跳到主要內容

臺灣博碩士論文加值系統

(44.210.151.5) 您好!臺灣時間:2024/07/13 11:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳傑琮
研究生(外文):Jie-Tsung Chen
論文名稱:採樣方法測試與金屬燻煙暴露勞工健康危害評估
論文名稱(外文):Sampling Method Demonstration and Health Hazard Assessment of Labors Exposure to Metal Fume
指導教授:劉宏信劉宏信引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:職業安全衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:135
中文關鍵詞:金屬燻煙衝擊瓶反應性含氧物質氧化傷害捕集效率
外文關鍵詞:metal fumeimpingersreactive oxygen speciesoxidative damagecollection efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金屬加工在台灣製造工業中為最普遍的作業且扮演一重要角色。其物理性或化學性的作業過程會產生金屬燻煙,並透過呼吸作用進入人體內。金屬燻煙的粒徑大約在0.02~0.81μm之間,屬於微米或次微米級(100 ~1000nm),有些甚至小至奈米級顆粒(<100nm)。銲接燻煙暴露對呼吸道有潛在影響,可能導致短期和長期的呼吸效應,如慢性支氣管炎,職業性哮喘和塵肺症等症狀。另外,金屬會透過Haber–Weiss反應誘發反應性含氧物質生成,並導致DNA氧化損傷以及脂質過氧化現象。本研究希望以新開發的金屬燻煙採樣方法驗證其捕集效率及以此方法所得結果評估金屬燻煙暴露者的健康風險。
本研究以問卷方式蒐集作業人員之生活習慣及暴露模式。進行金屬燻煙作業區域及作業人員呼吸帶採樣,並評估此類作業場所的致癌及非致癌風險。進行作業人員血液與尿液採樣,並評估作業人員的健康風險。研究也進行濾紙串聯多孔性衝擊瓶之採樣系統的捕集效率探討。
研究發現工作年資及年齡增加會使體內錳的暴露量、氧化壓力及氧化傷害指標趨勢上升。作業環境採樣結果顯示A公司作業人員的致癌風險較高。當進行濾紙串聯多孔性衝擊瓶之採樣系統採樣時,採樣距離愈長及金屬熔點愈高會降低捕集效率。研究發現衝擊瓶內添加玻璃珠後,可以捕集到約98%的金屬微粒。
研究建議針對工作年資及年齡較高之作業人員定期實施金屬燻煙暴露職業疾病的相關健康檢查。對於此類作業場所應制定錳及鎳暴露更嚴格之標準,避免致癌風險及氧化性傷害增加。現行之標準採樣方法在金屬燻煙之捕集上顯示有許多金屬微粒之穿透,也明顯低估勞工金屬燻煙暴露之危害。因此,有必要重新檢討採樣方法是否能正確對勞工暴露之健康風險進行評估,以保護勞工健康。


Metal processing was the most common work type in Taiwan manufacturing industry. Metal fumes can be generated during the physical and chemical working process of metal, then enter into the body through inhalation. The particle sizes of metal fumes are between 0.02 and 0.81μm, which are in the range of micron or sub-micron. Exposure to metal fumes casue several healthe effects. For example, exposure to welding fumes cause chronic bronchitis, occupational asthma, and pneumoconiosis. Additoinally, metals would induce formations of reactive oxygen species through Haber–Weiss reaction. Then, they caused oxidative damage and lipid peroxidation. In this study, we developed a new metal fume sampling method and evaluates it’s collection efficiency, then assessed the health risk of workers who exposed to the metal fume based on the sampling outcomes.
Workers’ characteristics and exposure information were obtained from the questionnaires. Additionally, worker’s blood and urine samples were collected. Area and personal samples were collected by using the new new metal fume sampling method, which was a filter- porosity impinger serial sampling train. The sampling results were used to assess carcinogenic and non-carcinogenic risks in such workplaces.
