跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 05:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張惠怡
研究生(外文):Hui-Yi Chang
論文名稱:口服D型甲硫胺酸對順鉑處理之慢性毒性模式誘發腎毒性及厭食/惡病質之效果評估
論文名稱(外文):Evaluation of Effectiveness of Oral D-methionine on Nephrotoxicity and Anorexia/Cachexia Induced by Chronic Cisplatin Administration Toxicity Model
指導教授:歐珠琴
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:93
中文關鍵詞:D型甲硫胺酸順鉑腎毒性厭食/惡病質
外文關鍵詞:D-methioninecisplatinnephrotoxicityanorexia/cachexia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
順鉑(Cisplatin)為廣泛使用於治療實體腫瘤之化學治療藥劑,因Cisplatin會產生嚴重的副作用,如腎毒性、厭食/惡病質等,導致臨床上的使用限制,根據文獻指出,大多數的含硫化合物具有對抗Cisplatin誘導細胞毒性的功能。D型甲硫胺酸(D-methionine,L型甲硫胺酸之右旋異構物)為一種含硫胺基酸,且可作為強效的抗氧化物。本研究擬探討口服D-methionine對Cisplatin誘導腎毒性及厭食/惡病質之影響,我們將Wistar品系之雄性大鼠以每組8隻,隨機分成三組,本研究設計為慢性毒性模式,實驗過程為期3周,實驗大鼠每周腹腔注射Cisplatin (5 mg/kg body wt)(此為Cisplatin組),另外在處理Cisplatin的前3天起,開始每日給予管餵D-methionine (300 mg/kg body wt)(此為Cisplatin合併D-methionine組),而對照組則不處理以上藥物(此為Control組)。實驗結果發現,D-methionine可以顯著的回復Cisplatin處理之大鼠的體重減輕,增加大鼠的每日攝食量,也可以改善Cisplatin誘導的胃排空速度減慢,接著我們進一步的探討,發現Cisplatin會抑制肝臟中脂質新生作用和向上調控肌肉萎縮相關基因表現(如FOXO1, MAFbx),而D-methionine可以顯著的減緩此變化,改善骨骼肌和脂肪組織流失的情形;在腎毒性的部分,我們發現D-methionine可以趨緩Cisplatin處理之大鼠的血液尿素氮(BUN)的上升和腎臟的發炎反應,腎臟病理組織切片的觀察發現, D-methionin可以改善Cisplatin誘導的嚴重腎損傷,除此之外,我們發現大鼠經Cisplatin處理後,腎組織會出現脂質過氧化產物-丙二醛(MDA)大量生成,且麩胱甘肽過氧化酶(GPx)之活性和麩胱甘肽(GSH)含量有下降的情形,口服D-methionin可以減緩上述的氧化壓力指標。本研究顯示,口服D-methionine可能具有保護Cisplatin誘導之腎毒性及厭食/惡病質的功效,因此D-methionine有潛力能改善使用Cisplatin帶來的副作用,並可能成為未來病患在接受化學治療時的營養補充品。

Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. Its clinical use is limited due to severe side effects such as nephrotoxicity and anorexia/cachexia. Many sulfur containing compounds have been reported to protect against cisplatin-induced cytotoxicity. D-methionine, dextro-isomer of L-methionine, is a sulfur containing amino acid and can act as potent antioxidants. In this study, we investigate the effects of oral D-methionine on cisplatin-induced nephrotoxicity and anorexia/cachexia. Male Wistar rats were divided into three treatment groups of eight rats each. The study schedule was designed in a chronic experiment model, which rats received cisplatin (5 mg/kg body wt) intraperitoneal injection once a week for 3 weeks (cisplatin group). The animals were pre-treated with D-methionine (300 mg/kg body wt) daily by gavage for 3 days before cisplatin administration (cisplatin combined D-methionine group). The control group remains untreated. The results suggested that D-methionine significantly reverse the reduction of body weight, increase daily food intake, and enhance gastric emptying after cisplatin treatment. We also observed that cisplatin suppresses lipogensis in liver tissues and up-regulates the muscle atrophy markers gene expression (such as FOXO1, MAFbx). The loss of skeletal muscles mass and adipose tissue are regained by D-methionine administration, which might be partly through retard liver lipogensis and modulated muscle atrophy-related mRNA expression. On the other hand, we found the treatment with D-methionine mitigates the cisplatin nephrotoxicity which caused the increasing level of blood urea nitrogen (BUN) and the renal inflammation. Histopathological examination revealed that D-methionine improved severe renal damage induced by cisplatin. Moreover, the renal malondialdehyde (MDA) production in cisplatin-administrated rats was markedly increased and the activity of glutathione peroxidase (GPx) and glutathione (GSH) content were also declined. D-methionine significantly attenuated the above oxidative stress markers caused by cisplatin. Our result indicated that oral D-methionine could protect against cisplatin-induced nephrotoxicity and anorexia/cachexia. Therefore, D-methionine has the potential to alleviate the side effects of cisplatin and serve as novel nutritional supplements when patients are undergoing their chemotherapy.

中文摘要
英文摘要
第一章、緒論
第一節 癌症 1
第二節 順鉑(Cisplatin) 3
第三節 D型甲硫胺酸(D - methionine) 13
第二章、縮寫對照表 19
第三章、研究動機 22
第四章 材料與方法
第一節 藥品與試劑 23
第二節 實驗儀器設備 26
第三節 實驗方法
一、動物實驗之飼育條件 27
二、動物實驗之藥劑 27
三、動物實驗之分組 27
四、動物實驗之流程 28
五、動物實驗之血液分析 29
六、動物實驗之檢體處理 29
七、H&E 染色(Hematoxylin-Eosin staining, H&E stain) 29
八、反轉錄酶聚合連鎖反應(Reverse transcription-polymerase chain reaction, RT-PCR) 30
九、凝膠洋菜瓊脂(Agarose gel)的電泳分析 35
十、組織樣品製備 35
十一、蛋白質濃度定量分析(protein quantification) 36
十二、測定丙二醛(MDA)濃度 36
十三、測定麩胱甘肽含量(Glutathione, GSH) 37
十四、測定麩胱甘肽過氧化酶之活性(Glutathione peroxidase, GPx) 38
十五、測定尿素(Urea)濃度 39
第四節 統計方法 39
第五章 結果
第一節D-methionine對Cisplatin誘導大鼠厭食/惡病質之影響
一、D-methionine減緩Cisplatin誘導大鼠體重減輕 40
二、D-methionine對Cisplatin誘導大鼠每日攝食量的變化 41
三、D-methionine對Cisplatin誘導大鼠每日飲水量的變化 42
四、D-methionine對Cisplatin誘導大鼠食物利用率的變化 43
五、D-methionine改善Cisplatin誘導大鼠消化功能不佳 43
六、D-methionine對Cisplatin誘導大鼠胃黏膜損傷的影響 44
七、D-methionine減緩Cisplatin誘導大鼠脂肪及骨骼肌質量下降 44
八、D-methionine影響Cisplatin誘導大鼠肝臟脂肪合成作用 45
九、D-methionine影響Cisplatin誘導大鼠腓腸肌蛋白質降解作用 46
十、D-methionine影響Cisplatin誘導大鼠腓腸肌蛋白質合成作用 46
第二節D-methionine對Cisplatin誘導大鼠腎毒性之影響
一、D -methionine對Cisplatin誘導大鼠各器官重量的變化 48
二、D-methionine改善Cisplatin誘導大鼠腎損傷指標BUN上升 48
三、D-methionine對Cisplatin誘導大鼠腎組織型態的影響 49
四、D-methionine降低Cisplatin誘導大鼠腎組織發炎基因的表現 49
五、D-methionine減緩Cisplatin誘導大鼠腎組織氧化壓力傷害 49
第六章、討論 51
第七章、圖表 60
第八章、參考文獻 80
第九章、附件 93



