跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 16:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張伃君
研究生(外文):Yu-Chun Chang
論文名稱:踝關節虛擬實境訓練對於中風患者下肢肢體功能的改善
論文名稱(外文):Effects of ankle joint virtual reality training in lower limb function of stroke patients
指導教授:葉純妤葉純妤引用關係
指導教授(外文):Chun-Yu Yeh
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:物理治療學系碩士班
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:63
中文關鍵詞:中風虛擬實境踝關節平衡行走
外文關鍵詞:StrokeVirtual realityAnkle jointgaitBalance
相關次數:
  • 被引用被引用:3
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
研究背景與目的: 許多研究認為中風後失能造成的平衡與行走能力缺損會影響功能的獨立及日常生活品質,也會成為中風後患者能否回到社區的重要因素,因此許多復健訓練和中風患者本身都會將改善平衡與行走能力當作治療的目標,但訓練的焦點大多在整體的能力與大塊肌肉力量的訓練,忽略踝關節對於平衡與步態的影響。在目前中風的治療觀點普遍認為可以藉由促進神經塑性來改善肢體功能,近幾年也來越來越多人研究虛擬實境應用在中風患者訓練上的效果。因此本篇研究就是希望能開發出簡單操作並結合虛擬實境概念應用在踝關節的訓練,希望能改善中風患者下肢平衡與行走能力。
方法:利用台中某區域教學醫院復健科,收取符合收案條件之參與者共20人,分為實驗組與控制組,最後共有15人完成研究進行資料分析,其中實驗組7人,控制組8人。兩組皆接受傳統常規復健治療,實驗組額外增加30分鐘踝關節虛擬實境訓練,一週執行三次共執行四週,評估測量實施於四週前與四週後,評估的內容包含1.行走能力:10公尺行走測試;2.平衡能力:博格式平衡量表、起立行走測試;3.姿勢穩定度測試。
結果:研究中利用獨立樣本t檢定分析兩組特徵,發現並沒有差異;無母數魏克遜符號等級檢定(Nonparametric Wilcoxon signed-ranks test)各個測量值,測試前後兩組各別的差異,發現實驗組在博格式平衡量表的分數、起立行走測試、舒適與快速行走以及兩腳承重的差異,都有達到顯著的差異,但控制組沒有;利用Mann-Whitney U test來分析介入組與控制組在介入前後差異值是否有達到兩組之間的顯著差異
分析兩組在測試前後改變的差異,發現在博格氏量表分數與雙腳承重的差異的變化在兩組之間是有達到顯著差異的。
結論:在進行為期四週,一週三次,一次三十分鐘的踝關節虛擬實境訓練可以增加平衡能力、行走速度以及改善兩腳承重的差異。


Objective: To evaluate gait biomechanics after training with a ankle joint virtual reality (VR) system and to elucidate underlying mechanisms that contributed to the observed functional improvement in gait speed, balance, and postural stability.
Design:Quasi-Experimental Designs, didn’t use randomized control, and have two group: VR group and NVR group.
Setting: Department of rehabilitation in a Taichung hospital in Taiwan.
Participants: Eleven men and women with hemiparesis caused by stroke.
Interventions: Subjects trained on a ankle dorsiflexion and plantarflexion interfaced with a VR. Subjects were assigned to either a VR group (n=7) or non-VR group (NVR, n=4). Training was performed three times a week for 4 weeks for approximately 30minutes each visit.
Main outcome measures: Berg balance scale, Timed up and go test, Biodex balance system, 10 m walking test.
Result: Overall 15 subjects complete the training, 7 in the intervention group, and 8 in the control group. Their demographical characteristics between two group have no different. In each group effect, the intervention group significant improvement in balance, gait speed, and weight bearing ability, but not find in control group. Between groups the intervention have move improvement in Berg balance scale and the weight bearing ability than control group.
Conclusion: Ankle joint virtual reality training can improve lower extremity function about balance, gait speed, and improve imbalance weight bearing while standing.