This study found internal manganese level, oxidative stress and oxidative damage increased with age and work years. The sampling results showed that workers’ cancer risks were higher in Company A. Long sampling distances and high-melting point levels of metal would reduce collection efficiency of this new sampling method. This study indicated that about 98% metal particles could be collected when glass beads were added into impingers.
This study suggests to have a regular and proper health examination plan for older and senior workers with metal fume exposure, especially for manganese and nickel exposure, in order to avoid increasing cancer risk and oxidative damage. The current standard sampling method did not collect metal particles efficiently, that resulted in significantly underestimating workers’ exposure of metal fume. Therefore, it is necessary to review whether the sampling methods could correctly assess workers’ health risks of exposure, in order to protect workers’ health.


誌謝 I
中文摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 VIII
第一章 前言 1
1.1 研究背景 1
1.2 研究動機 18
1.3 研究動機 20
第二章 文獻回顧 21
2.1 體外試驗 21
2.2 金屬燻煙暴露之流行病學試驗 25
2.3 金屬燻煙職業病案例 28
2.4 作業環境測定研究 33
第三章 材料與方法 34
3.1 研究架構 34
3.2 研究對象選定 35
3.3 健康調查問卷設計 36
3.4 環境採樣 37
3.5 空氣樣本分析 41
3.6 生物採樣 46
3.7 氧化壓力指標分析 48
3.8 脂質過氧化指標分析 54
3.9 彗星試驗 57
3.10 肌酸酐(creatinine)及8-OH-dG指標分析 61
3.11 血液及尿液中金屬濃度分析 62
3.12 統計分析 65
第四章 結果與討論 66
4.1 健康問卷結果描述 67
4.2 生物試驗結果描述 70
4.3 差異性分析結果 81
4.4 相關性分析結果 89
4.5 空氣採樣分析 91
4.6 採樣方法效率評估 95
第五章 結論與建議 98
5.1 結論 98
5.2 建議 99
第六章 參考文獻 100
第七章 附錄 107
附錄一 環境分析品管記錄表 107
附錄二 生物指標分析品管記錄表 112
附錄三 環境採樣分析結果 118
附錄四 研究計畫許可書 122
附錄五 人體檢體採集與資料分析研究同意書 123
附錄六 金屬燻煙健康調查問卷 128



1.何嘉達,“Physicochemical Properties and Exposure Assessment of Suspended Particles in Steel Plants”,國立中山大學環境工程研究所,2004。
2.Renaud Persoons, Damien Arnoux, Théodora Monssu, Olivier Culié, Gaëlle Roche, Béatrice Duffaud, Denis Chalaye, Anne Maitre, “Determinants of occupational exposure to metals by gas metal arc welding and risk management measures: A biomonitoring study”, Toxicology Letters 231 (2014) 135–141.
3.Maria Hedmer, Jan-Eric Karlsson, Ulla Andersson, Helene Jacobsson, Jo¨rn Nielsen, Ha°kan Tinnerberg, “Exposure to respirable dust and manganese and prevalence of airways symptoms, among Swedish mild steel welders in the manufacturing industry”, Int Arch Occup Environ Health, 2013; DOI 10.1007/s00420- 013-0896-3.
4.天錡精密工業股份有限公司,製程介紹,脫蠟鑄造法,2014。
5.Gonser M, Hogan.T, ”Arc welding health effects, fume formation mechanisms and characterization methods”. Arc welding. InTech; 2011; 299–320.
6.Jenkins NT, Eager, “Fume formation from spatter oxidation during arc welding”. Sci Technol Weld Joining 2005; 537–43.
7.經濟部技術處產業技術知識服務-ITIS,計畫奈米表面技術之應用與市場分析,莊允中/金屬中心。
8.Gray CN, Hewitt PJ, Dare PRM, “New approach would help control weld fumes at source Part two: MIG fumes”. Weld Met Fab 1982; 393–7.