Abalo R, Cabezos PA, Vera G, Lopez-Perez AE, Martin MI (2013) Cannabinoids may worsen gastric dysmotility induced by chronic cisplatin in the rat. Neurogastroenterol Motil 25: 373-82, e292

Akcay A, Nguyen Q, Edelstein CL (2009) Mediators of inflammation in acute kidney injury. Mediators Inflamm 2009: 137072

Akman T, Akman L, Erbas O, Terek MC, Taskiran D, Ozsaran A (2015) The preventive effect of oxytocin to Cisplatin-induced neurotoxicity: an experimental rat model. Biomed Res Int 2015: 167235

Al-Kharusi N, Babiker HA, Al-Salam S, Waly MI, Nemmar A, Al-Lawati I, Yasin J, Beegam S, Ali BH (2013) Ellagic acid protects against cisplatin-induced nephrotoxicity in rats: a dose-dependent study. Eur Rev Med Pharmacol Sci 17: 299-310

Alagic Z, Goiny M, Canlon B (2011) Protection against acoustic trauma by direct application of D-methionine to the inner ear. Acta Otolaryngol 131: 802-8

Almaghrabi OA (2015) Molecular and biochemical investigations on the effect of quercetin on oxidative stress induced by cisplatin in rat kidney. Saudi J Biol Sci 22: 227-31

Arany I, Safirstein RL (2003) Cisplatin nephrotoxicity. Semin Nephrol 23: 460-4

Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ (2014) Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 14: 754-62

Arivarasu NA, Priyamvada S, Mahmood R (2013) Oral administration of caffeic acid ameliorates the effect of cisplatin on brush border membrane enzymes and antioxidant system in rat intestine. Exp Toxicol Pathol 65: 21-5


Atessahin A, Yilmaz S, Karahan I, Ceribasi AO, Karaoglu A (2005) Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology 212: 116-23

Aydinoz S, Uzun G, Cermik H, Atasoyu EM, Yildiz S, Karagoz B, Evrenkaya R (2007) Effects of different doses of hyperbaric oxygen on cisplatin-induced nephrotoxicity. Ren Fail 29: 257-63

Bajwa A, Rosin DL, Chroscicki P, Lee S, Dondeti K, Ye H, Kinsey GR, Stevens BK, Jobin K, Kenwood BM, Hoehn KL, Lynch KR, Okusa MD (2015) Sphingosine 1-phosphate receptor-1 enhances mitochondrial function and reduces cisplatin-induced tubule injury. J Am Soc Nephrol 26: 908-25

Baker DH (2006) Comparative species utilization and toxicity of sulfur amino acids. J Nutr 136: 1670S-1675S

Baliga R, Zhang Z, Baliga M, Ueda N, Shah SV (1998) Role of cytochrome P-450 as a source of catalytic iron in cisplatin-induced nephrotoxicity. Kidney Int 54: 1562-9

Bearcroft CP, Domizio P, Mourad FH, Andre EA, Farthing MJ (1999) Cisplatin impairs fluid and electrolyte absorption in rat small intestine: a role for 5-hydroxytryptamine. Gut 44: 174-9

Beger HG, Gansauge F, Buchler MW, Link KH (1999) Intraarterial adjuvant chemotherapy after pancreaticoduodenectomy for pancreatic cancer: significant reduction in occurrence of liver metastasis. World J Surg 23: 946-9

Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4
Campbell K, Claussen A, Meech R, Verhulst S, Fox D, Hughes L (2011) D-methionine (D-met) significantly rescues noise-induced hearing loss: timing studies. Hear Res 282: 138-44

