosynthesis
指導教授:董尚倫
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生物醫學科學學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:126
中文關鍵詞:乳房攝影Bolus熱發光劑量計平均乳腺劑量
外文關鍵詞:mammographyBolusTLDAGD
相關次數:
  • 被引用被引用:1
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
前言
乳房攝影為臨床上偵測乳癌的一項重要檢查,近年來常使用全景式乳房攝影(full-field digital mammography, FFDM)與數位式乳房斷層攝影(digital breast tomosynthesis, DBT)技術進行乳篩。目前臨床上常用之乳房假體多為剛體結構(rigid construction),其並不能呈現乳房壓迫時所導致的形變。先前的研究已對Bolus假體之厚度量測與影像品質進行探討,而本研究之目的為評估Bolus軟性材質乳房假體經全景式乳房攝影與數位式乳房斷層攝影之劑量分布情形。
材料與方法
本研究以層狀Bolus假體作為可壓迫假體進行實驗,以兩種攝影系統(Siemens Novation DR and Hologic Selenia Dimensions)進行攝影。在劑量部分,我們使用TLD-100H (LiF:Mg, Cu, P) 進行量測,並以Harshaw 3500型 TLD計讀儀器進行計讀。在空間與環境劑量方面,將TLD-100H黏貼於攝影空間中離地面90、120、140 cm處,分別模擬性腺、乳房與甲狀腺位置。在探討Bolus假體劑量方面,將TLD置於Bolus假體(2-8 cm)表面與不同深度間,使用FFDM與DBT系統搭配不同靶/濾片組合(Mo/Mo、Mo/Rh、W/Rh、W/Ag、W/Al)進行攝影,以評估回散射因子(backscatter factor, BSF)與深部劑量分布。隨後評估每次攝影條件計算之AGD與不同厚度Bolus假體中央層量測劑量,求得AGD之轉換因子,其定義為Bolus中央層量測劑量與AGD之比值。在臨床應用部分,將TLD置於不同厚度之Bolus假體(2、4、6、8 cm)中央層,使用固定式與彈性式壓迫板搭配不同壓迫力(78.3, 117.4與156.6 N),以自動曝露控制模式(auto exposure control mode)進行攝影,並使用先前求得之AGD轉換因子評估Bolus假體之AGD。
結果與討論
在空間劑量分布方面,結果顯示在乳房位置之量測劑量高於甲狀腺與性腺位置之劑量。在環境劑量分布方面,左右側牆壁之量測劑量(0.828-1.650 mGy)高於前後側牆壁之量測劑量(0.001-0.408 mGy)。BSF方面,Bolus假體之BSF(1.082〜1.122 mGy/mGy)與目前常用乳房假體材質(PMMA,BR-12,BR-fat)的BSF(1.006-1.102 mGy/mGy)非常接近,且在歐洲規範之建議值範圍內(1.07-1.13 mGy/mGy)。在深部劑量方面,不同厚度Bolus假體(2-8 cm)之量測劑量隨假體厚度增加而下降。以FFDM模式攝影時,Bolus假體中央層之量測劑量分別為0.51±0.01、0.65±0.01、0.70±0.01、1.39±0.001、2.02±0.04、1.95±0.03與1.99±0.05 mGy;以Tomo模式攝影時,中央層之量測劑量分別為1.20±0.02、1.22±0.04、1.55±0.03、1.78±0.001、2.38±0.03、3.10±0.03以及3.63±0.02 mGy。結果顯示以Tomo模式攝影時,Bolus假體接收之AGD較FFDM模式攝影之AGD高。在AGD轉換因子方面,結果顯示以FFDM模式攝影時,AGD轉換因子隨Bolus假體厚度增加而上升(0.89-1.18 mGy/mGy);但以Tomo模式攝影時,AGD轉換因子則隨Bolus假體厚度增加而下降(0.78-0.90 mGy/mGy)。而在臨床應用方面,結果呈現TLD量測劑量(1.24-3.09 mGy)高於計算AGD(1.06-2.93 mGy)。使用彈性式與固定式壓迫板攝影時,AGD預測值與計算值之平均誤差分別為-8±7 %與4±12 %。
結論
在空間劑量分布方面,乳房位置之散射劑量高於甲狀腺與性腺位置。而在環境劑量分布方面,左右方向具有較高之散射劑量。在BSF部分,結果顯示Bolus假體之BSF與常用之硬質假體相似,此結果代表Bolus假體適合用於評估乳房攝影劑量。在AGD轉換係數方面,結果表示能夠以Bolus假體中央層之量測劑量評估AGD。在臨床應用中,TLD並沒有在壓迫的過程中損壞。由此可知,Bolus假體搭配TLD適合在臨床乳房攝影壓迫過程中用於劑量分布之量測。

Introduction
X-ray mammography is an important clinical examination for breast cancer detection. At present, full-field digital mammography and digital breast tomosynthesis are frequently used imaging techniques. The currently used breast phantoms are rigid construction and cannot be deformed during the compression procedure. In our previous study, Bolus phantom was introduced for thickness measurement and image quality assessment. The purpose of this study is the measurement of dose distributions with Bolus phantom for full-field digital mammography and digital breast tomosynthesis.