9.國家環境毒物研究中心-毒性物質資料庫。
10.劉宏信、吳宗鋼、陳成裕,“電銲金屬燻煙採樣方法探討與評估 Welding Metal Fume Sampling Method Study and Assessment.” 2013,IOSH102-A321.
11.黎孝韻、曾國慶,”自由基及氧化物功能的探討”,The Journal Of Taiwan Pharmacy, 2008; ISSN 2220-6493.
12.Kovacic P, Pozos RS, Somanathan R, Shangari N, O’Brien PJ, “Mechanism of mitochondrial uncouplers, inhibitors, and toxins : focus on electron transfer, free radicals, and structure-activity relationships.” Curr Med Chem 2005: 12: 2601-23.
13.Pastor N, Weinstein H, Jamison E, Brenowitz M, ”A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding.” J Mol Biol 2000; 304: 55-68.
14.Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J, ” Role of oxygen radicals in DNA damage and cancer incidence.” Mol Cell Biochem 2004; 266: 37-56.
15.Jeong-Chae Lee, Young-Ok Son, Poyil Pratheeshkumar, Xianglin Shi, ”Oxidative stress and metal carcinogenesis” Free Radical Biology and Medicine, 2012; 53: 742–757.
16.Brown. D. M, Wilson. M. R, MacNee. W, Stone. V, and Donaldson. K, “Size-Dependent Proinflammatory Effects of Ultrafine Polystyrene Particles: A Role for Surface Area and Oxidative Stress in the Enhanced Activity of Ultrafines” Toxicology and Applied Pharmacology, 2001; Volume 175, Issue 3, Pages 191–199.
17.David R. Janero, “Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury”, Free Radical Biology and Medicine, 1990; Volume 9, Issue 6, Pages 515–540.
18.行政院勞動部-職業疾病案例,編號78002、78003。
19.行政院勞動部-2011職業病案例彙編,第三章-職業癌症。
20.Harris. R.M., Williams. T.D, Hodges. N.J, Waring. R.H, “Reactive oxygen species and oxidative DNA damage mediate the cytotoxicity of tungsten–nickel–cobalt alloys in vitro”, Toxicology and Applied Pharmacology, 2011; 250: 19–28.
21.Todd Hsu, Kuan-Ming Huang, Huei-Ting Tsai, Shih-Tsung Sung, Tsung-Nan Ho, “Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos”, Aquatic Toxicology, 2013; 126: 9– 16.
22.Richard T. Sawyer, David R. Dobis, Mark Goldstein, Leonard Velsor, Lisa A. Maier, Andrew P. Fontenot, Lori. Silveira, Lee S. Newman, Brian J. Day, “Beryllium-stimulated reactive oxygen species and macrophage apoptosis” ,Free Radical Biology & Medicine, 2005; 38: 928 – 937.
23.Bin Xu, Sheng-Wen Wu, Chun-Wei Lu, Yu Deng, Wei Liu, Yan-Gang Wei, Tian-Yao Yang, Zhao-Fa Xu, “Oxidative stress involvement in manganese -induced alpha-synuclein oligomerization in organotypic brain slice cultures” Toxicology, 2013; 305: 71–78.
24.Varna. D, Hatzidimitriou. A.G, Velali. E, Pantazaki. A.A, Aslanidis. P, “Structural diversity in dinuclear copper(I) halide complexes of 2,4-dithiouracil: Synthesis, crystal structures, induction of DNA damage and oxidative stress mediated by ROS”, Polyhedron, 2015; 88: 40–47.
25.Zhuqin Hu, Fengxiang Yu, Ping Gong, Yu Qiu, Wei Zhou, Yongyao Cui, Juan Li, Hongzhuan Chen, ”Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS”, Toxicology and Applied Pharmacology, 2014; 276: 95–103.