Campbell KC, Meech RP, Klemens JJ, Gerberi MT, Dyrstad SS, Larsen DL, Mitchell DL, El-Azizi M, Verhulst SJ, Hughes LF (2007) Prevention of noise- and drug-induced hearing loss with D-methionine. Hear Res 226: 92-103

Campbell KC, Meech RP, Rybak LP, Hughes LF (2003) The effect of D-methionine on cochlear oxidative state with and without cisplatin administration: mechanisms of otoprotection. J Am Acad Audiol 14: 144-56

Campbell KC, Rybak LP, Meech RP, Hughes L (1996) D-methionine provides excellent protection from cisplatin ototoxicity in the rat. Hear Res 102: 90-8

Chang B, Nishikawa M, Sato E, Utsumi K, Inoue M (2002) L-Carnitine inhibits cisplatin-induced injury of the kidney and small intestine. Arch Biochem Biophys 405: 55-64

Chen H, Landen CN, Li Y, Alvarez RD, Tollefsbol TO (2013) Enhancement of Cisplatin-Mediated Apoptosis in Ovarian Cancer Cells through Potentiating G2/M Arrest and p21 Upregulation by Combinatorial Epigallocatechin Gallate and Sulforaphane. J Oncol 2013: 872957

Chen JA, Splenser A, Guillory B, Luo J, Mendiratta M, Belinova B, Halder T, Zhang G, Li YP, Garcia JM (2015) Ghrelin prevents tumour- and cisplatin-induced muscle wasting: characterization of multiple mechanisms involved. J Cachexia Sarcopenia Muscle 6: 132-43

Cheng PW, Liu SH, Young YH, Lin-Shiau SY (2006) D-Methionine attenuated cisplatin-induced vestibulotoxicity through altering ATPase activities and oxidative stress in guinea pigs. Toxicol Appl Pharmacol 215: 228-36

Chirino YI, Pedraza-Chaverri J (2009) Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 61: 223-42

Chtourou Y, Aouey B, Kebieche M, Fetoui H (2015) Protective role of naringin against cisplatin induced oxidative stress, inflammatory response and apoptosis in rat striatum via suppressing ROS-mediated NF-kappaB and P53 signaling pathways. Chem Biol Interact 239: 76-86

Churm D, Andrew IM, Holden K, Hildreth AJ, Hawkins C (2009) A questionnaire study of the approach to the anorexia-cachexia syndrome in patients with cancer by staff in a district general hospital. Support Care Cancer 17: 503-7

De Jonghe BC, Holland RA, Olivos DR, Rupprecht LE, Kanoski SE, Hayes MR (2016) Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea. Physiol Behav 153: 109-14

Dever JT, Elfarra AA (2008) L-methionine toxicity in freshly isolated mouse hepatocytes is gender-dependent and mediated in part by transamination. J Pharmacol Exp Ther 326: 809-17

Dewey WC, Ling CC, Meyn RE (1995) Radiation-induced apoptosis: relevance to radiotherapy. Int J Radiat Oncol Biol Phys 33: 781-96

Do Amaral CL, Francescato HD, Coimbra TM, Costa RS, Darin JD, Antunes LM, Bianchi Mde L (2008) Resveratrol attenuates cisplatin-induced nephrotoxicity in rats. Arch Toxicol 82: 363-70

Ekborn A, Laurell G, Johnstrom P, Wallin I, Eksborg S, Ehrsson H (2002) D-Methionine and cisplatin ototoxicity in the guinea pig: D-methionine influences cisplatin pharmacokinetics. Hear Res 165: 53-61

El-Sayed EM, Abd-Allah AR, Mansour AM, El-Arabey AA (2015) Thymol and carvacrol prevent cisplatin-induced nephrotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats. J Biochem Mol Toxicol 29: 165-72

Elsherbiny NM, Eladl MA, Al-Gayyar MM (2016) Renal protective effects of arjunolic acid in a cisplatin-induced nephrotoxicity model. Cytokine 77: 26-34

