跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) GMT+8:2024/09/18 10:58
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

Author my cdr record
 
twitterline
Author:貝美玲
Author (Eng.):Melibeth Rose B. Ballad
Title:以濕式誘導相分離與蒸氣誘導相分離不同的技術製備聚乙二醇酯之聚氟化乙二烯與其動態抗沾黏能力之探討
Title (Eng.):Antifouling capability of PEGylated PVDF membranes in the dynamic conditions as prepared by LIPS and VIPS processes
Advisor:張雍張雍 author reflink費安東
advisor (eng):Yung ChangAntoine Venault
degree:Master
Institution:中原大學
Department:化學工程研究所
Narrow Field:工程學門
Detailed Field:化學工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2015
Graduated Academic Year:104
language:English
number of pages:111
keyword (chi):PS-b-PEGMAPVDF微藻培養抗污血液相容性
keyword (eng):PS-b-PEGMAPVDFantifoulinghemocompatibilitymicroalgae
Ncl record status:
  • Cited Cited :0
  • HitsHits:210
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:0
  • gshot_favorites title msgFav:0
本研究將所製備之雙親性嵌段共聚高分子PS-b-PEGMA添加於聚偏氟乙烯鑄膜液中,並使用濕式誘導相分離(LIPS)程序與蒸氣誘導相分離(VIPS)程序成形超過濾與微過濾聚偏二氟乙烯高分子薄膜,並系統性探討其抗生物沾黏特性。第一部分,使用LIPS與VIPS程序所製備之薄膜將以傅里葉轉換紅外光譜、X-射線光電子光譜、電子顯微鏡、原子力顯微鏡進行鑒定與比較。接著先評估以LIPS程序所製備之超過濾薄膜的血液相容性,來確認其是否可適用於血液接觸之相關應用。所製備之薄膜在單一成分之蛋白質溶液(含纖維蛋白原、免疫血清球蛋白、人血清白蛋白)與寡含血小板血漿溶液中,透過酵素免疫分析法來量測其蛋白質吸附量,並以電子顯微鏡與鐳射掃瞄共軛聚焦顯微鏡來觀察各式血球(血小板、紅血球與白血球)於膜面之貼附情形。此外,溶血實驗與凝血時間也被分析與觀察。最後評估以VIPS程序所製備之微過濾薄膜於微藻培養回收之應用,除了同時測試薄膜系統的靜態抗蛋白吸附能力外,在動態條件下的防污能力也是本研究的主要挑戰的討論焦點。結果顯示,可使用LIPS程序成功製備出PEGylated PVDF薄膜系統,在較高的PS-b-PEGMA添加含量可有效改善其血液相容性質,特別是優越於未改質之PVDF薄膜的抗凝血性質。另一方面,以VIPS程序製備之PS-b-PEGMA-4薄膜顯示非常高的通透量與超過97.7%的微藻截留率,指出其具高效率之微藻培養回收能力。最重要的是,以LIPS與VIPS製程所製備之薄膜系統皆呈現優秀的抗污能力,其不可逆污染性質被明顯最小化,且透過去離子水即可簡單將薄膜進行物理清洗來恢復其通量損失。
因此,本研究所製備之PS-b-PEGMA/PVDF薄膜系統同時具有抗污、血液相容性與高液體通透量,可廣泛地提供具有潛力的特定應用,如血液透析和微藻回收。


The present work deals with the preparation of ultrafiltration (UF) and microfiltration (MF) membranes with enhanced fouling resistant ability by using two different methods, liquid- induced phase separation (LIPS) and vapor-induced phase separation (VIPS), after in-situ modification of the PVDF solution using amphiphilic PS-b-PEGMA block copolymers as additive. In the first section, using FT-IR, XPS, SEM, AFM, and contact angle meter, the surface chemistry, morphology, and hydrophilic properties of LIPS along with VIPS membranes were characterized and compared. The next part dealt with the evaluation of the hemocompatibility of UF-LIPS membranes as it was intended for blood-contacting uses. The so called ELISA test was used to assess protein adsorption from single protein solution (FN, γ-globulin, HSA) and PPP solution. Also, blood cells (thrombocytes, erythrocytes, and leukocytes) attachment was investigated by means of SEM and confocal microscopy. Additionally, hemolysis experiments and measurements of plasma-clotting time were carried out. The final portion was dedicated to the assessment of MF-VIPS membranes’ efficiency when applied in microalgae harvesting. Apart from testing the static protein resistance of both membrane systems, the antifouling ability in dynamic conditions which is the primary focus of this study were also challenged. Results demonstrate that PVDF membranes were successfully prepared with a facile approach. PEGylated membranes prepared by LIPS process containing the highest copolymer content showed improved blood compatibility; particularly the anticoagulant property was evidently enhanced compared to the virgin PVDF membranes. On the other hand, PS-b-PEGMA-4 VIPS membranes, exhibited exceptionally high permeate flux and rejection ratio of more than 97.7% that suggests efficient harvesting of microalgae. Most importantly, both LIPS and VIPS membranes exhibited outstanding antifouling capability as irreversible fouling was notably minimized and simple physical cleaning by DI water was able to recover flux loss.