Material and methods
In this study, Bolus slabs were used to design the compressible phantom. Two mammography systems, Siemens Novation DR and Hologic Selenia Dimensions, were used. Total of 210 TLD-100H (LiF:Mg, Cu, P) chips and the Harshaw 3500 TLD reader were used for dose measurement. For spatial and environmental dose measurements, several TLD-100H chips were placed at the location of 90, 120 and 140 cm above the ground to simulate gonad, breast and thyroid positions, respectively. For dose assessment with Bolus phantom, backscatter factor (BSF) and depth dose were measured for target/filter combination of Mo/Mo, Mo/Rh, W/Rh, W/Ag and W/Al. TLD chips was placed on the surface and embedded in different depths of Bolus phantom (2-8 cm). These Bolus phantoms were irradiated with FFDM and DBT systems. The BSF and depth dose of Bolus phantom were calculated. AGD of Bolus phantom for each exposure was estimated. The conversion factor of AGD, defined as the ratio of AGD and measured dose at central layer of Bolus phantom, was calculated for each thickness of Bolus phantom. For clinical application, the TLD-100H chips were embedded in the central layer of Bolus phantoms (2, 4, 6, 8 cm). These Bolus phantoms were compressed with different forces (78.3, 117.4 and 156.6 N) and irradiated with auto exposure control mode. The conversion factors of AGD were applied to estimate the AGD of Bolus phantoms.
Results and discussion
For spatial dose distribution, the measurement doses of breast position are greater than thyroid and gonad positions. For environmental dose distribution, the range of measured doses of right and left wall was 0.828-1.650 mGy which is greater than the measured doses of anterior and posterior wall (0.001-0.408 mGy). For the BSF assessment, the BSF of Bolus phantom is ranging from 1.082 to 1.122 mGy/mGy. The BSF values of Bolus phantom obtained are comparable to those of currently used breast phantom (1.006-1.102 mGy/mGy) and are within the suggested range of the European guideline (1.07-1.13 mGy/mGy). For the depth dose of Bolus phantom, the dose measured by TLD decreased with increasing depth of Bolus phantom for both of FFDM and Tomo mode. For FFDM mode, the measured doses at the central layer were 0.51±0.01, 0.65±0.01, 0.70±0.01, 1.39±0.001, 2.02±0.04, 1.95±0.03, and 1.99±0.05 mGy for 2-, 3-, 4-, 5-, 6-, 7-, and 8-cm Bolus phantom, respectively. For Tomo mode, the measured doses at the central layer were 1.20±0.02, 1.22±0.04, 1.55±0.03, 1.78±0.001, 2.38±0.03, 3.10±0.03, and 3.63±0.02 mGy for 2-, 3-, 4-, 5-, 6-, 7-, and 8-cm Bolus phantom, respectively. For each exposure, the AGD of Bolus phantom imaging with Tomo mode was higher than AGD of Bolus phantom imaging with FFDM mode. In this study, the conversion factor of AGD increased with increasing of Bolus phantom for FFDM mode (0.89-1.18 mGy/mGy) but the conversion factor of AGD varied slightly for Tomo mode (0.78-0.90 mGy/mGy). For clinical application, the measured doses by TLD (1.24-3.09 mGy) were greater than the calculated AGD (1.06-2.93 mGy). The average prediction errors on AGD were -8±7 % and 4±12 % for flexible and rigid paddle, respectively.
