跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 22:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林杏純
研究生(外文):Hsing-Chun Lin
論文名稱:紫檀芪抑制血管平滑肌細胞遷移和基質金屬蛋白酶的機制探討
論文名稱(外文):The mechanisms of Pterostilbene in vascular smooth muscle cells migration and matrix metalloproteinase
指導教授:黃建寧黃建寧引用關係
學位類別:博士
校院名稱:中山醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:101
中文關鍵詞:動脈粥狀硬化平滑肌細胞遷移基質金屬蛋白酶紫檀芪
外文關鍵詞:Pterostilbenesmooth muscle cellsmigrationmatrix metalloproteinase-2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血管平滑肌細胞的遷移和基質金屬蛋白酶(matrix metalloproteinase ; MMP) 的活化,在動脈粥狀硬化的發展中扮演一個重要的角色。紫檀芪 (Pterostilbene) 是存在葡萄與藍莓中的典型黃酮類化合物,目前許多研究發現,紫檀芪具抗發炎、抗氧化與抗癌的功效。因此,本研究欲探討紫檀芪抑制血管平滑肌細胞遷移與基質金屬蛋白酶的相關性。本研究利用MTT assay來評估紫檀芪對平滑肌細胞株(A7r5)存活率的影響;接著利用migration/invasion assay、wound healing assay 及zymography 來評估紫檀芪對平滑肌細胞株(A7r5),其細胞移動及基質金屬蛋白酶活性的影響;最後以西方墨點法評估紫檀芪抑制細胞外基質(ECM) 分解酵素的機制分析,如影響侵襲能力的基質金屬蛋白水解酶活性有關的訊息傳遞MAPK family ERK 1/2、p38及JNK 1/2、phosphatidylinositol 3-kinase (PI3K)/Akt pathway。Gelatin zymography與西方墨點法皆顯示紫檀芪會降低MMP-2的分泌與蛋白質表現,而migration/invasion assay與wound healing assay的遷移試驗顯示紫檀芪可有效抑制平滑肌細胞的遷移。另外,在訊息傳遞路徑的影響,可從西方墨點法的結果證實紫檀芪可誘發ERK磷酸化,故再利用ERK抑制劑去觀察其對細胞遷移與MMP-2的影響,結果也顯示紫檀芪是透過ERK的活化來抑制細胞遷移與MMP-2的表現。綜合以上結果可知,紫檀芪可有效抑制血管平滑肌的增生與遷移,以延緩動脈粥狀硬化的病程發展,因此,在臨床上可建議心血管相關疾病之患者可適量補充莓果(藍莓與葡萄),將有助於預防動脈粥狀硬化。

Smooth muscle cells (SMCs) migration and matrix metalloproteinase-2 (MMP-2) activation are main roles in atherosclerosis. Pterostilbene (trans-3, 5-dimethoxy-4-hydroxystilbene), a flavonoid extensively found in blueberries and grapes, confers potent antioxidant, anti-inflammatory and anticarcinogenic properties. The present study aimed to investigate the anti-atheroscleroic property of pterostilbene in the rat smooth muscle cell (SMC) A7r9 cell lines and the underlying mechanisms. The cytotoxic effect of pterostilbene on smooth muscle cell line (A7r5) was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) assay. The mobility of vascular smooth muscle cells through the extracellular matrix was determined by migration assay and wound healing assay. Evaluate of matrix metalloproteinase (MMP) activation and protein expression by gelatin zymography and western blot. In this study, pterostilbene treatment significantly inhibited migration/invasion capacities of in A7r9 cell. Pterostilbene was also found to significantly decreased MMP-2 activity and expression by gelatin zymography and western blot assay in SMC. In the MAPK signaling pathway, western blot assay also indicated that pterostilbene up-regulated the phosphorylation of extracellular-signal- regulated kinase (Erk) 1/2. Moreover, inhibition of Erk1/2 by specific inhibitors significantly abolished the pterostilbene-decreased expression of MMP-2 and migration/invasion capacities. These findings suggest that pterostilbene inhibited SMC migration and that MMP-2 activation could be mediated via Erk1/2 phosphorylation. It is further possible that pterostilbene could play a novel role in the treatment of atherosclerosis.