Therefore, PS-b-PEGMA/PVDF membranes with integrated antifouling property, blood compatibility, high permeate flux provided wide variety of specific applications for instance hemodialysis and microalgae recovery.


Table of Contents
摘要 I
Abstract II
Acknowledgements III
Table of Contents IV
Figures Caption VII
Chapter I 1
Chapter II 3
II-1.Fouling in membrane filtration systems 3
II-1.1.Classifications of membrane fouling 3
II-1.2.Classification of antifouling materials 4
II-2.Various approaches in preparing antifouling membranes 6
II-2.1.Grafting 8
II-2.2.Coating methods 9
II-2.3.Polymer blending together with phase inversion process or in situ modification process 11
II-3.Amphiphilic polymer additives for anti-biofouling membranes 12
II-4.Industrial relevance of membranes 15
II-4.1.Membranes for applications in water and waste water 17
II-4.2.Membranes for medical applications 21
II-4.3.Membranes in microalgae harvesting 25
II-5.Conclusions and importance of the study 29
Chapter III 31
III-1.Materials 31
III-2.Preparation and Purification of PS-b-PEGMA Copolymer 32
III-3.Characterization of PS-b-PEGMA Copolymer 33
III-4.Preparation of casting solutions 35
III-4.1.Preparation of solutions for membranes prepared by LIPS process 35
III-4.2.Preparation of solutions for membranes prepared by VIPS process 35
III-5.Preparation of PEGylated PVDF membranes 36
III-5.1.Preparation of PEGylated PVDF membranes by LIPS process 36
III-5.2.Preparation of PEGylated PVDF membranes by VIPS process 37
III-6.Physico-chemical characterization of PEGylated membranes 38
III-6.1.Chemical characterization of modified membranes 38
III-6.2.Physical characterization of modified membranes 39
III-6.3.Mechanical properties of modified membranes 40
III-7.Anti-biofouling capability of PEGylated PVDF membranes in relation to its hydrophilic properties 40
III-7.1.Hydrophilic properties of PEGylated PVDF membranes 40
III-7.2.Resistance to protein adhesion 41
III-7.3.Resistance to bacterial attachment 42
III-8.Hemocompatibility of PS-b-PEGMA/PVDF membranes 42
III-8.1.Adsorption of fibrinogen γ-globulin and human serum albumin onto virgin and PEGylated PVDF membranes 42
III-8.2.Adsorption of platelet poor plasma onto virgin and PEGylated PVDF membranes 43
III-8.3.Attachment of blood cells onto virgin and PEGylated PVDF membranes 44
III-8.4.Evaluation of hemolytic activity after blood contact with virgin and PEGylated PVDF membranes 45
III.8.5.Evaluation of blood clotting time after blood contact with virgin and PEGylated PVDF membranes 46
III-9.Anti-biofouling properties of PEGylated PVDF membranes in dynamic conditions 47
III-9.1.Assessment of the resistance to plasma protein fouling during filtration of membranes prepared by LIPS 47
III-9.2.Assessment of the resistance to fouling during protein filtration of membranes prepared by LIPS 49
III-9.3.Assessment of the resistance to fouling during microalgae filtration of membranes prepared by VIPS 49
Chapter IV 51