26.Adrienne P. Stephenson, Jeffrey A. Schneider, Bryant C. Nelson, Donald H. Atha, Ashok Jain, Karam F.A. Soliman, Michael Aschner, Elizabeth Mazzio, R. Renee Reams, “Manganese-induced oxidative DNA damage in neuronal SH-SY5Y cells: Attenuation of thymine base lesions by glutathione and N-acetylcysteine”, Toxicology Letters, 2013; 218: 299– 307.
27.巴婧种、王明、王声远、焦冬、吴永会,”镍冶炼烟尘诱导NIH/3T3细胞氧化损伤作用的研究”,Chin J Ind Hyg Occup Dis, May 2014;Vol.32, No.5.
28.Newland MC, “Animal models of manganese’s neurotoxicity”. Neurotoxicology 1999; 20: 415–32.
29.Zaiyang Long, Yue-Ming Jiang, Xiang-Rong Li, William Fadel, Jun Xu, Chien-Lin Yeh, Li-Ling Long, Hai-Lan Luo, Harezlak Jaroslaw, Murdoch James B, Zheng Wei, Dydak Ulrike, “Vulnerability of welders to manganese exposure – A neuroimaging study”, NeuroToxicology, 2014; 45: 285–292.
30.Hartmann. L, Bauer. M, Bertram. J, Gube. M, Lenz. K, Reisgen. U, Schettgen. T, Kraus. T, Brand. P, “Assessment of the biological effects of welding fumes emitted from metal inertgas welding processes of aluminium and zinc-plated materials in humans”, International Journal of Hygiene and Environmental Health, 2014; 217: 160– 168.
31.Beate Pesch, Anne Lotz, Holger M. Koch, Boleslaw Marczynski, Swaantje Casjens, Heiko U. Käfferlein, Peter Welge, Martin Lehnert, Evelyn Heinze, Rainer Van Gelder, Jens‑Uwe Hahn, Thomas Behrens, Monika Raulf, Andrea Hartwig, Tobias Weiss, Thomas Brüning, “Oxidatively damaged guanosine in white blood cells and in urine of welders: associations with exposure to welding fumes and body iron stores”, Arch Toxicol, 2015; 89: 1257–1269.
32.Halshka Graczyk, Nastassja Lewinski, Jiayuan Zhao, Jean-Jacques Sauvain, Guillaume Suarez, Pascal Wild, Brigitta Danuser and Michael Riediker,” Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study”, Particle and Fibre Toxicology, 2016; 13:31.
33.Pascal Andujar, Angelique Simon-Deckers, Francoise Galateau-Salle, Barbara Fayard, Gregory Beaune, Benedicte Clin, Marie-Annick Billon-Galland, Olivier Durupthy, Jean-Claude Pairon, Jean Doucet, Jorge Boczkowski and Sophie Lanone1, “Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders”, Particle and Fibre Toxicology, 2014; 11:23.
34.David J. Dula, “Metal fume fever”, Journal of the American College of Emergency Physicians, 1978; Volume 7, Issue 12, Pages 448–450.
35.Habib Ur Rehman, “Acute Dyspnea in a Welder”, The Journal of Emergency Medicine, Volume, 2013; 45, Issue 3, Pages 408–410.
36.Oguz Uzun, Ozgur Ince, Veli Bakalov, Tibel Tuna, “Massive hemoptysis due to welding fumes”, Respiratory Medicine Case Reports, Respiratory Medicine Case Reports, 2012; 5: 1-3.
37.Mindy J. Hull , Jerrold L. Abraham, “Aluminum Welding Fume -Induced Pneumoconiosis”, Human Pathology, Volume 33, Issue 8, August, 2002; Pages 819–825.
38.Hai-Qing Chu, Jin-Ming Liu, Tao Gui, Lan Zhao, Dao-Yuan Sun, Jing-Bo Zhang, Xiang-Hua Yi, “Case of interstitial lung disease possibly induced by exposure to iron dust.”, Heart & Lung: The Journal of Acute and Critical Care, 2012; Volume 41, Issue 2, Pages 196–199.