Evans WJ, Morley JE, Argiles J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, Marks D, Mitch WE, Muscaritoli M, Najand A, Ponikowski P, Rossi Fanelli F, Schambelan M, Schols A, Schuster M, Thomas D et al. (2008) Cachexia: a new definition. Clin Nutr 27: 793-9

Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, Somerset H, Oh DJ, Lu L, Klein CL, Dinarello CA, Edelstein CL (2007)

Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther 322: 8-15

Florea AM, Busselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 3: 1351-71

Friedberg EC, McDaniel LD, Schultz RA (2004) The role of endogenous and exogenous DNA damage and mutagenesis. Curr Opin Genet Dev 14: 5-10

Froehner M (2011) Comparative risk-adjusted mortality outcomes after primary surgery, radiotherapy, or androgen-deprivation therapy for localized prostate cancer. Cancer 117: 2577; author reply 2577-8
Garcia JM, Cata JP, Dougherty PM, Smith RG (2008) Ghrelin prevents cisplatin-induced mechanical hyperalgesia and cachexia. Endocrinology 149: 455-60

Garcia JM, Scherer T, Chen JA, Guillory B, Nassif A, Papusha V, Smiechowska J, Asnicar M, Buettner C, Smith RG (2013) Inhibition of cisplatin-induced lipid catabolism and weight loss by ghrelin in male mice. Endocrinology 154: 3118-29

Garlick PJ (2006) Toxicity of methionine in humans. J Nutr 136: 1722S-1725S

Gavert N, Ben-Ze''ev A (2008) Epithelial-mesenchymal transition and the invasive potential of tumors. Trends Mol Med 14: 199-209

Goncalves MS, Silveira AF, Teixeira AR, Hyppolito MA (2013) Mechanisms of cisplatin ototoxicity: theoretical review. J Laryngol Otol 127: 536-41

Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141: 312-22

Hamad R, Jayakumar C, Ranganathan P, Mohamed R, El-Hamamy MM, Dessouki AA, Ibrahim A, Ramesh G (2015) Honey feeding protects kidney against cisplatin nephrotoxicity through suppression of inflammation. Clin Exp Pharmacol Physiol 42: 843-8

Hinduja S, Kraus KS, Manohar S, Salvi RJ (2015) D-methionine protects against cisplatin-induced neurotoxicity in the hippocampus of the adult rat. Neurotox Res 27: 199-204

Ho KY, Gan TJ (2006) Pharmacology, pharmacogenetics, and clinical efficacy of 5-hydroxytryptamine type 3 receptor antagonists for postoperative nausea and vomiting. Curr Opin Anaesthesiol 19: 606-11

Hotta K, Matsuo K, Ueoka H, Kiura K, Tabata M, Tanimoto M (2004) Meta-analysis of randomized clinical trials comparing Cisplatin to Carboplatin in patients with advanced non-small-cell lung cancer. J Clin Oncol 22: 3852-9

Iseri S, Ercan F, Gedik N, Yuksel M, Alican I (2007) Simvastatin attenuates cisplatin-induced kidney and liver damage in rats. Toxicology 230: 256-64

Jensen-Urstad AP, Semenkovich CF (2012) Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? Biochim Biophys Acta 1821: 747-53

Joerger M, Warzinek T, Klaeser B, Kluckert JT, Schmid HP, Gillessen S (2004) Major tumor regression after paclitaxel and carboplatin polychemotherapy in a patient with advanced penile cancer. Urology 63: 778-80

Jordan P, Carmo-Fonseca M (2000) Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci 57: 1229-35
Karwasra R, Kalra P, Gupta YK, Saini D, Kumar A, Singh S (2016) Antioxidant and anti-inflammatory potential of pomegranate rind extract to ameliorate cisplatin-induced acute kidney injury. Food Funct