封面 I
目次 II
附圖次 VII
圖次 VIII
附表次 X
縮寫表 XI
謝誌 XII
中文摘要 XIII
英文摘要 XV
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 3
第二章 文獻探討 4
第一節 動脈粥狀硬化 4
一、血管的構造 4
二、動脈粥狀硬化的形成 6
三、基質金屬蛋白酶 9
四、訊息傳遞路徑Mitogen-Activated Protein Kinases (MAPK) 13
五、訊息傳遞路徑Phosphatidylinositol-3-kinase (PI3K) 16
第二節 紫檀芪 17
一、類黃酮之結構與分類 17
二、紫檀芪 20
第三節 研究目的 21
第三章 研究方法 22
第一節 實驗材料與配製方法 22
一、藥品試劑 22
二、實驗設備 24
三、試劑配製 26
四、實驗細胞株 32
第二節 A7r5 細胞培養 (A7r5 cell culture) 33
一、A7r5 細胞解凍 33
二、A7r5 細胞繼代培養 34
三、A7r5 細胞冷凍 35
第三節 紫檀芪(Pterostilbene)之配製 36
第四節 實驗方法 37
一、細胞存活率測試 (Analysis of cell viability) 37
二、傷口癒合試驗 (wound healing assay) 38
三、體外細胞移動性試驗 (Cell mobility assay in vitro) 39
細胞遷移性試驗 (Cell migration assay) 39
細胞侵入性試驗 (Cell invasion assay) 40
四、受質十二烷基硫酸鈉聚丙醯胺膠體電泳 (Substrate SDS-PAGE) 42
細胞培養液收集 (cell culture medium collection ) 42
明膠蛋白酵素電泳法 (gelatin zymography) 43
五、西方墨點法 (Western blot) 43
蛋白質萃取 (Protein extraction) 44
蛋白質定量 44
西方墨點法 (Western blot) 45
六、反轉錄酶-聚合酶連鎖反應 ( RT-PCR) 46
核糖核酸萃取 (RNA extraction) 46
反轉錄酶反應 ( RT ) 47
聚合酶連鎖反應 ( PCR ) 47
DNA 電泳 48
第五節 統計分析 49
第四章 結果 50
一、紫檀芪對A7r5細胞的細胞毒性結果 50
二、紫檀芪對A7r5細胞株分泌MMP-2之影響 50
三、紫檀芪對A7r5細胞株其MMP-2與內生性抑制劑TIMP-2之蛋白質表現的影響 51
四、紫檀芪對A7r5細胞株MMP-2之mRNA表現的影響 51
五、紫檀芪與MG132對A7r5細胞株之MMP-2蛋白質表現的影響 52
六、紫檀芪對A7r5細胞株其細胞爬行能力的影響 52
七、紫檀芪對A7r5細胞株其細胞遷移能力的影響 53
八、紫檀芪對A7r5細胞株其細胞侵入能力的影響 53
九、紫檀芪與氧化型低密度脂蛋白對A7r5細胞株其細胞遷移能力的影響 54
十、紫檀芪對A7r5細胞株其MAPK訊息傳遞路徑蛋白ERK1/2磷酸化表現的影響 55
十一、紫檀芪對A7r5細胞株其MAPK訊息傳遞路徑蛋白JNK1/2磷酸化表現的影響 55
十二、紫檀芪對A7r5細胞株其MAPK訊息傳遞路徑蛋白p38磷酸化表現的影響 56
十三、紫檀芪對A7r5細胞株其PI3K訊息傳遞路徑蛋白Akt磷酸化表現的影響 56
十四、紫檀芪與U0126 (MEK抑制劑) 對A7r5細胞株其MMP-2蛋白質表現的影響 57
十五、紫檀芪與U0126 (MEK抑制劑) 對A7r5細胞株其細胞遷移能力的影響 57
第五章 討論 59
第六章 結論 63
參考文獻 64



Albert, N. M. (2000). Inflammation and infection in acute coronary syndrome. J Cardiovasc Nurs, 15(1), 13-26.
Alvarez, O. A., Carmichael, D. F., & DeClerck, Y. A. (1990). Inhibition of collagenolytic activity and metastasis of tumor cells by a recombinant human tissue inhibitor of metalloproteinases. J Natl Cancer Inst, 82(7), 589-595.
Birkedal-Hansen, H., Moore, W. G., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A., & Engler, J. A. (1993). Matrix metalloproteinases: a review. Crit Rev Oral Biol Med, 4(2), 197-250.