IV-1.Physico-chemical characterization of virgin and PEGylated membranes as prepared by LIPS and VIPS process 51
IV-1.1.Characterization of chemical properties 51
IV-1.2.Characterization of physical properties 54
IV-2.Anti-biofouling capability of PEGylated PVDF membranes in relation to its hydrophilic properties 58
IV-2.1.Evaluation of hydrophilic properties of membranes 58
IV-2.2.Evaluation on the resistance of membranes to protein attachment 59
IV-2.3.Evaluation on the resistance of membranes to bacterial attachment 61
IV-3.Evaluation of hemocompatibility of virgin and PEGylated membranes as prepared by LIPS method 62
IV-3.1.Analysis of results from single protein tests and protein-in-PPP tests 62
IV-3.2. Analysis of the resistance of PEGylated membranes to blood cells adhesion 65
IV-3.3. Analysis of the effect of PS-b-PEGMA copolymer to PVDF membranes hemolysis and anti-coagulant activity 69
IV-3.4.Analysis of the effect of PS-b-PEGMA copolymer in the dynamic anti-fouling behavior of membranes 71
IV-4.Evaluation of antifouling properties in dynamic conditions of virgin and PEGylated membranes as prepared by VIPS method 75
IV.4.1.Assessment of the resistance of membranes to biofouling during BSA filtration 75
IV.4.2.Assessment of the resistance of membranes to biofouling during microalgae filtration 79
Chapter V 84
References 87
Figures Caption
Figure 1.Stages of biofilm formation as redrawn from [16] 4
Figure 2.Schematic representation of various methods in preparing antifouling membranes as redrawn from [20] and [24] 7
Figure 3.Schematic illustrations of bare and coated membranes [29] 11
Figure 4.Chemical structures of amphiphilic copolymers used in various studies. (a) Synthetic route of MF-g-PEGn [31] (b) Transitions of the PDMAEMA into zwitterion by using 1,3-propane sultone and 3-bromopropionic used as reaction agent [32] (c) Chemical structure of poly(VC-co-PEGMA) [34] 13
Figure 5.Schematic representing basic principles involved in membrane separation [45] 17
Figure 6.Main historic developments of membrane oxygenators [60] 24
Figure 7.Schematic presentation of an overall microalgae production, 26
Figure 8.a) 1H NMR spectra and b) chromatogram of PS30-b-PEGMA60 copolymer 34
Figure 9.Schematic of PEGylated PVDF formation 37
Figure 10.Chemical characterization of virgin and modified PVDF membranes. 52
Figure 11.Atom content at the surface of membranes as a function of 54
Figure 12.Summary of SEM and AFM images of virgin and PEGylated PVDF membranes 55
Figure 13.Stress-strain characteristic plots of virgin and PEGylated PVDF membranes as prepared by LIPS and VIPS method 57
Figure 14.Influence of PS-b-PEGMA content on hydration properties of membranes 58
Figure 15.Influence of copolymer content on the resistance of membranes to protein adsorption 59
Figure 16.FT-IR spectra of modified membranes by LIPS 60
Figure 17.Qualitative and quantitative analysis of bacterial attachment using Escherichia coli 62
Figure 18.Evaluation of the resistance of virgin and PEGylated membranes by LIPS method to the adsorption of single proteins including FN, -globulin, and HSA (left panel) and 63
Figure 19.Evaluation of the resistance of PEGylated membranes by LIPS method to platelets, red blood cells, and white blood cells adhesion 66
Figure 20.Quantitative analysis of red blood cells (erythrocytes) [left panel] and white blood cells (leukocytes) [right panel] attachment onto virgin PVDF and PEGylated PVDF membranes 68