論文電子檔著作權授權書
論文口試委員審定書
誌謝………………………………………………………………….. ii
中文摘要…………………………………………………………….. iii
英文摘要……………………………………………………………… iv
目錄…………………………………………………………………… v
圖目錄……………………………………………………………..... viii
表目錄………………………………………………………………… x
第一章 緒論…………………………………………………………...1-7
1.1 中風 ………………………………………………………………1
1.2 中風後引起的下肢功能上的損傷………………………………..2-3
1.3 中風患者產生的異常步態………………………………………..4
1.4 臨床上常見的下肢功能復健方法………………………………..5
1.5 研究架構…………………………………………………………..6
1.6 研究目的與假設…………………………………………………..7
第二章 文獻探討…………………………………………………..8-20
2.1 行走功能對於中風患者的重要性…………………………….8-9
2.2 平衡對於中風患者的影響……………………………………10
2.3 腳踝控制與行走………………………………………………11-12
2.4 腳踝控制與平衡………………………………………………13-15
2.5 中風復健與虛擬實境…………………………………………16-18
2.6 虛擬實境在中風復健上的應用………………………………19-20
第三章 研究方法………………………………………………….21-38
3.1 系統建立………………………………………………………21-30
3.2 研究設計與評估………………………………………………31-32
3.3 評估方法………………………………………………………33-37
3.4 統計方法………………………………………………………38
第四章 結果……………………………………………………….39-47
4.1 收案流程………………………………………………………39
4.2 參與者特徵……………………………………………………40-41
4.3 兩組各別在博格氏平衡量表、起立行走測試、10公尺舒適行走時
間與10公尺快速行走時間介入前後的差異…………………42-43
4.4 姿勢穩定指數、前後穩定指數、側向穩定指數
所占時間比率前後測的差異....................................................44-45
4.5 兩組間介入前後博格式平衡量表、起立行走測試時間、行走速
度與姿勢穩定指數變化量的比較..............................................46-47
第五章 討論……………………………………………………… 48-55
5.1 受試者特徵討論…………………………………………………48
5.2 腳踝活動與神經塑性的關聯性…………………………………49
5.3 虛擬實境對於下肢行走速度的改善…………………………50-51
5.4 虛擬實境對於平衡功能上的改善…………………………….....52
5.5 姿勢穩定度與雙腳承重對於中風患者的重要性…………….53-54
5.6 研究限制……………………………………………………….....55
第六章 結論………………………………………………………56-57
6.1 對於臨床訓練的影響…………………………………………….56
6.2 對於未來研究上的建議……………………………………….....57
參考文獻…………………………………………………………..58-63
圖目錄
圖一、 研究架構圖……………………………………………………6
圖二、 姿勢控制要素圖………………………………………………13
圖三、 筆記型電腦……………………………………………………22
圖四、 肌電訊號接收器………………………………………………22
圖五、 訓練踏板設置完成圖…………………………………………23
圖六、 訓練踏板側面觀………………………………………………23
圖七、 訓練踏板正面觀………………………………………………24
圖八、 正弦波出現鈔票圖……………………………………………25
圖九、 隨機出現鈔票圖………………………………………………26
圖十、 踝關節脛前肌肌電貼片位置示意圖…………………………27
圖十一、踝關節比目魚肌肌電貼片位置示意圖……………………..28
圖十二、進行最大收縮及放鬆肌電訊號測試畫面…………………..29
圖十三、進行遊戲難易度畫面………………………………………..29
圖十四、使用者遊戲進行中示意圖…………………………………..30
圖十五、平衡測試系統整體外觀……………………………………..34
圖十六、控制身體重心的黑點於中心圖…………………………….35
圖十七、雙腳座標記錄圖…………………………………………….35
圖十八、結果報表圖………………………………………………….36
圖十九、起立行走測圖……………………………………………….37
圖二十、計劃流程圖……………………………………………….…39











表目錄
表一、參與者特徵…………………………………………………….41
表二、兩組各別在博格氏平衡量表、起立行走測試、10公尺舒適行走
時間與10公尺快速行走時間介入前後的差異..........................43
表三、姿勢穩定指數、前後穩定指數、側向穩定指數所占時間比率...45
表四、兩組間介入前後博格式平衡量表、起立行走測試時間、行走速
度與姿勢穩定指數變化量的比較................................................47





‧1.Hsu, A. L., Tang, P. F., & Jan, M. H. (2003). Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Archives of physical medicine and rehabilitation, 84(8), 1185-1193.