Brown, M. S., & Goldstein, J. L. (1976). Receptor-mediated control of cholesterol metabolism. Science, 191(4223), 150-154.
Albert, N. M. (2000). Inflammation and infection in acute coronary syndrome. J Cardiovasc Nurs, 15(1), 13-26.
Alvarez, O. A., Carmichael, D. F., & DeClerck, Y. A. (1990). Inhibition of collagenolytic activity and metastasis of tumor cells by a recombinant human tissue inhibitor of metalloproteinases. J Natl Cancer Inst, 82(7), 589-595.
Birkedal-Hansen, H., Moore, W. G., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A., & Engler, J. A. (1993). Matrix metalloproteinases: a review. Crit Rev Oral Biol Med, 4(2), 197-250.
Brown, M. S., & Goldstein, J. L. (1976). Receptor-mediated control of cholesterol metabolism. Science, 191(4223), 150-154.
Chao, R., Chow, J. M., Hsieh, Y. H., Chen, C. K., Lee, W. J., Hsieh, F. K., . . . Chien, M. H. (2015). Tricetin suppresses the migration/invasion of human glioblastoma multiforme cells by inhibiting matrix metalloproteinase-2 through modulation of the expression and transcriptional activity of specificity protein 1. Expert Opin Ther Targets, 19(10), 1293-1306.
Chien, M. H., Lin, C. W., Cheng, C. W., Wen, Y. C., & Yang, S. F. (2013). Matrix metalloproteinase-2 as a target for head and neck cancer therapy. Expert Opin Ther Targets, 17(2), 203-216. doi: 10.1517/14728222.2013.740012
Cho, A., Graves, J., & Reidy, M. A. (2000). Mitogen-activated protein kinases mediate matrix metalloproteinase-9 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 20(12), 2527-2532.
Cichocki, M., Paluszczak, J., Szaefer, H., Piechowiak, A., Rimando, A. M., & Baer-Dubowska, W. (2008). Pterostilbene is equally potent as resveratrol in inhibiting 12-O-tetradecanoylphorbol-13-acetate activated NFkappaB, AP-1, COX-2, and iNOS in mouse epidermis. Mol Nutr Food Res, 52 Suppl 1, S62-70. doi: 10.1002/mnfr.200700466
Cimmino, G., Ragni, M., Cirillo, P., Petrillo, G., Loffredo, F., Chiariello, M., . . . Golino, P. (2013). C-reactive protein induces expression of matrix metalloproteinase-9: a possible link between inflammation and plaque rupture. Int J Cardiol, 168(2), 981-986. doi: 10.1016/j.ijcard.2012.10.040
Cobb, M. H. (1999). MAP kinase pathways. Prog Biophys Mol Biol, 71(3-4), 479-500.
Collette, T., Bellehumeur, C., Kats, R., Maheux, R., Mailloux, J., Villeneuve, M., & Akoum, A. (2004). Evidence for an increased release of proteolytic activity by the eutopic endometrial tissue in women with endometriosis and for involvement of matrix metalloproteinase-9. Hum Reprod, 19(6), 1257-1264. doi: 10.1093/humrep/deh290
Creemers, E. E., Cleutjens, J. P., Smits, J. F., & Daemen, M. J. (2001). Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res, 89(3), 201-210.
Davis, R. J. (2000). Signal transduction by the JNK group of MAP kinases. Cell, 103(2), 239-252.
Deryugina, E. I., & Quigley, J. P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev, 25(1), 9-34. doi: 10.1007/s10555-006-7886-9
Dollery, C. M., McEwan, J. R., & Henney, A. M. (1995). Matrix metalloproteinases and cardiovascular disease. Circ Res, 77(5), 863-868.
Dzau, V. J., Braun-Dullaeus, R. C., & Sedding, D. G. (2002). Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med, 8(11), 1249-1256. doi: 10.1038/nm1102-1249
El Gharras, Hasna. (2009). Polyphenols: food sources, properties and applications: a review. International Journal of Food Science & Technology, 44(12), 2512-2518. doi: 10.1111/j.1365-2621.2009.02077.x
Fabunmi, R. P., Baker, A. H., Murray, E. J., Booth, R. F., & Newby, A. C. (1996). Divergent regulation by growth factors and cytokines of 95 kDa and 72 kDa gelatinases and tissue inhibitors or metalloproteinases-1, -2, and -3 in rabbit aortic smooth muscle cells. Biochem J, 315 ( Pt 1), 335-342.