Conclusion
For spatial and environmental dose measurement, the measured spatial doses of breast position are higher than those of thyroid and gonad positions, and the measured environmental doses of left and right directions are higher than anterior and posterior directions. In this study, the BSF of Bolus phantom is similar to those of frequently used phantom materials in mammography. Therefore, Bolus phantom is suitable for dose assessment in mammography. Applying the conversion factor of AGD purposed in this study, the AGD of Bolus phantom can be estimated by measuring the doses at central layer of Bolus phantom. In clinical application, the TLD chips did not break during the compression procedure. Therefore, the Bolus phantom combined TLD chip is suitable for the measurement of dose distribution during the clinical compression procedure in mammography.

誌謝..............................................................................................................................III
中文摘要..................................................................................................................... VI
Abstrat.........................................................................................................................VII
目次...............................................................................................................................X
圖次...........................................................................................................................XIII
表次...........................................................................................................................XIV
中英文縮寫對照表...................................................................................................XVI
第一章 緒論..................................................................................................................1
第一節 前言..........................................................................................................1
一、我國乳癌現況與篩檢政策......................................................................1
二、乳癌檢測之影像技術介紹......................................................................1
三、乳房假體..................................................................................................4
四、輻射劑量..................................................................................................6
第二節 研究動機與目的......................................................................................9
一、研究動機..................................................................................................9
二、研究目的................................................................................................10
第二章 文獻探討........................................................................................................11
第一節 乳房X光機之介紹.................................................................................11
一、全景式數位乳腺X光攝影.....................................................................11
二、數位式乳房斷層攝影............................................................................11
第二節 乳房假體種類.................................................................................12
一、硬質乳房假體........................................................................................13
二、軟質乳房假體........................................................................................14
第三節 空間與環境之輻射劑量.............................................................16
第四節 輻射劑量因子之探討............................................................................18
一、乳房假體回散射因子量測之意義........................................................18
二、平均乳腺劑量轉換因子建立之重要性................................................18
三、乳房厚度對輻射劑量之影響................................................................19
四、乳房組織組成分對輻射劑量之影響....................................................21
第三章 材料與方法....................................................................................................23
第一節 研究流程................................................................................................23
第二節 實驗設備................................................................................................24
一、乳房攝影系統........................................................................................24
二、乳房假體................................................................................................24
三、熱發光劑量計與計讀系統....................................................................25
第三節 研究設備之基礎量測............................................................................26
一、半值層....................................................................................................26
二、輻射劑量輸出........................................................................................28
三、TLD校正與劑量轉換............................................................................29
第四節 評估乳房攝影室之空間及環境劑量分布............................................30
一、空間劑量量測........................................................................................30
二、環境劑量量測................................................................................31
第五節 評估乳房假體之劑量分布..............................................................34
一、乳房假體之回散射因子量測................................................................34
二、乳房假體之深部劑量量測....................................................................36
(一)深部劑量分布...............................................................................36
(二)百分深度劑量分布....................................................................37
三、評估平均乳腺劑量................................................................................38
(一)乳腺含量比之計算.......................................................................38
(二)平均乳腺劑量之計算...................................................................38
四、評估平均乳房劑量與量測劑量之轉換關係........................................40