39.Luis F. Gonzalez-Cuyar, Gill Nelson, Susan R. Criswell, Pokuan Ho, Jaymes A. Lonzanida, Harvey Checkoway, Noah Seixas, Benjamin B. Gelman, Bradley A. Evanoff, Jill Murray, Jing Zhang, Brad A. Racette, “Quantitative neuropathology associated with chronic manganese exposure in South African mine workers”, NeuroToxicology, 2014; 45: 260–266.
40.Kevin Nelson, Jan Golnick, Thomas Kom, Carol Angle, “Manganese encephalopathy: utility of early magnetic resonance imaging”, British Journal of Industrial Medicine, 1993; 50: 510-513.
41.Danadevi. K, Rozati Roya, Reddy. P.P, Grover Paramjit, “Semen quality of Indian welders occupationally exposed to nickel and chromium”, Reproductive Toxicology, 2003; 17: 451–456.
42.Jee Yeon Jeong, Jong Su Park , Pan Gyi Kim, “Characterization of Total and Size-Fractionated Manganese Exposure by Work Area in a Shipbuilding Yard, Safety and Health at Work, 2016; 7: 150-155.
43.Halshka Graczyk, Nastassja Lewinski, Jiayuan Zhao, Nicolas Concha-Lozano and Michael Riediker, “Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders” Ann. Occup. Hyg, 2016; Vol. 60, No. 2, 205–219.
44.鉻酸及其鹽類作業健康檢查指引,國民健康局, 2007。
45.Gylseth B, Gundersen N, Langard S,” Evaluation of Chromium Exposure Based on a Simplified Method for Urinary Chromium Determination.” ,Scand J.Work Environ Health, 1977; 3: 28-31.
46.Kerger B,” Absorption and Elimination of Trivalent and Hexavalent Chromium in Humans following Ingestion of a Bolus dose in Drinking Water.” ,Toxicol Appl Pharmacol, 1996; 141(1): 145-158.
47.Paustenbach DJ, Hays SM, Brien BA.,”Observation of steady state in blood and urine following human ingestion of hexavalent chromium in drinking water. J Toxicol Environ Health.” 1996; 6: 49(5):453-61.
48.Templeton DM, Sunderman FW Jr, Herber RFM,” Tentative reference values for nickel concentrations in human serum, plasma, blood, and urine: Evaluation according to the TRACY protocol.” Sci Tot Environ, 1994; 148: 243-251.
49.Sunderman FW Jr, Horak E,” Biochemical indices of nephrotoxicity, exemplified by studies of nickel nephropathy. “,In: Brown SS, Davies DS, eds. Organ-directed toxicity: Chemical indices and mechanisms. London, UK: Pergamon Press, 1981; 52-64.
50.Raithel H, Schaller K, Mohrmann W, Mayer P, Henkels U,”Untersuchungen zur Ausscheidungskinetik von Nicekl bei Beschaftigten in der Glas-und Galvanischen Industrie [Study of elimination kinetics of nickel during injury in the glass and electroplating industry]”,Stuttgart, Gentner, 1982; 223-228.
51.Davidsson L, Cederblad A, Lonnerdal B, Sandstrom B, “Manganese retention in man: a method for estimating manganese absorption in man.”, Am J Clin Nutr, 1989; 49: 170-179.
52.Roels H, Lauwerys R, Genet P, Sarhan MJ, de Fays M, Hanotiau I, Buchet LP, “Relationship between external and internal parameters of exposure to manganese in workers from a manganese oxide and salt producing plant.” Am J Ind Med, 1987; 11: 297-305.
53.Rafał Rowiński, Mariusz Kozakiewicz, Kornelia Kędziora-Kornatowska, Elżbieta Hübner-Woźniak, Józef Kędziora, “Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.”, Experimental Gerontology, 2013; 48: 1141–114.
54.李聯雄 “船舶業焊接作業金屬燻煙濃度調查,2010; IOSH98-A311.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top