Falk, E. (2006). Pathogenesis of atherosclerosis. J Am Coll Cardiol, 47(8 Suppl), C7-12. doi: 10.1016/j.jacc.2005.09.068
Flenniken, A. M., & Williams, B. R. (1990). Developmental expression of the endogenous TIMP gene and a TIMP-lacZ fusion gene in transgenic mice. Genes Dev, 4(7), 1094-1106.
Folgueras, A. R., Pendas, A. M., Sanchez, L. M., & Lopez-Otin, C. (2004). Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol, 48(5-6), 411-424. doi: 10.1387/ijdb.041811af
Galis, Z. S., Muszynski, M., Sukhova, G. K., Simon-Morrissey, E., Unemori, E. N., Lark, M. W., . . . Libby, P. (1994). Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res, 75(1), 181-189.
Greene, J., Wang, M., Liu, Y. E., Raymond, L. A., Rosen, C., & Shi, Y. E. (1996). Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem, 271(48), 30375-30380.
Griendling, K. K., Ushio-Fukai, M., Lassegue, B., & Alexander, R. W. (1997). Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension, 29(1 Pt 2), 366-373.
Hao, H., Gabbiani, G., & Bochaton-Piallat, M. L. (2003). Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol, 23(9), 1510-1520. doi: 10.1161/01.atv.0000090130.85752.ed
Hemmings, B. A., & Restuccia, D. F. (2012). PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol, 4(9), a011189. doi: 10.1101/cshperspect.a011189
Javadov, S., Jang, S., & Agostini, B. (2014). Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther, 144(2), 202-225. doi: 10.1016/j.pharmthera.2014.05.013
Jezierska, A., & Motyl, T. (2009). Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Monit, 15(2), RA32-40.
Johnson, M. D., Kim, H. R., Chesler, L., Tsao-Wu, G., Bouck, N., & Polverini, P. J. (1994). Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J Cell Physiol, 160(1), 194-202. doi: 10.1002/jcp.1041600122
Jones, C. B., Sane, D. C., & Herrington, D. M. (2003). Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc Res, 59(4), 812-823.
Kannel, W. B., Wilson, P., & Blair, S. N. (1985). Epidemiological assessment of the role of physical activity and fitness in development of cardiovascular disease. Am Heart J, 109(4), 876-885.
Kaperonis, E. A., Liapis, C. D., Kakisis, J. D., Dimitroulis, D., & Papavassiliou, V. G. (2006). Inflammation and atherosclerosis. Eur J Vasc Endovasc Surg, 31(4), 386-393. doi: 10.1016/j.ejvs.2005.11.001
Khoo, J. C., Miller, E., McLoughlin, P., & Steinberg, D. (1988). Enhanced macrophage uptake of low density lipoprotein after self-aggregation. Arteriosclerosis, 8(4), 348-358.
Kyriakis, J. M., & Avruch, J. (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev, 81(2), 807-869.
Leco, K. J., Khokha, R., Pavloff, N., Hawkes, S. P., & Edwards, D. R. (1994). Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem, 269(12), 9352-9360.
Libby, P. (1995). Molecular bases of the acute coronary syndromes. Circulation, 91(11), 2844-2850.
Libby, P. (2000). Coronary artery injury and the biology of atherosclerosis: inflammation, thrombosis, and stabilization. Am J Cardiol, 86(8B), 3J-8J; discussion 8J-9J.
Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420(6917), 868-874. doi: 10.1038/nature01323
Lin, H. S., Yue, B. D., & Ho, P. C. (2009). Determination of pterostilbene in rat plasma by a simple HPLC-UV method and its application in pre-clinical pharmacokinetic study. Biomed Chromatogr, 23(12), 1308-1315. doi: 10.1002/bmc.1254
Lin, S. J., Lee, I. T., Chen, Y. H., Lin, F. Y., Sheu, L. M., Ku, H. H., . . . Chen, Y. L. (2007). Salvianolic acid B attenuates MMP-2 and MMP-9 expression in vivo in apolipoprotein-E-deficient mouse aorta and in vitro in LPS-treated human aortic smooth muscle cells. J Cell Biochem, 100(2), 372-384. doi: 10.1002/jcb.21042
Lusis, A. J., Fogelman, A. M., & Fonarow, G. C. (2004). Genetic basis of atherosclerosis: part I: new genes and pathways. Circulation, 110(13), 1868-1873. doi: 10.1161/01.cir.0000143041.58692.cc
MacSweeney, S. T., Powell, J. T., & Greenhalgh, R. M. (1994). Pathogenesis of abdominal aortic aneurysm. Br J Surg, 81(7), 935-941.