第六節 臨床應用................................................................................................40
一、假體厚度量測........................................................................................40
二、假體劑量量測........................................................................................41
第四章 結果................................................................................................................44
第一節 研究設備基礎量測................................................................................44
一、半值層之量測結果................................................................................44
二、輻射劑量輸出之量測結果....................................................................44
三、TLD校正之結果...................................................................................48
第二節 乳房攝影室之空間及環境劑量分布評估............................................48
一、空間劑量量測之結果............................................................................48
二、環境劑量量測之結果............................................................................55
第三節 乳房假體之劑量分布評估....................................................................65
一、 劑量轉換曲線......................................................................................65
二、乳房假體之回散射因子量測結果........................................................65
三、乳房假體之深部劑量量測結果............................................................70
(一)深部劑量分布之結果...................................................................70
(二)百分深度劑量分布之結果...........................................................71
四、平均乳腺劑量評估................................................................................73
(一)乳腺含量比公式...........................................................................73
(二)平均乳腺劑量...............................................................................74
五、平均乳腺劑量與量測劑量之轉換關係................................................83
第四節 臨床應用................................................................................................86
一、 假體劑量量測之結果.........................................................................86
二、平均乳腺劑量之評估............................................................................92
第五章 討論................................................................................................................97
第一節 基礎量測...............................................................................................97
一、半值層與輻射劑量輸出........................................................................97
二、TLD校正之分析....................................................................................97
第二節 乳房攝影室之空間及環境劑量分布分析............................................98
一、空間劑量量測之分析............................................................................98
二、環境劑量量測之分析..........................................................................100
第三節 乳房假體之劑量分布分析..................................................................101
一、乳房假體之回散射因子量測之分析..................................................101
二、 乳房假體之深部劑量量測之分析...................................................102
三、平均乳腺劑量分析..............................................................................104
(一)乳腺含量百分比之分析.............................................................104
(二)平均乳腺劑量之分析.................................................................105
四、分析平均乳腺劑量與量測劑量之轉換關係......................................106
第四節 臨床應用之分析..................................................................................107
第五節 研究限制..............................................................................................109
第六章 結論..............................................................................................................111
第七章 未來展望......................................................................................................115
第八章 參考文獻......................................................................................................118

1.衛生福利部國民健康署,103年國人死因統計結果,來源:http://www.mohw.gov.tw/news/531349778 (引用時間:2016/4/23)
2.衛生福利部國民健康署,乳癌防治,來源:http://www.hpa.gov.tw/BHPNet/Web/healthtopic/TopicArticle.aspx?No=201312230001&parentid=200712250033 (衛生福利部國民健康署更新日期:2015/9/30;引用時間:2016/4/23)
3.Moore SK. Better breast cancer detection. Spectrum, IEEE. 2001; 38: 50-54.
4.Scopinaro F, Mezi S, Ierardi M, De Vincentis G, Tiberio NS, David V, Maggi S, Sallusti E and Modesti M. 99mTc MIBI prone scintimammography in patients with suspicious breast cancer: relationship with mammography and tumor size. International journal of oncology. 1998; 12: 661-665.
5.Mawdsley GE, Tyson AH, Peressotti CL, Jong RA, and Yaffe MJ. Accurate estimation of compressed breast thickness in mammography. Medical physics. 2009; 36: 577-586.
6.Tyson AH, Mawdsley GE and Yaffe MJ. Measurement of compressed breast thickness by optical stereoscopic photogrammetry. Medical physics. 2009; 36: 569-576.
7.Hauge IH, Hogg P, Szczepura K, Connolly P, McGill G and Mercer C. The readout thickness versus the measured thickness for a range of screen film mammography and full-field digital mammography units. Medical physics. 2012; 39: 263-271.
8.CEC (Commission of the European Communities) European Guidelines for Quality Assurance in breast cancer screening and diagnosis 4th edn. In: Communities. 2006.
9.Dance DR, Skinner CL, Young KC, Beckett JR and Kotre CJ. Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Physics in medicine and biology. 2000; 45: 3225-3240.
10.Dong SL, Chu TC, Lin YC, Lan GY, Yeh YH, Chen S and Chuang KS. Determination of equivalent breast phantoms for different age groups of Taiwanese women: An experimental approach. Medical physics. 2011; 38: 4094-4100.
11.Richard Hammerstein G, Miller DW, White DR, Ellen Masterson M, Woodard HQ and Laughlin JS. Absorbed radiation dose in mammography 1. Radiology. 1979; 130: 485-491.
12.Farria DM, and Monsees B. Screening mammography practice essentials. Radiologic Clinics of North America. 2004; 42: 831-843.
