跳到主要內容

臺灣博碩士論文加值系統

(44.210.151.5) 您好!臺灣時間:2024/07/13 10:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林怡君
研究生(外文):Yi-Chun Lin
論文名稱:以微生物轉化之白藜蘆醇降血脂功效評估
論文名稱(外文):The Anti-hyperlipidemia Effect of Resveratrol produced by Microorganism Biotransformation
指導教授:巖正傑
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:職業安全衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:70
中文關鍵詞:白藜蘆醇高血脂倉鼠
外文關鍵詞:resveratrolhigh blood lipidshamsters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白藜蘆醇(Resveratrol)是一種植物抗逆境素,廣泛分佈於葡萄皮、花生、虎杖、覆盆子中,具有調節脂質代謝、抑制低密度脂蛋白氧化、抗血小板凝集、保護心血管的作用。現階段取得白藜蘆醇可分為人工合成及天然物萃取二種方式,其中經由天然物取得又可分成經由生藥材直接萃取或透過微生物基因轉殖或發酵後萃取;在生藥材直接洗脫乾燥方式因天然植物所含物質複雜,純化過程必須經過質多種化學溶劑分離萃取,他的化學殘留問題是必須考慮的。但若選擇以微生物基因轉殖生成或使用特殊菌種先行發酵轉化含有白藜蘆醇糖苷生藥材,再行萃取,將可降低化學溶劑的使用也可增加純化物的產率。
目的
探討以微生物-德克酵母屬(Dekkera)轉化虎杖糖苷(Polydatin)所製造之白藜蘆醇(Resveratrol of biotransformation by microorganism, RSVB),在餵食高脂肪/高膽固醇飼料倉鼠動物模式下的降血脂效用評估。
設計與方法
倉鼠隨機分成四組:高脂飼料對照組(C)、高脂飼料加RSVB 5mg /Kg/BW(低劑量組, L)、高脂飼料加RSVB 20mg/Kg/BW(中劑量組, M)、及高脂飼料加RSVB 50 mg/Kg/BW(高劑量組, H)。倉鼠經6週高脂飼料同時搭配不同劑量之RSVB餵食後犧牲,取血液與肝臟測試三酸甘油酯(TG)、膽固醇、血糖及肝重量等。
結果
餵食期間倉鼠體重呈現穩定增加,顯示給予不同劑量之RSVB並未影響倉鼠食慾或成長。肝臟重量在RSVB-H組比C組為輕,且有顯著差異;肝臟重量與體重比值,C組比值較不同劑量之RSVB各組高且有顯著差異,顯示C組肝臟有偏重之趨勢。倉鼠血中脂質及血糖之變化方面,C組血糖值較其他三組高,且與中、高劑量RSVB組比較有統計上之差異,血中TG與總膽固醇濃度,RSVB組皆低於C組,且與部分劑量之RSVB組有統計上之差異。HDL-C在M組顯著高於C組與L組。LDL-C在RSVB-M及-H組都顯著低於C組,而HDL-C與LDL-C之比值在RSVB-M和RSVB-H組都顯著高於C組,顯示RSVB有調整不同膽固醇形式之作用。
結論
餵食以高脂肪/高膽固醇飼料的倉鼠若給予微生物轉化之白藜蘆醇可以有效降低血中脂質濃度並具有改善不同形式膽固醇濃度之功效。

Resveratrol is a plant stress-resistant compound which is widely distributed in the skin of grapes, peanuts, Polygonum cuspidatum Sieb. et Zucc. (Polygonum cuspidatum), and raspberries. It has the functions of regulating lipid metabolism, inhibiting oxidation of low density lipoprotein cholesterol (LDL-C), suppressing platelet aggregation, and protecting the cardiovascular system.
Object
The aim of the present study was to investigate the effect of decreasing blood lipids through resveratrol produced by microorganism biotransformation of Polydatin (RSVB) in hamsters treated with a high-fat (high- cholesterol) diet as an animal model of obesity.
Methods and procedures
The hamsters were randomly divided into four groups: high-fat diet control group (C), high-fat diet plus RSVB 5 mg/kg (low dosage group, L), high-fat diet plus RSVB 20 mg/kg (medium dosage group, M) and high-fat diet plus RSVB 50 mg/kg (high dosage group, H).