Maeda, K., Kuzuya, M., Cheng, X. W., Asai, T., Kanda, S., Tamaya-Mori, N., . . . Iguchi, A. (2003). Green tea catechins inhibit the cultured smooth muscle cell invasion through the basement barrier. Atherosclerosis, 166(1), 23-30.
Majors, A., Ehrhart, L. A., & Pezacka, E. H. (1997). Homocysteine as a risk factor for vascular disease. Enhanced collagen production and accumulation by smooth muscle cells. Arterioscler Thromb Vasc Biol, 17(10), 2074-2081.
McCormack, D., & McFadden, D. (2012). Pterostilbene and cancer: current review. J Surg Res, 173(2), e53-61. doi: 10.1016/j.jss.2011.09.054
Meier, R., & Hemmings, B. A. (1999). Regulation of protein kinase B. J Recept Signal Transduct Res, 19(1-4), 121-128. doi: 10.3109/10799899909036639
Mohammed, F. F., Smookler, D. S., & Khokha, R. (2003). Metalloproteinases, inflammation, and rheumatoid arthritis. Ann Rheum Dis, 62 Suppl 2, ii43-47.
Nordskog, B. K., Blixt, A. D., Morgan, W. T., Fields, W. R., & Hellmann, G. M. (2003). Matrix-degrading and pro-inflammatory changes in human vascular endothelial cells exposed to cigarette smoke condensate. Cardiovasc Toxicol, 3(2), 101-117.
Ohashi, K. (2001). Pathogenesis of beta2-microglobulin amyloidosis. Pathol Int, 51(1), 1-10.
Ohtani, H. (1998). Stromal reaction in cancer tissue: pathophysiologic significance of the expression of matrix-degrading enzymes in relation to matrix turnover and immune/inflammatory reactions. Pathol Int, 48(1), 1-9.
Oleinick, N. L., Morris, R. L., & Belichenko, I. (2002). The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci, 1(1), 1-21.
Ong, E. T., Hwang, T. L., Huang, Y. L., Lin, C. F., & Wu, W. B. (2011). Vitisin B, a resveratrol tetramer, inhibits migration through inhibition of PDGF signaling and enhancement of cell adhesiveness in cultured vascular smooth muscle cells. Toxicol Appl Pharmacol, 256(2), 198-208. doi: 10.1016/j.taap.2011.08.013
Pan, M. H., Lin, Y. T., Lin, C. L., Wei, C. S., Ho, C. T., & Chen, W. J. (2011). Suppression of Heregulin-beta1/HER2-Modulated Invasive and Aggressive Phenotype of Breast Carcinoma by Pterostilbene via Inhibition of Matrix Metalloproteinase-9, p38 Kinase Cascade and Akt Activation. Evid Based Complement Alternat Med, 2011, 562187. doi: 10.1093/ecam/nep093
Pari, L., & Satheesh, M. A. (2006). Effect of pterostilbene on hepatic key enzymes of glucose metabolism in streptozotocin- and nicotinamide-induced diabetic rats. Life Sci, 79(7), 641-645. doi: 10.1016/j.lfs.2006.02.036
Park, E. S., Lim, Y., Hong, J. T., Yoo, H. S., Lee, C. K., Pyo, M. Y., & Yun, Y. P. (2010). Pterostilbene, a natural dimethylated analog of resveratrol, inhibits rat aortic vascular smooth muscle cell proliferation by blocking Akt-dependent pathway. Vascul Pharmacol, 53(1-2), 61-67. doi: 10.1016/j.vph.2010.04.001
Peschel, T., & Niebauer, J. (2003). Role of pro-atherogenic adhesion molecules and inflammatory cytokines in patients with coronary artery disease and diabetes mellitus type 2. Cytometry B Clin Cytom, 53(1), 78-85. doi: 10.1002/cyto.b.10026
Pradhan, A. D., Rifai, N., & Ridker, P. M. (2002). Soluble intercellular adhesion molecule-1, soluble vascular adhesion molecule-1, and the development of symptomatic peripheral arterial disease in men. Circulation, 106(7), 820-825.