13.Elmore JG, Armstrong K, Lehman CD, and Fletcher SW. Screening for breast cancer. Jama. 2005; 293: 1245-1256.
14. International Commission on Radiological Protection. ICRP Publication 60: 1990 Recommendations of the International Commission on Radiological Protection (No. 60). Elsevier Health Sciences. 1991.
15.Dance DR. Monte-Carlo calculation of conversion factors for the estimation of mean glandular breast dose. Physics in medicine and biology. 1990; 35: 1211-1219.
16.Highnam RP, Brady JM and Shepstone BJ. Estimation of compressed breast thickness during mammography. The British journal of radiology. 1998; 71: 646-653.
17.Wu X, Gingold EL, Barnes GT and Tucker DM. Normalized average glandular dose in molybdenum target-rhodium filter and rhodium target-rhodium filter mammography. Radiology. 1994; 193: 83-89.
18.American College of Radiology. Mammography quality control manual. New York 3. 1999.
19.Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum JK, Acharyya S, Conant EF, Fajardo LL, Bassett L, D''Orsi C, Jong R and Rebner M. Diagnostic performance of digital versus film mammography for breast-cancer screening. New England Journal of Medicine. 2005; 353: 1773-1783.
20.Nederend J, Duijm LE, Louwman MW, Coebergh JW, Roumen RM, Lohle PN, Roukema JA, Rutten MJ, van Steenbergen LN, Ernst MF, Jansen FH, Plaisier ML, Hooijen MJ and Voogd AC. Impact of the transition from screen-film to digital screening mammography on interval cancer characteristics and treatment–A population based study from the Netherlands. European Journal of Cancer. 2014; 50: 31-39.
21.Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S and Yaffe MJ. Mammographic density and the risk and detection of breast cancer. New England Journal of Medicine. 2007; 356: 227-236.
22.Carney PA, Miglioretti DL, Yankaskas BC, Kerlikowske K, Rosenberg R, Rutter CM, Geller BM, Abraham LA, Taplin SH, Dignan M, Cutter G and Ballard-Barbash R. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Annals of internal medicine. 2003; 138: 168-175.
23.Dobbins III JT, and Godfrey DJ. Digital x-ray tomosynthesis: current state of the art and clinical potential. Physics in medicine and biology. 2003; 48: 65-106.
24.Rafferty EA, Park JM, Philpotts LE, Poplack SP, Sumkin JH, Halpern EF and Niklason LT. Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: results of a multicenter, multireader trial. Radiology. 2013; 266: 104-113.
25.Michell MJ, Iqbal A, Wasan RK, Evans DR, Peacock C, Lawinski CP, Douiri A, Wilson R and Whelehan P. A comparison of the accuracy of film-screen mammography, full-field digital mammography, and digital breast tomosynthesis. Clinical radiology. 2012; 67: 976-981.
26.Svahn TM, Chakraborty DP, Ikeda D, Zackrisson S, Do Y, Mattsson S and Andersson I. Breast tomosynthesis and digital mammography: a comparison of diagnostic accuracy. The British journal of radiology. 2014; 85(1019): 1074-1082. doi: http://dx.doi.org/10.1259/bjr/53282892.
27.Rose SL, Tidwell AL, Ice MF, Nordmann AS, Sexton R, and Song R. A reader study comparing prospective tomosynthesis interpretations with retrospective readings of the corresponding FFDM examinations. Academic radiology. 2014; 21: 1204-1210.
28.Alakhras MM, Brennan PC, Rickard M, Bourne R, and Mello-Thoms C. Effect of radiologists’ experience on breast cancer detection and localization using digital breast tomosynthesis. European radiology. 2015; 25: 402-409.
29.Gilbert FJ, Tucker L, and Young KC. Digital breast tomosynthesis (DBT): a review of the evidence for use as a screening tool. Clinical radiology. 2016; 71: 141-150.
30.Bouwman RW, Diaz O, van Engen RE, Young KC, den Heeten GJ, Broeders MJ, Veldkamp WJ and Dance DR. Phantoms for quality control procedures in digital breast tomosynthesis: dose assessment. Physics in medicine and biology. 2013; 58: 4423-4438.