During the experiment, the food intake and body weight were measured per week. The hamsters were sacrificed after six weeks of high-fat diet plus RSVB of different dosages. Blood and liver were obtained. Blood triglyceride, cholesterol, liver enzymes and sugar were assayed, and liver was weighed.
Results
The body weight increased gradually in every group. No difference among groups was noted in the weekly body weight or total body weight increases, which revealed that RSVB of different dosages did not influence the appetite or growth of the hamsters. In contrast to the group C, low liver weight was observed in the three RSVB groups, and significantly low in the RSVB groups M and H. Liver weight/body weight ratio in the group C was significantly high in relation to the three RSVB groups. The liver enzymes were lower in the three RSVB groups than the group C.The analysis indicated that the blood sugar is high in the group C compared with the three RSVB groups, and there was significance compared with the RSVB groups M and H. Blood triglyceride in the RSVB group H is significantly lower than the group C. Total blood cholesterol was noted significantly high in the group C compared with the three RSVB groups. Significantly HDL-C was observed in the RSVB group M compared with the group C and the RSVB group L. High HDL-C was also noted in the RSVB group H, but there was no significance. Compared with the group C, the RSVB groups M and H had significantly decreased LDL-C. The significantly high HDL-C/LDL-C ratio in the RSVB groups M and H compared with the group C demonstrated that RSVB has the tendency of modulating different types of blood cholesterol.
Conclusions
The major finding of the present study was that RSVB effectively decreased blood lipids and total blood cholesterol, and modulated different types of blood cholesterol in hamsters treated with a high-fat (high- cholesterol) diet.

中文摘要 …………………………………I
英文摘要 …………………………………III
誌謝…………………………………………V
目次…………………………………………VI
圖目次 ……………………………………VII
表目次……………………………………VIII
第一章 前言………………………………1
第一節 研究背景…………………………1
第二節 研究目的…………………………3
第二章 文獻探討…………………………5
第一節 高血脂與代謝性疾病……………5
第二節 白藜蘆醇文獻回顧………………20
第三章 實驗方法與材料…………………34
第一節 實驗流程…………………………34
第二節 使用材料與方法…………………36
第四章 結果與討論………………………41
第一節 結果………………………………41
第二節 討論………………………………55
第五章 結論………………………………58
文獻參考 …………………………………60
附件 ………………………………………70


Aebi, H. (1984). Catalase in vitro. Methods in Enzymol. 105, 121-126.
Afaq, F. & Mukhtar, H. (2006). Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Experimental Dermatology, 15, 678–684
Alarcón de la Lastra, C. & Villegas, I. (2007). Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochemical Society Transactions, 35(5), 1156-1160
Allain, C.C., Poon, L.S., Chan, C.S.G., Richmond, W. & Fu, P.C. (1974). Enzymatic determination of total serum cholesterol. Clin. Chem. 20, 470-475.
Athar, M., Back, J.H., Kopelovich, L., Bickers, D.R. & Kim, A.L. (2009). Multiple molecular Targets of Resveratrol: Anti-carcinogenic Mechanisms. Arch Biochem Biophys. 486(2), 95–102
Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A.,…Sinclair, D.A. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342.
Becker, J.V., Armstrong, G.O., van der Merwe, M.J., Lambrechts, M.G., Vivier, M.A. & Pretorius, I.S. (2003). Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Research, 4, 79-85
Bellomo, G., Mirabelli, F., Dimonte, D., Richelmi, P., Thor, H., Orrenius, C. & Orrenius, S. (1987). Formation and reduction of glutathione-mixed disulides during oxidative stress. Biochem. Pharmacol. 36, 1313-1320.
Borriello, A., Cucciolla, V., Della Ragione, F. & Galletti, P. (2010). Dietary polyphenols: Focus on resveratrol, a promising agent in the prevention of cardiovascular diseases and control of glucose homeostasis. Nutrition, Metabolism & Cardiovascular Diseases. 20, 618-625
Brown, M.S. & Goldstein, J.L. (1983). Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis. Annu. Rev. Biochem. 52, 223-261.
Brown, M.S., Herz, J., Kowal, R.C. & Goldstein, J.L. (1991). The low-density lipoprotein receptor-related protein: double agent or decoy? Curr Opin Lipidol., 2, 65-72.