Figure 21.Hemolysis of RBC solution (left panel) and plasma clotting time (right panel) in the presence of virgin PVDF and PEGylated PVDF membranes 70
Figure 22.Pure water fluxes and dimensionless fluxes of commercial hydrophobic, commercial hydrophilic and PEGylated PVDF membranes before and after immersion to PPP 72
Figure 23.SEM images of commercial and PEGylated PVDF membranes 75
Figure 24.Pure water fluxes and dimensionless fluxes of commercial hydrophilic, virgin and PEGylated PVDF membranes using BSA solution 76
Figure 25.Summary of the corresponding FRR, DRr, DRir values during 78
Figure 26.Pure water fluxes and dimensionless fluxes of commercial hydrophilic, virgin and PEGylated PVDF membranes using microalgae solution 80
Figure 27.(a) SEM micrographs of virgin and PEGylated PVDF membranes before and after filtration of BSA and microalgae solution.(b) Rejection ratio of commercial, virgin, and PEGylated PVDF membranes 82


[1] Ganiyu, S. O., van Hullebusch, E. D., Cretin, M., Esposito, G., &; Oturan, M. A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Separation and Purification Technology.
[2] Şenay, R. H., Gökalp, S. M., Türker, E., Feyzioğlu, E., Aslan, A., &; Akgöl, S. (2015). A new morphological approach for removing acid dye from leather waste water: Preparation and characterization of metal-chelated spherical particulated membranes (SPMs). Journal of Environmental Management, 151, 295-302.
[3] Yao, L., Zhang, L., Zhang, Y., Wang, R., Wongchitphimon, S., &; Dong, Z. (2015). Self-assembly of rare-earth Anderson polyoxometalates on the surface of imide polymeric hollow fiber membranes potentially for organic pollutant degradation. Separation and Purification Technology, 151, 155-164.
[4] Chen, W., Su, Y., Peng, J., Zhao, X., Jiang, Z., Dong, Y., . . . Liu, J. (2011). Efficient wastewater treatment by membranes through constructing tunable antifouling membrane surfaces. Environmental Science and Technology, 45(15), 6545-6552.
[5] Zhu, W.-P., Gao, J., Sun, S.-P., Zhang, S., &; Chung, T.-S. (2015). Poly(amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal. Journal of Membrane Science, 487, 117-126.
[6] Tomé, L. C., Gouveia, A. S. L., Freire, C. S. R., Mecerreyes, D., &; Marrucho, I. M. (2015). Polymeric ionic liquid-based membranes: Influence of polycation variation on gas transport and CO2 selectivity properties. Journal of Membrane Science, 486, 40-48.
[7] Vrbata, P., Berka, P., Stránská, D., Doležal, P., Musilová, M., &; Čižinská, L. (2013). Electrospun drug loaded membranes for sublingual administration of sumatriptan and naproxen. International Journal of Pharmaceutics, 457(1), 168-176.
[8] Kenawy, E.-R., Kamoun, E. A., Mohy Eldin, M. S., &; El-Meligy, M. A. (2014). Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications. Arabian Journal of Chemistry, 7(3), 372-380.
[9] Nie, C., Ma, L., Xia, Y., He, C., Deng, J., Wang, L., . . . Zhao, C. (2015). Novel heparin-mimicking polymer brush grafted carbon nanotube/PES composite membranes for safe and efficient blood purification. Journal of Membrane Science, 475, 455-468
[10] Hwang, T., Kotte, M. R., Han, J.-I., Oh, Y.-K., &; Diallo, M. S. (2015). Microalgae recovery by ultrafiltration using novel fouling-resistant PVDF membranes with in situ PEGylated polyethyleneimine particles. Water Research, 73, 181-192.