31.洪思穎,以修正乳房厚度評估乳房攝影之劑量:可壓迫假體之研究(碩士論文),2015年6月。取自:http://handle.ncl.edu.tw/11296/ndltd/63076536097023821371
32.Boone JM. Normalized glandular dose (DgN) coefficients for arbitrary x-ray spectra in mammography: Computer-fit values of Monte Carlo derived data. Medical physics. 2002; 29: 869-875.
33.Behrman RH, Homer MJ, Yang WT and Whitman GJ. Mammography and fetal dose. Authors'' reply. Radiology. 2007; 243: 605-606.
34.Sechopoulos I, Suryanarayanan S, Vedantham S, D''Orsi CJ and Karellas A. Radiation Dose to Organs and Tissues from Mammography: Monte Carlo and Phantom Study 1. Radiology. 2008; 246: 434-443.
35.Hatziioannou KA, Psarrakos K, Molyvda-Athanasopoulou E, Kitis G, Papanastassiou E, Sofroniadis I and Kimoundri O. Dosimetric considerations in mammography. European radiology. 2000; 10: 1193-1196.
36.Kim CG. Spatial dose distribution and exposure dose during mammography. Indian Journal of Science and Technology. 2015; 8: 133-138.
37. Kramer R, Drexler G, Petoussi-Henss N, Zankl M, Regulla D and Panzer W. Backscatter factors for mammography calculated with Monte Carlo methods. Physics in medicine and biology. 2001; 46: 771-781.
38.Baptista M, Maria SD, Figueira C, Orvalho L and Vaz P. Determination of backscatter factors in breast tomosynthesis using MCNPX simulations and measurements. Radiation protection dosimetry. 2015; 165: 325-330.
39.Zoetelief J and Jansen JTM. Calculation of air kerma to average glandular tissue dose conversion factors for mammography. Radiation Protection Dosimetry. 1995; 57: 397-400.
40.Wu X, Barnes GT and Tucker DM. Spectral dependence of glandular tissue dose in screen-film mammography. Radiology. 1991; 179: 143-148.
41.Klein R, Aichinger H, Dierker J, Jansen JTM, Joite-Barfuss S, Säbel M, Schulz-Wendtland R and Zoetelief J. Determination of average glandular dose with modern mammography units for two large groups of patients. Physics in medicine and biology, 1997; 42: 651-671.
42.Boone JM. Glandular breast dose for monoenergetic and high-energy x-ray beams: Monte Carlo assessment 1. Radiology. 1999; 213: 23-37.
43.Burch A and Law J. A method for estimating compressed breast thickness during mammography. The British journal of radiology. 1995; 68: 394-399.
44.Dong SL, Chu TC, Lan GY, Lin YC, Yeh YH and Chuang KS. Development of an adjustable model breast for mammographic dosimetry assessment in Taiwanese women. American Journal of Roentgenology. 2011; 196: 476-481.
45.Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ and Paterson AD. Mammographic breast density as an intermediate phenotype for breast cancer. The lancet oncology. 2005; 6: 798-808.
46.Augustine BJ, Yaffe MJ, Rico D, Yang J, Mawdsley GE, Li T, Wu J and Boyd NF. Volumetric breast density estimation on digitized mammograms—A preliminary clinical study. In Digital Mammography. Springer Berlin Heidelberg. 2003; 574-576. doi: 10.1007/978-3-642-59327-7_135.
47.Kruger RL and Schueler BA. A survey of clinical factors and patient dose in mammography. Medical physics. 2001; 28: 1449-1454.
48.Dance DR, Young KC and Van Engen RE. Estimation of mean glandular dose for breast tomosynthesis: factors for use with the UK, European and IAEA breast dosimetry protocols. Physics in medicine and biology. 2010; 56: 453-471.
49.European protocol on dosimetry in mammography. 1996.
50.Sharma R, Sharma SD, Mayya YS and Chourasiya G. Mammography dosimetry using an in-house developed polymethyl methacrylate phantom. Radiation protection dosimetry. 2012; 151: 379-385.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