‧2.Wang, R. Y., Yen, L. L., Lee, C. C., Lin, P. Y., Wang, M. F., & Yang, Y. R. (2005). Effects of an ankle-foot orthosis on balance performance in patients with hemiparesis of different durations. Clinical rehabilitation, 19(1), 37-44.
‧3.Saposnik, G., Levin, M., & Stroke Outcome Research Canada (SORCan) Working Group. (2011). Virtual reality in stroke rehabilitation a meta-analysis and implications for clinicians. Stroke, 42(5), 1380-1386.
‧4 .Walker, M. L., Ringleb, S. I., Maihafer, G. C., Walker, R., Crouch, J. R., Van Lunen, B., & Morrison, S. (2010). Virtual reality–enhanced partial body weight–supported treadmill training poststroke: feasibility and effectiveness in 6 subjects. Archives of physical medicine and rehabilitation, 91(1), 115-122.
‧5.Sakuma, K., Ohata, K., Izumi, K., Shiotsuka, Y., Yasui, T., Ibuki, S., & Ichihashi, N. (2014). Relation between abnormal synergy and gait in patients after stroke. Journal of neuroengineering and rehabilitation, 11(1), 1.
‧6. Wutzke, C. J., Mercer, V. S., & Lewek, M. D. (2013). Influence of lower extremity sensory function on locomotor adaptation following stroke: a review. Topics in stroke rehabilitation, 20(3), 233-240.
‧7.Marigold, D. S., & Eng, J. J. (2006). The relationship of asymmetric weight-bearing with postural sway and visual reliance in stroke. Gait & posture, 23(2), 249-255.
‧8.Yu, W. H., Liu, W. Y., Wong, A. M. K., Wang, T. C., Li, Y. C., & Lien, H. Y. (2015). Effect of forced use of the lower extremity on gait performance and mobility of post-acute stroke patients. Journal of physical therapy science, 27(2), 421.
‧9.Kesar, T. M., Perumal, R., Reisman, D. S., Jancosko, A., Rudolph, K. S., Higginson, J. S., & Binder-Macleod, S. A. (2009). Functional electrical stimulation of ankle plantarflexor and dorsiflexor muscles effects on poststroke gait. Stroke, 40(12), 3821-3827.
‧10.Mao, Y. R., Lo, W. L., Lin, Q., Li, L., Xiao, X., Raghavan, P., & Huang, D. F. (2015). The Effect of Body Weight Support Treadmill Training on Gait Recovery, Proximal Lower Limb Motor Pattern, and Balance in Patients with Subacute Stroke. BioMed research international, 2015.
‧11.Deutsch, J. E. (2011). Using virtual reality to improve walking post-stroke: translation to individuals with diabetes. Journal of diabetes science and technology, 5(2), 309-314.
‧12 Francisco, G. E., & Boake, C. (2003). Improvement in walking speed in poststroke spastic hemiplegia after intrathecal baclofen therapy: a preliminary study. Archives of physical medicine and rehabilitation, 84(8), 1194-1199.
‧13 Lin, P. Y., Yang, Y. R., Cheng, S. J., & Wang, R. Y. (2006). The relation between ankle impairments and gait velocity and symmetry in people with stroke. Archives of physical medicine and rehabilitation, 87(4), 562-568.
‧14 Blum, L., & Korner-Bitensky, N. (2008). Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review. Physical therapy, 88(5), 559-566.