[11] Kang, G.-d., &; Cao, Y.-m. (2014). Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review. Journal of Membrane Science, 463, 145-165.
[12] Ren, P.-F., Fang, Y., Wan, L.-S., Ye, X.-Y., &; Xu, Z.-K. (2015). Surface modification of polypropylene microfiltration membrane by grafting poly(sulfobetaine methacrylate) and poly(ethylene glycol): Oxidative stability and antifouling capability. Journal of Membrane Science, 492, 249-256.
[13] Venault, A., Chang, Y., Wang, D.-M., &; Lai, J.-Y. (2012). Surface anti-biofouling control of PEGylated poly(vinylidene fluoride) membranes via vapor-induced phase separation processing. Journal of Membrane Science, 423–424, 53-64.
[14] Venault, A., Liu, Y.-H., Wu, J.-R., Yang, H.-S., Chang, Y., Lai, J.-Y., &; Aimar, P. (2014). Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly (ethylene glycol) methacrylate blend. Journal of Membrane Science, 450, 340-350.
[15] Venault, A., Wu, J.-R., Chang, Y., &; Aimar, P. (2014). Fabricating hemocompatible bi-continuous PEGylated PVDF membranes via vapor-induced phase inversion. Journal of Membrane Science, 470, 18-29.
[16] Mansouri, J., Harrisson, S., &; Chen, V. (2010). Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities. Journal of Materials Chemistry, 20(22), 4567-4586.
[17] Vera, L., González, E., Díaz, O., Sánchez, R., Bohorque, R., &; Rodríguez-Sevilla, J. (2015). Fouling analysis of a tertiary submerged membrane bioreactor operated in dead-end mode at high-fluxes. Journal of Membrane Science, 493, 8-18.
[18] Hilal, N., Ogunbiyi, O. O., Miles, N. J., &; Nigmatullin, R. (2005). Methods employed for control of fouling in MF and UF membranes: A comprehensive review. Separation Science and Technology, 40(10), 1957-2005.
[19] Jiang, S., &; Cao, Z. (2010). Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials, 22(9), 920-932
[20] Liu, F., Hashim, N. A., Liu, Y., Abed, M. R. M., &; Li, K. (2011). Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 375(1-2), 1-27.
[21] Banerjee, I., Pangule, R. C., &; Kane, R. S. (2011). Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 23(6), 690-718.
[22] Schlenoff, J. B. (2014). Zwitteration: Coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir, 30(32), 9625-9636.
[23] Chen, S., Li, L., Zhao, C., &; Zheng, J. (2010). Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 51(23), 5283-5293.
[24] Bhattacharya, A., &; Misra, B. N. (2004). Grafting: A versatile means to modify polymers: Techniques, factors and applications. Progress in Polymer Science (Oxford), 29(8), 767-814.
[25] Kato, K., Uchida, E., Kang, E. T., Uyama, Y., &; Ikada, Y. (2003). Polymer surface with graft chains. Progress in Polymer Science (Oxford), 28(2), 209-259.
[26] Zhao, Y.-F., Zhang, P.-B., Sun, J., Liu, C.-J., Yi, Z., Zhu, L.-P., &; Xu, Y.-Y. (2015). Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Journal of Colloid and Interface Science, 448, 380-388.
[27] Ren, P.-F., Fang, Y., Wan, L.-S., Ye, X.-Y., &; Xu, Z.-K. (2015). Surface modification of polypropylene microfiltration membrane by grafting poly(sulfobetaine methacrylate) and poly(ethylene glycol): Oxidative stability and antifouling capability. Journal of Membrane Science, 492, 249-256
[28] Boributh, S., Chanachai, A., &; Jiraratananon, R. (2009). Modification of PVDF membrane by chitosan solution for reducing protein fouling. Journal of Membrane Science, 342(1-2), 97-104.