Bucolo, G. & David, H. (1973). Quantitative determination of serum triglyceride by the use of enzyme. Clin. Chem. 19, 476-482.
Burns, J., Yokota, T., Ashihara, H., Lean, M.E., & Crozier, A. (2002). Plant Foods and Herbal Sources of Resveratrol. J. Agric. Food Chem., 50(11), 3337−3340
Carrizzo, A., Forte, M., Damato, A., Trimarco, V., Salzano, F., Bartolo, M., ..., Vecchione, C. (2013). Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food and Chemical Toxicology. 61, 215-226
Chait, A., Brazg, R.L., Tribble, D.L. & Krauss, R.M.(1993). Susceptibility of small, dense, low-density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B. Am. J. Med., 94(4), 350-356
Chapman, M.J. (1980). Animal lipoproteins: chemistry, structure and comparative aspects. J. Lipid Research. 21, 789-853.
Chung, S., Yao, H., Caito, S., Hwang, J.W., Arunachalam, G.& Rahman, I. (2010). Regulation of SIRT1 in cellular functions: Role of polyphenols. Arch Biochem Biophys. Published online.
Cottart, C.H., Nivet-Antoine, V., Laguillier-Morizot, C. & Beaudeux, J.L. (2010). Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res., 54(1), 7-16
Das, D.K., Mukherjee, S. & Ray, D. (2010). Resveratrol and red wine, healthy heart and longevity. Heart Fail Rev. Published online.
Daumerie, C.M., Woollett, L.A. & Dietschy, J.M. (1992). Fatty acids regulate hepatic low density lipoprotein receptor activity through redistribution of intracellular cholesterol pools. Proc. Natl. Acad. Sci., 89, 10797-10801.
Desager, J.P., Horsmans, Y., Vandenplas, C. & Harvengt, C. (1996). Pharmacodynamic activity of lipoprotein lipase and hepatic lipase, and pharmacokinetic parameters measured in normolipidaemic subjects receiving ciprofibrate (100 or 200 mg/day) or micronised fenofibrate (200 mg/day) therapy for 23 days. Atherosclerosis. 124, S65-73
Donnelly, K.L., Smith, C.I., Schwarzenberg, S.J., Jessurun, J., Boldt, M.D. & Parks, E.J. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 115(5),1343-1351
Donnez, D., Jeandet, P., Clément, C. & Courot, E. (2009). Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends in Biotechnology, 27(12), 706-13
Frémont, L. (2000). Biological effects of resveratrol. Life Sciences, 66(8), 663-673

Friedewald, W.T., Levy, R.I. & Fredrickson, D.S. (1972). Estimation of the concentration of Low-Density Lipoprotein Cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499-502.
Fukuhara, K. & Miyata, N.(1998). Resveratrol as a new type of DNA-cleaving agent. Bioorganic & Medicinal Chemistry Letters, 8(22), 3178-3192
Gustafson, B., Hammarstedt, A., Andersson, C.X., and Smith, U. (2007). Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27,2276–2283
Heynekamp, J.J., Weber, W.M., Hunsaker, L.A., Gonzales, A.M., Orlando, R.A., Deck, L.M., and Jagt, D.L. (2006). Substituted trans-stilbenes, including analogues of the natural product resveratrol, inhibit the human tumor necrosis factor alpha-induced activation of transcription factor nuclear factor kappaB. J. Med. Chem. 49, 7182–7189
Hussain, M.M. (2000). A proposed model for the assembly of chylomicrons. Atherosclerosis, 148 (1), 1–15

Janero, D.R. (1990). Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med, 9(6), 515–540.
Jasiński, M., Jasińska, L. & Ogrodowczyk, M. (2013). Resveratrol in prostate diseases – a short review. Cent European J Urol., 66(2), 144–149
Jimenez-Gomez, Y., Mattison, J.A., Pearson, K.J., Martin-Montalvo, A., Palacios, H.H., Sossong, A.M.,…de Cabo, R. (2013). Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metab., 18(4), 533-45. doi: 10.1016/j.cmet.2013.09.004.
Kassi, E., Pervanidou, P., Kaltsas, G., & Chrousos, G. (2011). Metabolic syndrome: definitions and controversies. BMC Med., 5(9), 48. doi: 10.1186/1741-7015-9-48.