Price, D. T., & Loscalzo, J. (1999). Cellular adhesion molecules and atherogenesis. Am J Med, 107(1), 85-97.
Raingeaud, J., Gupta, S., Rogers, J. S., Dickens, M., Han, J., Ulevitch, R. J., & Davis, R. J. (1995). Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem, 270(13), 7420-7426.
Remsberg, C. M., Yanez, J. A., Ohgami, Y., Vega-Villa, K. R., Rimando, A. M., & Davies, N. M. (2008). Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother Res, 22(2), 169-179. doi: 10.1002/ptr.2277
Remsberg, C. M., Yanez, J. A., Roupe, K. A., & Davies, N. M. (2007). High-performance liquid chromatographic analysis of pterostilbene in biological fluids using fluorescence detection. J Pharm Biomed Anal, 43(1), 250-254. doi: 10.1016/j.jpba.2006.06.035
Riche, D. M., McEwen, C. L., Riche, K. D., Sherman, J. J., Wofford, M. R., Deschamp, D., & Griswold, M. (2013). Analysis of safety from a human clinical trial with pterostilbene. J Toxicol, 2013, 463595. doi: 10.1155/2013/463595
Rimando, A. M., Kalt, W., Magee, J. B., Dewey, J., & Ballington, J. R. (2004). Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem, 52(15), 4713-4719. doi: 10.1021/jf040095e
Rodriguez-Viciana, P., Warne, P. H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M. J., . . . Downward, J. (1994). Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature, 370(6490), 527-532. doi: 10.1038/370527a0
Ross, R. (1999). Atherosclerosis is an inflammatory disease. Am Heart J, 138(5 Pt 2), S419-420.
Rundhaug, J. E. (2005). Matrix metalloproteinases and angiogenesis. J Cell Mol Med, 9(2), 267-285.
Schmitz, G., Herr, A. S., & Rothe, G. (1998). T-lymphocytes and monocytes in atherogenesis. Herz, 23(3), 168-177.
Stoclet, J. C., Chataigneau, T., Ndiaye, M., Oak, M. H., El Bedoui, J., Chataigneau, M., & Schini-Kerth, V. B. (2004). Vascular protection by dietary polyphenols. Eur J Pharmacol, 500(1-3), 299-313. doi: 10.1016/j.ejphar.2004.07.034
Stricklin, G. P., & Welgus, H. G. (1983). Human skin fibroblast collagenase inhibitor. Purification and biochemical characterization. J Biol Chem, 258(20), 12252-12258.
Strongin, A. Y., Marmer, B. L., Grant, G. A., & Goldberg, G. I. (1993). Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J Biol Chem, 268(19), 14033-14039.
Weber, A. J., & De Bandt, M. (2000). Angiogenesis: general mechanisms and implications for rheumatoid arthritis. Joint Bone Spine, 67(5), 366-383.
Weng, C. J., & Yen, G. C. (2012). Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat Rev, 38(1), 76-87. doi: 10.1016/j.ctrv.2011.03.001
Widmann, C., Gibson, S., Jarpe, M. B., & Johnson, G. L. (1999). Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev, 79(1), 143-180.
Woessner, J. F., Jr. (1991). Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J, 5(8), 2145-2154.
Wu, C. H., Hong, B. H., Ho, C. T., & Yen, G. C. (2015). Targeting cancer stem cells in breast cancer: potential anticancer properties of 6-shogaol and pterostilbene. J Agric Food Chem, 63(9), 2432-2441. doi: 10.1021/acs.jafc.5b00002
Yu, Y. M., Lin, H. C., & Chang, W. C. (2008). Carnosic acid prevents the migration of human aortic smooth muscle cells by inhibiting the activation and expression of matrix metalloproteinase-9. Br J Nutr, 100(4), 731-738. doi: 10.1017/s0007114508923710
Yudkin, J. S., Stehouwer, C. D., Emeis, J. J., & Coppack, S. W. (1999). C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol, 19(4), 972-978.
Zhang, L., Cui, L., Zhou, G., Jing, H., Guo, Y., & Sun, W. (2013). Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells. J Nutr Biochem, 24(5), 903-911. doi: 10.1016/j.jnutbio.2012.06.008


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