[29] Ma, W., Rajabzadeh, S., &; Matsuyama, H. Preparation of antifouling poly(vinylidene fluoride) membranes via different coating methods using a zwitterionic copolymer. Applied Surface Science.
[30] Saffar, A., Carreau, P. J., Ajji, A., &; Kamal, M. R. (2014). Development of polypropylene microporous hydrophilic membranes by blending with PP-g-MA and PP-g-AA. Jour nal of Membrane Science, 462, 50-61.
[31] Liu, Y., Su, Y., Zhao, X., Li, Y., Zhang, R., &; Jiang, Z. (2015). Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface modifier with crosslinked hydrophobic segments. Journal of Membrane Science, 486, 195-206.
[32] Yi, Z., Zhu, L.-P., Zhang, H., Zhu, B.-K., &; Xu, Y.-Y. (2014). Ionic liquids as co-solvents for zwitterionic copolymers and the preparation of poly(vinylidene fluoride) blend membranes with dominated β-phase crystals. Polymer, 55(11), 2688-2696.
[33] Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L, Whitesides GM. Surveying for surfaces that resist the adsorption of proteins, Journal of the American Chemical Society 122 (2000) 8303-8304.
[34] Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM, Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer, Langmuir 17 (2001) 2841-2850.
[35] Kane RS, Deschatelets P, Whitesides GM, Kosmotropes form the basis of protein-resistant surfaces. Langmuir 19 (2003) 2388-2391.
[36] Karunakaran, M., Nunes, S. P., Qiu, X., Yu, H., &; Peinemann, K.-V. (2014). Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation. Journal of Membrane Science, 453, 471-477.
[37] Yi, Z., Zhu, L.-P., Xu, Y.-Y., Gong, X.-N., &; Zhu, B.-K. (2011). Surface zwitterionicalization of poly(vinylidene fluoride) porous membranes by post-reaction of the amphiphilic precursor. Journal of Membrane Science, 385–386, 57-66.
[38] Zhu, L.-P., Xu, L., Zhu, B.-K., Feng, Y.-X., &; Xu, Y.-Y. (2007). Preparation and characterization of improved fouling-resistant PPESK ultrafiltration membranes with amphiphilic PPESK-graft-PEG copolymers as additives. Journal of Membrane Science, 294(1–2), 196-206.
[39] Zhu, L.-P., Du, C.-H., Xu, L., Feng, Y.-X., Zhu, B.-K., &; Xu, Y.-Y. (2007). Amphiphilic PPESK-g-PEG graft copolymers for hydrophilic modification of PPESK microporous membranes. European Polymer Journal, 43(4), 1383-1393.
[40] Sabir, A., Shafiq, M., Islam, A., Sarwar, A., Dilshad, M. R., Shafeeq, A., . . . Jamil, T. (2015). Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis. Carbohydrate Polymers, 132, 589-597.
[41] Ahmad, A., Waheed, S., Khan, S. M., e-Gul, S., Shafiq, M., Farooq, M., . . . Jamil, T. (2015). Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis. Desalination, 355, 1-10.
[42] Kiani, S., Mousavi, S. M., Shahtahmassebi, N., &; Saljoughi, E. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol. Applied Surface Science.
[43] Zhou, Z., Rajabzadeh, S., Rajjak Shaikh, A., Kakihana, Y., Ishigami, T., Sano, R., &; Matsuyama, H. Preparation and characterization of antifouling poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate) membranes. Journal of Membrane Science.
[44] Cassano, A., &; Basile, A. (2011). 20 - Membranes for industrial microfiltration and ultrafiltration. In A. Basile &; S. P. Nunes (Eds.), Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications (pp. 647-679): Woodhead Publishing.