King, R.E., Kent, K.D. & Bomser, JA. (2005). Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal- regulated kinase inhibition. Chemico-Biological Interactions, 151(2), 143 –149
Kleinveld, H.A., Hak-Lemmers, H.L., Stalenhoef, A.F. & Demacker, P.N. (1992). Improved measurement of low-density lipoprotein susceptibility to copper-induced oxidation: Application of a short procedure for isolating low-density lipoprotein. Clin. Chem, 38(10), 2066-2072.
Kritchevsky, D. (1984). Dietary fiber and atherosclerosis. In: “Dietary fiber, Basic and Clinical Aspects”. Ed. Vahouny, G.V. and Kritchevsky, D. Plenum Press, N.Y. 265-274
Lin, P.J. & Chang, C.H. (1994). Endothelium dyfunction in cardiovascular disease. Chang Gung Med. J, 17(3), 198-210
Lopez, M.S., Dempsey, R.J. & Vemuganti, R. (2015). Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochemistry International, 89, 75-82
Ludwig, J., Viggiano, T.R., McGill, D.B.& Oh, B.J. (1980). Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc, 55(7), 434-438.
Marklund, S. & Marklund, G. (1974). Involvement of the superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem, 47, 469-474.
NIH Publication No. 01-3305 (2011). ATP III At-A-Glance: Quick Desk Reference
Pan, Q.R., Ren, Y.L., Liu, W.X., Hu, Y.J., Zheng, J.S., Xu, Y., & Wang, G. (2015). Resveratrol prevents hepatic steatosis and endoplasmic reticulum stress and regulates the expression of genes involved in lipid metabolism, insulin resistance, and inflammation in rats. Nutrition Research, 35(7), 576-584
Polonini, H.C., Lima, L.L., Gonçalves, K.M., do Carmo, A.M., da Silva, A.D., & Raposo, N.R. (2013). Photoprotective activity of resveratrol analogues. Bioorganic & Medicinal Chemistry, 21(4), 964–968
Prokop, J., Abrman, P., Seligson, A.L. & Sovak, M. (2006). Resveratrol and Its Glycon Piceid Are Stable Polyphenols. Journal of Medicinal Food, 9(1), 11-14
Puhl, H., Waeg, G. & Esterbauer, H. (1994). Methods to determine oxidation of low-density lipoproteins. Methods Enzymol. 233, 425-441
Ramprasath, V.R. & Jones, P.J. (2010). Anti-atherogenic effects of resveratrol. Eur J Clin Nutr, 64(7), 660-668
Reaven, G.M., Chen, Y.D., Jeppesen, J., Maheux, P. & Krauss, R.M. (1993). Insulin resistance and hyperinsulinemia in individuals with small, dense, low density lipoprotein particles. J. Clin. Invest, 92(1), 141-146.
Rifai, N. & Warnick, G.R. (1994). Laboratory measurement of lipids, lipoproteins and apolipoproteins, 91-105. American Association for Clinical Chemistry Press.
Sass, D.A., Chang, P. & Chopra, K.B. (2005). Nonalcoholic Fatty Liver Disease:A Clinical Review. Dig Dis Sci., 50(1), 171-80
Sevov, M., Elfineh, L. & Cavelier, L.B. (2006). Elfineh L, Cavelier LB. Resveratrol regulates the expression of LXR-alpha in human macrophages. Biochem Biophys Res Commun, 348(3), 1047-1054
Shackelford, C., Long, G., Wolf, J., Okerberg, C., and Herbert, R. 2002. Qualitative and quantitative analysis of non-neoplastic lesions in toxicology studies. Toxicol. Pathol. 30: 9126.
Stone, N.J., Robinson, J.G., Lichtenstein, A.H., Bairey Merz, C.N., Blum, C.B., Eckel, R.H.,..., Wilson, P.W.; American College of Cardiology/American Heart Association Task Force on Practice Guidelines. (2014). 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 63(25 Pt B), 2889-2934
Tessari, P., Coracina, A., Cosma, A. & Tiengo, A. (2009). Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 19(4), 291-302.
Thompson, G.R. (1989). Handbook of Hyperlipidemia. London, England: Current Science Ltd.
Villanueva, J.A., Sokalska, A., Cress, A.B., Ortega, I., Bruner-Tran, K.L., Osteen, K.G. & Duleba, A.J. (2013). Resveratrol potentiates effect of simvastatin on inhibition of mevalonate pathway in human endometrial stromal cells. J Clin Endocrinol Metab, 98(3), E455-462.
