跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:連承胤
研究生(外文):Chen-Yin Lian
論文名稱:以液相磊晶法進行自我調變Ge-on-Si磊晶研究及特性分析
論文名稱(外文):The study and application for Self-modulated Ge/SiGe/Si structure by liquid phase epitaxy
指導教授:温武義
指導教授(外文):Wu-Yih Uen
學位類別:碩士
校院名稱:中原大學
系所名稱:工業與系統工程研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:28
中文關鍵詞:液相磊晶;自我調變
外文關鍵詞:LPE;Ge-on-Si
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們將利用液相磊晶成長異質接面的Ge/SiGe結構在Si基板上,而眾所共知液相磊晶其成長之晶格匹配程度限制在1%以下,但Si與Ge的晶格不匹配程度為4.1%,所以要直接將Ge成長在Si基板上就必須多成長出一層SiGe漸變層。然而在此實驗中,我們已經成功的成長出SiGe漸變層在Si(111)基板上,所以之後要成長出純Ge層在最上面是有可能的。
此篇我們將用SEM來探討Si1-xGex成長在Si基板上的晶格不匹配的機制,用EDS調查成長出來的薄膜之組成並用TEM分析其晶格結構。SEM/EDS的剖面分析圖顯示我們所成長出來的SiGe漸變層中Ge佔10至15%之厚度高達20至35um,而其中Si與Ge的比例產生巨變是發生降溫超過在510度的地方。
我們也發現,用Sn當溶媒Ge當溶質,並且成長溫度在950度且Si的來源由基板提供是對於能成長出SiGe漸變層很關鍵的元素。特別是若要成長高Ge含量之Si_(1-x) Ge_x(x>9)層,液相磊晶其成長溫度必須降到一定的溫度而此溫度可由Ge-Sn相圖得到。



The heteroepitaxial growth of high germanium (Ge) silicon germanium (Ge) on silicon (Si) substrate was conducted using liquid phase epitaxy (LPE). As known, a limitation of lattice mismatch for the epitaxial growth by LPE was reported to be 1% while that between Ge and Si is high to the degree of 4.1% and therefore the direct growth of high Ge composition Si1-xGex on Si substrate is almost impossible for LPE. However, in the present study a self-organized Si1-xGex film growth with a grading composition has been initiated on the Si(111) substrate, which consequently made possible the fabrication of Ge top film on Si(111) substrate by LPE.
In this work the LPE growth mechanism of mismatched Si1-xGex on Si is discussed based on the film morphologies observed by scanning electron microscopy (SEM), elemental distributions analyzed by energy dispersive spectroscopy (EDS), and crystalline structure examined by transmission electron microscopy (TEM). SEM/EDS cross-sectional analyses displayed that after the growth of a Si1-xGex layer with tardy grading in Ge composition from 10% to 15% within a layer thickness ranging from 20 to 35 μm, a prompt crossover for Ge and Si composition distributions occurred by ramping the temperature to lower than 510°C. This transition favored for the further growth of high Ge composition Si1-xGex epilayers with their thickness generally in the range of several μm.
It is found that the use of tin (Sn) as the solvent and Ge as the solute to form a Sn-rich Ge-Sn growth solution, accompanied by the commencement of LPE at 950°C to introduce Si species from substrate are important origins to induce the growth of compositionally graded Si1-xGex layer. In particular, a high Ge composition Si_(1-x) Ge_x layer with x > 0.9 can be achieved by terminating the LPE growth at an appropriate temperature suggested by the Ge-Sn phase diagram and thus the corresponding growth mechanism is well illustrated based on the same phase diagram.


中文摘要……………………………………………………………………….Ⅰ
Abstract………………………………………………………………………Ⅱ
Content……………………………………………………………………….Ⅲ
Figure captions……………………………………………………………..Ⅳ
List of tables………………………………………………………………..Ⅴ
Chapter 1 Introductions…………………………………………………..1
Chapter 2 Experiment……………………………………………………3
2.1 LPE growth system…………………………………………….3
2.2 LPE technique and apparatus…………………………………..5
2.3 Material preparation………………………………………….8
2.4 Growth process..…………………………………...................9
Chapter 3 Results and Discussion…………………...................11
3.1 Film structure and elemental composition analyses………….14
3.2 Film strain characterizations………………………….…..20
Chapter 4 Conclusions…………………………………………27
References………………………………………………………………….28

Figure captions
Fig.2.1、LPE growth system…………………………………………………………………3
Fig.2.2、Temperature versus time profiles for (a) ramp-cooled (b) step-cooled and (c) supercooled LPE growth methods.…………………………………………………………...6
Fig.2.3、The processing time sequence of LPE for SiGe-on-Si heteroepitaxy. ……………10
Fig.3.1、The cross-sectional SEM image of a typical SiGe-on-Si sample…………………11
Fig.3.2、Cross-sectional TEM image and the corresponding electron diffraction patterns taken at the marked regions for a typical sample prepared…………………………..……12
Fig.3.3、Ge-Sn phase diagram……………………………………………………………….13
Fig.3.4、Si-Sn phase diagram…………………………………………………………..……14
Fig.3.5、The cross-sectional SEM images and EDS profiles of specimens
A1, A2, A3, and A4…………………………………………………………………………...17
Fig.3.6、The cross-sectional SEM images and EDS profiles of specimen B………………..18
Fig.3.7、The cross-sectional SEM images and EDS profiles of specimen C1, C2, and C3……………………………………………………………………………………………..19
Fig.3.8、The Raman spectra for the X27 sample……………………………………………21
Fig.3.9、The Raman spectra for the X45 sample……………………………………………21
Fig.3.10、The Raman spectra for SiGe/Si sample with different Ge content……………22
Fig.3.11、The Raman spectra for Ge/SiGe/Si samples growth by LPE. Upper right corner is the NCU’s team Raman spectra for Ge/Si smaple growth by MOCVD………………...24
Fig.3.12、Ge-Ge peak position obtained from Raman vs itself HWHM…………………...24
Fig.3.13、Left is the cross-section Raman spectra for samples X27. Right is the cross-section EDS for samples X27………………………………………………...………………26