Kroning R, Lichtenstein AK, Nagami GT (2000) Sulfur-containing amino acids decrease cisplatin cytotoxicity and uptake in renal tubule epithelial cell lines. Cancer Chemother Pharmacol 45: 43-9

Lee JS, Murphy WK, Glisson BS, Dhingra HM, Holoye PY, Hong WK (1989) Primary chemotherapy of brain metastasis in small-cell lung cancer. J Clin Oncol 7: 916-22

Liu YL, Malik NM, Sanger GJ, Andrews PL (2006) Ghrelin alleviates cancer chemotherapy-associated dyspepsia in rodents. Cancer Chemother Pharmacol 58: 326-33

Lobina C, Carai MA, Loi B, Gessa GL, Riva A, Cabri W, Petrangolini G, Morazzoni P, Colombo G (2014) Protective effect of Panax ginseng in cisplatin-induced cachexia in rats. Future Oncol 10: 1203-14

Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13: 572-83

Malik NM, Liu YL, Cole N, Sanger GJ, Andrews PL (2007) Differential effects of dexamethasone, ondansetron and a tachykinin NK1 receptor antagonist (GR205171) on cisplatin-induced changes in behaviour, food intake, pica and gastric function in rats. Eur J Pharmacol 555: 164-73

Martin L, Senesse P, Gioulbasanis I, Antoun S, Bozzetti F, Deans C, Strasser F, Thoresen L, Jagoe RT, Chasen M, Lundholm K, Bosaeus I, Fearon KH, Baracos VE (2015) Diagnostic criteria for the classification of cancer-associated weight loss. J Clin Oncol 33: 90-9

Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel) 2: 2490-518

Muggia F (2009) Platinum compounds 30 years after the introduction of cisplatin: implications for the treatment of ovarian cancer. Gynecol Oncol 112: 275-81

Mukhopadhyay P, Rajesh M, Pan H, Patel V, Mukhopadhyay B, Batkai S, Gao B, Hasko G, Pacher P (2010) Cannabinoid-2 receptor limits inflammation, oxidative/nitrosative stress, and cell death in nephropathy. Free Radic Biol Med 48: 457-67

Murphy KT, Lynch GS (2012) Editorial update on emerging drugs for cancer cachexia. Expert Opin Emerg Drugs 17: 5-9

Murton AJ, Constantin D, Greenhaff PL (2008) The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta 1782: 730-43

Muscaritoli M, Bossola M, Aversa Z, Bellantone R, Rossi Fanelli F (2006) Prevention and treatment of cancer cachexia: new insights into an old problem. Eur J Cancer 42: 31-41

Myrdal G, Gustafsson G, Lambe M, Horte LG, Stahle E (2001) Outcome after lung cancer surgery. Factors predicting early mortality and major morbidity. Eur J Cardiothorac Surg 20: 694-9

Nasr AY, Saleh HA (2014) Aged garlic extract protects against oxidative stress and renal changes in cisplatin-treated adult male rats. Cancer Cell Int 14: 92

Nishihara K, Masuda S, Shinke H, Ozawa A, Ichimura T, Yonezawa A, Nakagawa S, Inui K, Bonventre JV, Matsubara K (2013) Urinary chemokine (C-C motif) ligand 2 (monocyte chemotactic protein-1) as a tubular injury marker for early detection of cisplatin-induced nephrotoxicity. Biochem Pharmacol 85: 570-82

Ozen S, Akyol O, Iraz M, Sogut S, Ozugurlu F, Ozyurt H, Odaci E, Yildirim Z (2004) Role of caffeic acid phenethyl ester, an active component of propolis, against cisplatin-induced nephrotoxicity in rats. J Appl Toxicol 24: 27-35


Ozkok A, Edelstein CL (2014) Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int 2014: 967826

Ozkok A, Ravichandran K, Wang Q, Ljubanovic D, Edelstein CL (2016) NF-kappaB transcriptional inhibition ameliorates cisplatin-induced acute kidney injury (AKI). Toxicol Lett 240: 105-13

Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73: 994-1007

Pini A, Garella R, Idrizaj E, Calosi L, Baccari MC, Vannucchi MG (2016) Glucagon-like peptide 2 counteracts the mucosal damage and the neuropathy induced by chronic treatment with cisplatin in the mouse gastric fundus. Neurogastroenterol Motil 28: 206-16

Posner MR, Hershock DM, Blajman CR, Mickiewicz E, Winquist E, Gorbounova V, Tjulandin S, Shin DM, Cullen K, Ervin TJ, Murphy BA, Raez LE, Cohen RB, Spaulding M, Tishler RB, Roth B, Viroglio Rdel C, Venkatesan V, Romanov I, Agarwala S et al. (2007) Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med 357: 1705-15

Raj GV, Karavadia S, Schlomer B, Arriaga Y, Lotan Y, Sagalowsky A, Frenkel E (2011) Contemporary use of perioperative cisplatin-based chemotherapy in patients with muscle-invasive bladder cancer. Cancer 117: 276-82

Ramesh G, Reeves WB (2002) TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110: 835-42

Rana MA, Khan RA, Nasiruddin M, Khan AA (2016) Amelioration of cisplatin-induced nephrotoxicity by ethanolic extract of Bauhinia purpurea: An in vivo study in rats. Saudi J Kidney Dis Transpl 27: 41-8

Rewerska A, Pawelczyk M, Rajkowska E, Politanski P, Sliwinska-Kowalska M (2013) Evaluating D-methionine dose to attenuate oxidative stress-mediated hearing loss following overexposure to noise. Eur Arch Otorhinolaryngol 270: 1513-20

Roos WP, Kaina B (2013) DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 332: 237-48

Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V (2007) Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 226: 157-67

Saad SY, Najjar TA, Alashari M (2004) Role of non-selective adenosine receptor blockade and phosphodiesterase inhibition in cisplatin-induced nephrogonadal toxicity in rats. Clin Exp Pharmacol Physiol 31: 862-7

Sahu BD, Kuncha M, Sindhura GJ, Sistla R (2013) Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage. Phytomedicine 20: 453-60

Sahu BD, Rentam KK, Putcha UK, Kuncha M, Vegi GM, Sistla R (2011) Carnosic acid attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity. Food Chem Toxicol 49: 3090-7

Sakai H, Sagara A, Arakawa K, Sugiyama R, Hirosaki A, Takase K, Jo A, Sato K, Chiba Y, Yamazaki M, Matoba M, Narita M (2014) Mechanisms of cisplatin-induced muscle atrophy. Toxicol Appl Pharmacol 278: 190-9

Schrader M, Muller M, Straub B, Miller K (2001) The impact of chemotherapy on male fertility: a survey of the biologic basis and clinical aspects. Reprod Toxicol 15: 611-7

Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22: 7265-79

Strumberg D, Brugge S, Korn MW, Koeppen S, Ranft J, Scheiber G, Reiners C, Mockel C, Seeber S, Scheulen ME (2002) Evaluation of long-term toxicity in patients after cisplatin-based chemotherapy for non-seminomatous testicular cancer. Ann Oncol 13: 229-36

Sukari A, Muqbil I, Mohammad RM, Philip PA, Azmi AS (2016) F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities. Semin Cancer Biol 36: 95-104

Suzuki H, Asakawa A, Amitani H, Nakamura N, Inui A (2013) Cancer cachexia--pathophysiology and management. J Gastroenterol 48: 574-94

Tilyek A, Chai C, Hou X, Zhou B, Zhang C, Cao Z, Yu B (2016) The protective effects of Ribes diacanthum Pall on cisplatin-induced nephrotoxicity in mice. J Ethnopharmacol 178: 297-306

Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2: 862-71

Toue S, Kodama R, Amao M, Kawamata Y, Kimura T, Sakai R (2006) Screening of toxicity biomarkers for methionine excess in rats. J Nutr 136: 1716S-1721S