Wang, D. G., Liu, W. Y. & Chen, G. T. (2013). A simple method for the isolation and purification of resveratrol from Polygonum cuspidatum. Journal of Pharmaceutical Analysis, 3(4), 241–247
WHO 2006 Constitution of the World Health Organization Basic Documents, Forty-fifth edition, Supplement, October 2006
Wilson v. Airborne Health, Inc. (2011). FAQ''s on dietary supplements. http://www.consumerreports.org/cro/2012/04/what-s-behind-our-dietary-supplements-coverage/index.htm.
Woollett, L.A., Spady, D.K. & Dietschy, J.M. (1992). Saturated and unsaturated fatty acids independently regulate low density lipoprotein receptor activity and production rate. J. Lipid Research, 33(1), 77-88.
Xia, E.Q., Deng, G.F., Guo, Y.J., & Li, H.B. (2010). Biological Activities of Polyphenols from Grapes. Int J Mol Sci, 11(2), 622-646.
Zhang, J., Chen, J., Yang, J., Xu, C.W., Pu, P., Ding, J.W. & Jiang, H. (2013). Resveratrol Attenuates Oxidative Stress Induced by Balloon Injury in the Rat Carotid Artery Through Actions on the ERK1/2 and NF-Kappa B Pathway. Cell Physiol Biochem, 31, 230-241
Zunino, S.J., Peerson, J.M., Freytag, T.L., Breksa, A.P., Bonnel, E.L., Woodhouse, L.R. & Storms, D.H. (2014). Dietary grape powder increases IL-1b and IL-6 production by lipopolysaccharide-activated monocytes and reduces plasma concentrations of large LDL and large LDL-cholesterol particles in obese humans. British Journal of Nutrition, 112(3), 369–380
中醫藥司。2013。台灣中藥典第二版。行政院衛生署中華藥典編修委員會
王世盛、趙偉杰(2004)。白藜蘆醇的化學合成研究。中國藥物化學雜誌。14(2),91-96。
王長松、趙瑩、趙廣榮(2014)。微生物合成白藜蘆醇的研究進展。J. Microbiol. China., 41(2)。352−357。
司徒世暄(2005)。白黎蘆醇做為預防心血管疾病健康補充品之發展。國立海洋大學食品科學系。
李瑞峰(2008)。利用HPLC分析台灣市售紅葡萄酒與花生根、虎杖之白藜蘆醇含量。亞洲大學生物資訊學系。
周致宏(2009)。系統化的方法將植物二次代謝實現於微生物中:用大腸桿菌生合成白藜蘆醇作為個案研究。國立交通大學生物醫學研究所。
傅茂組(1986)。血脂質的新陳代謝及血管硬化。國防醫誌。2(1),45-49。
勞動部。勞動法令查詢系統。職業安全衛生法施行細則,(2014) 勞工安全衛生法修正條文對照表職業傷病服務管理中心http://laws.mol.gov.tw/Chi/FLAW/FLAWDAT01.asp?lsid=FL015013
彭彥傑(2008)。不同萃取法對台灣農產品中反式白藜蘆醇之分析研究。大葉大學生物產業科技學系。
黃學聰、郭曉萍、賴進此(2014)。以微生物轉化生產白藜蘆醇(Resveratrol)方法。中華民國發明專利第I486452號。
楊明曄、張芝瑞、陳良宇(2011)。由白藜蘆醇調控細胞週期探討多酚物質的防癌效果。 MC-Transaction on Biotechnology,3(1),31- 45。
衛生署。1997。高血脂防治手冊,國人血脂異常診療及預防指引。遠流出版公司,台北。
衛生署。2002。中華民國公共衛生概況。行政院衛生署編印。
衛福部。2010。健康食品之調節血脂功能評估方法。「健康食品安全及功效評估方法」。960718衛署食字第0960403114號公告修正。台北。
職業災害統計資料。(2015) 勞工保險職業病傷病給付人次-按職業病成因、性別及行業別分. 勞動部勞工保險局
羅玉枝、洪禎憶(2014)。IKK活化NFkB的結構與功能的研究。國立成功大學生物資訊與訊息傳遞研究所。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top