List of tables
Table 1 Specimens prepared for cross-sectional SEM/EDS analyses……………………...14
Table 2、The EDS analysis for Ge/SiGe/Si samples surface………………………………..23




[1] D. J. Paul, Adv. Mat. 11, 191 (1999). 

[2] J. D. Cressler, IEEE Spect. 49 (1995). 

[4] M. Jutzi and M. Berroth, “SiGe-Based Photodetectors for Optical communications. Properties of Silicon 
Germanium and SiGe: Carbon”, (eds. Erich Kasper and Klara Lyutovich) INSPEC 2000, p-342, London. 

[5] A. Spleet, Th. Zinke, B. Schuppert, K. Petermann, et al., SPIE 2550, 224 (1993). 

[6] G. Bremond, A. Daami, A. Laugier, W. Seifer, M. Kittler, et al., Mat. Res. Soc. Symp. Proc. 485, 43 (1998). 

[7] K. Said, J. Poortmans, M. Caymax, et al., Thin Solid Films 337, 85 (1999). 

[8] S. A. Healy and M. A. Green, Sol. Energ. Mat. Sol. Cells 28, 273 (1992). 

[9] K. Nakajima, S. Kodama, S. Miyashita, G. Sazaki, and S. Hiyamizu, J. Cryst. Growth 205, 270 (1999). 

[10] A. E. Fitzgerald, Y.-H. Xie, D. Monroe, P. J. Silverman, M. J. Kuo, A. R. Kortan, et al., J. Vac. Sci. Tech. B 10, 1807 (1992). 

[11] C. M. Bhandari and D. M. Rowe, Contemp. Phys. 21, 219 (1980). 

[12] G. A. Slack and M. A. Hussain, J. Appl. Phys. 70, 2694 (1991). 

[13] M. L. Kozhukh, I. N. Belokurova, S. B. Vahrushev, A. N. Titkov, and I. L. Shul’pina, Nucl. Instr. Meth. 213, 483 
(1983). 

[14] J. Schilz and V. N. Romanenko, J. Mat. Sci.: Mat. Electr. 6, 265 (1995). 

[15] Y. H. Luo, J. Wan, R. L. Forrest, J. L. Liu, M. S. Goorsky, and K. L. Wang, J. Appl. Phys. 89, 8279 (2001). 

[16] A. E. Fitzgerald, Y.-H. Xie, M. L. Green, et al., Appl. Phys. Lett. 59, 811 (1991). 

[17] P. Bhattacharya, J. Singh, and I. E. Gular, Final Technical Report, Department of Electrical Engineering and 
Computer Science, The University of Michigan, December 26, 1997. 

[18] B. S. Meyerson, K. E. Ismail, D. L. Harame, F. K. LeGoues, and J. M. C. Stork, Semicond. Sci. Technol. 9, 2005 
(1994). 

[19] M. Yildiz, S. Dost, and B. Lent, J. Cryst. Growth 280, 151 (2005). 

[20] N. V. Abrasimov, S. N. Rossolenko, W. Thieme, A. Gerhardt, and W. Schröder, J. Cryst. Growth 174, 182 (1997). 

[21] A. Matsui, I. Yonenaga, and K. Sumino, J. Cryst. Growth 183, 109 (1998). 

[22] M. Kurten and J. Schilz, J. Cryst. Growth 139, 1 (1994). 

[23] I. Yonenaga and M. Nonaka, J. Cryst. Growth 191, 393 (1998). 

[24] J. Wollweber, D. Schulz, and W. Schröder, J. Cryst. Growth 163, 243 (1996). 

[25] P. Dold, A. Barz, S. Recha, K. Pressel, M. Franz, and K.-W. Benz, J. Cryst. Growth 192, 125 (1998). 

[26] A. Dahlen, A. Fattah, G. Hanke, and E. Karthaus, Cryst. Res. Technol. 29, 187 (1994). 

[27] D. Bliss, B. Demczyk, A. Anselm, and J. Bailey, J. Cryst. Growth 174, 187 (1997). 

[28] J. Appl. Phys. 62 (11). 1 December 1987.
[29] Miyao, M., Tanaka, T., Toko, K. & Tanaka, M. Giant Appl. Phys. Express 2, 045503 (2009).
[30] Bai, X., Chen, C.-Y., Griffin, P. B. & Plummer, J. D. Appl. Phys. Lett. 104, 052104 (2014).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top