Tsuji T, Kato A, Yasuda H, Miyaji T, Luo J, Sakao Y, Ito H, Fujigaki Y, Hishida A (2009) The dimethylthiourea-induced attenuation of cisplatin nephrotoxicity is associated with the augmented induction of heat shock proteins. Toxicol Appl Pharmacol 234: 202-8

Ugur S, Ulu R, Dogukan A, Gurel A, Yigit IP, Gozel N, Aygen B, Ilhan N (2015) The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren Fail 37: 332-6

Veeranna V, Zalawadiya SK, Niraj A, Pradhan J, Ference B, Burack RC, Jacob S, Afonso L (2011) Homocysteine and reclassification of cardiovascular disease risk. J Am Coll Cardiol 58: 1025-33

von Haehling S, Anker SD (2014) Prevalence, incidence and clinical impact of cachexia: facts and numbers-update 2014. J Cachexia Sarcopenia Muscle 5: 261-3

Vuyyuri SB, Hamstra DA, Khanna D, Hamilton CA, Markwart SM, Campbell KC, Sunkara P, Ross BD, Rehemtulla A (2008) Evaluation of D-methionine as a novel oral radiation protector for prevention of mucositis. Clin Cancer Res 14: 2161-70
Williams G, Cai XJ, Elliott JC, Harrold JA (2004) Anabolic neuropeptides. Physiol Behav 81: 211-22

Wozniak K, Blasiak J (2002) Recognition and repair of DNA-cisplatin adducts. Acta Biochim Pol 49: 583-96

Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z, Wang Y, Huang Z, Ren J, Liu S, Chen X, Han J (2015) A Role for Tubular Necroptosis in Cisplatin-Induced AKI. J Am Soc Nephrol 26: 2647-58

Yakabi K, Kurosawa S, Tamai M, Yuzurihara M, Nahata M, Ohno S, Ro S, Kato S, Aoyama T, Sakurada T, Takabayashi H, Hattori T (2010a) Rikkunshito and 5-HT2C receptor antagonist improve cisplatin-induced anorexia via hypothalamic ghrelin interaction. Regul Pept 161: 97-105

Yakabi K, Sadakane C, Noguchi M, Ohno S, Ro S, Chinen K, Aoyama T, Sakurada T, Takabayashi H, Hattori T (2010b) Reduced ghrelin secretion in the hypothalamus of rats due to cisplatin-induced anorexia. Endocrinology 151: 3773-82

Yamamoto H, Ishihara K, Takeda Y, Koizumi W, Ichikawa T (2013) Changes in the mucus barrier during cisplatin-induced intestinal mucositis in rats. Biomed Res Int 2013: 276186

Yamashita H, Noguchi S, Murakami N, Kawamoto H, Watanabe S (1997) Extracapsular invasion of lymph node metastasis is an indicator of distant metastasis and poor prognosis in patients with thyroid papillary carcinoma. Cancer 80: 2268-72

Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14: 818-29

Yildirim Z, Sogut S, Odaci E, Iraz M, Ozyurt H, Kotuk M, Akyol O (2003) Oral erdosteine administration attenuates cisplatin-induced renal tubular damage in rats. Pharmacol Res 47: 149-56

Yoshimura M, Matsuura T, Ohkubo J, Ohno M, Maruyama T, Ishikura T, Hashimoto H, Kakuma T, Yoshimatsu H, Terawaki K, Uezono Y, Ueta Y (2013) The gene expression of the hypothalamic feeding-regulating peptides in cisplatin-induced anorexic rats. Peptides 46: 13-9

Zhu G, Myint M, Ang WH, Song L, Lippard SJ (2012) Monofunctional platinum-DNA adducts are strong inhibitors of transcription and substrates for nucleotide excision repair in live mammalian cells. Cancer Res 72: 790-800


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