‧15 Kim, J. H., Sim, W. S., & Won, B. H. (2015). Effectiveness of elastic band-type ankle–foot orthoses on postural control in poststroke elderly patients as determined using combined measurement of the stability index and body weight-bearing ratio. Clinical interventions in aging, 10, 1839.
‧16 de Oliveira, C. B., de Medeiros, I. R. T., Frota, N. A. F., Greters, M. E., & Conforto, A. B. (2008). Balance control in hemiparetic stroke patients: main tools for evaluation. Journal of rehabilitation research and development, 45(8), 1215.
‧17. Saposnik, G., Levin, M., & Stroke Outcome Research Canada (SORCan) Working Group. (2011). Virtual reality in stroke rehabilitation a meta-analysis and implications for clinicians. Stroke, 42(5), 1380-1386.
‧18 Boian, R. F., Deutsch, J. E., Lee, C. S., Burdea, G. C., & Lewis, J. (2003, March). Haptic effects for virtual reality-based post-stroke rehabilitation. In Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings. 11th Symposium on (pp. 247-253). IEEE.
‧19 Kim, T. H., Yoon, J. S., & Lee, J. H. (2013). The effect of ankle joint muscle strengthening training and static muscle stretching training on stroke patients’ Cop sway amplitude. Journal of physical therapy science, 25(12), 1613.
‧20.Refshauge, K. M., & Fitzpatrick, R. C. (1995). Perception of movement at the human ankle: effects of leg position. The Journal of physiology, 488(Pt 1), 243.
‧21.You, S. H., Jang, S. H., Kim, Y. H., Hallett, M., Ahn, S. H., Kwon, Y. H., ... & Lee, M. Y. (2005). Virtual reality–induced cortical reorganization and associated locomotor recovery in chronic stroke an experimenter-blind randomized study. Stroke, 36(6), 1166-1171.
‧22.Enzinger, C., Johansen-Berg, H., Dawes, H., Bogdanovic, M., Collett, J., Guy, C., ... & Matthews, P. M. (2008). Functional MRI correlates of lower limb function in stroke victims with gait impairment. Stroke, 39(5), 1507-1513.
‧23. Mirelman, A., Bonato, P., & Deutsch, J. E. (2009). Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke, 40(1), 169-174.
‧24.Eng, J. J., & Chu, K. S. (2002). Reliability and comparison of weight-bearing ability during standing tasks for individuals with chronic stroke. Archives of physical medicine and rehabilitation, 83(8), 1138-1144.
‧25. Luque-Moreno, C., Ferragut-Garcias, A., Rodriguez-Blanco, C., Heredia-Rizo, A. M., Oliva-Pascual-Vaca, J., Kiper, P., & Oliva-Pascual-Vaca, A. (2015). A decade of progress using virtual reality for poststroke lower extremity rehabilitation: Systematic review of the intervention methods. BioMed research international, 2015.
‧26. Rodrigues-Baroni, J. M., Nascimento, L. R., Ada, L., & Teixeira-Salmela, L. F. (2014). Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis. Brazilian journal of physical therapy, 18(6), 502-512.
‧27. Rodrigues-Baroni, J. M., Nascimento, L. R., Ada, L., & Teixeira-Salmela, L. F. (2014). Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis. Brazilian journal of physical therapy, 18(6), 502-512.
‧28. Lee, S. H., Byun, S. D., Kim, C. H., Go, J. Y., Nam, H. U., Huh, J. S., & Jung, T. D. (2012). Feasibility and effects of newly developed balance control trainer for mobility and balance in chronic stroke patients: a randomized controlled trial. Annals of rehabilitation medicine, 36(4), 521-529.
‧29. Gunn, C. C., Milbrandt, W. E., Little, A. S., & Mason, K. E. (1980). Dry needling of muscle motor points for chronic low-back pain: a randomized clinical trial with long-term follow-up. Spine, 5(3), 279-291.







QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