[45] Padaki, M., Murali, R. S., Abdullah, M.S., Midsan, N., Moslehyani, A., Kassim, M. A., Hilal, N.,Ismail, A. F. (2015). Membrane technology enhancement in oil–water separation. A review. Desalination, 357, 197-207.
[46] Zhang, R., Shi, W., Yu, S., Wang, W., Zhang, Z., Zhang, B., . . . Bao, X. (2015). Influence of salts, anion polyacrylamide and crude oil on nanofiltration membrane fouling during desalination process of polymer flooding produced water. Desalination, 373, 27-37.
[47] Ulucan, K., &; Kurt, U. (2015). Comparative study of electrochemical wastewater treatment processes for bilge water as oily wastewater: A kinetic approach. Journal of Electroanalytical Chemistry, 747, 104-111.
[48] Jeganathan, J., Nakhla, G., &; Bassi, A. (2006). Long-term performance of high-rate anaerobic reactors for the treatment of oily wastewater. Environmental Science and Technology, 40(20), 6466-6472.
[49] Muppalla, R., Jewrajka, S. K., &; Reddy, A. V. R. (2015). Fouling resistant nanofiltration membranes for the separation of oil–water emulsion and micropollutants from water. Separation and Purification Technology, 143, 125-134.
[50] Li, N.N., Fane, A, G., Ho, W. S. W., &; Matsuura, T. Advanced membrane technology and applications (P. 47). Wiley &; Sons, Inc., Hoboken, New Jersey (2008).
[51] Baker, R.W. Membrane technology and applications (2nd ed.). John Wiley &; Sons Ltd., England (2004).
[52] Madaeni, S. S., &; Heidary, F. (2011). Improving separation capability of regenerated cellulose ultrafiltration membrane by surface modification. Applied Surface Science, 257(11), 4870-4876.
[53] Nagarale, R. K., Gohil, G. S., &; Shahi, V. K. (2006). Recent developments on ion-exchange membranes and electro-membrane processes. Advances in Colloid and Interface Science, 119(2-3), 97-130.
[54] Chakrabarty, T., Rajesh, A. M., Jasti, A., Thakur, A. K., Singh, A. K., Prakash, S., . . .Shahi, V. K. (2011). Stable ion-exchange membranes for water desalination by electrodialysis. Desalination, 282, 2-8.
[55] Hosseini, S. M., Rafiei, S., Hamidi, A. R., Moghadassi, A. R., &; Madaeni, S. S. (2014). Preparation and electrochemical characterization of mixed matrix heterogeneous cation exchange membranes filled with zeolite nanoparticles: Ionic transport property in desalination. Desalination, 351, 138-144.
[56] Hosseini, S. M., Askari, M., Koranian, P., Madaeni, S. S., &; Moghadassi, A. R. (2014). Fabrication and electrochemical characterization of PVC based electrodialysis heterogeneous ion exchange membranes filled with Fe3O4 nanoparticles. Journal of Industrial and Engineering Chemistry, 20(4), 2510-2520.
[57] Sun, S., Yue, Y., Huang, X., &; Meng, D. (2003). Protein adsorption on blood-contact membranes. Journal of Membrane Science, 222(1–2), 3-18.
[58] Zhu, L.-J., Liu, F., Yu, X.-M., Gao, A.-L., &; Xue, L.-X. (2015). Surface zwitterionization of hemocompatible poly(lactic acid) membranes for hemodiafiltration. Journal of Membrane Science, 475, 469-479.
[59] Oo, Z. Y., Deng, R., Hu, M., Ni, M., Kandasamy, K., bin Ibrahim, M. S., . . . Zink, D. (2011). The performance of primary human renal cells in hollow fiber bioreactors for bioartificial kidneys. Biomaterials, 32(34), 8806-8815.
[60] Dimitrios, F. S., Papenburg, B. J., Girones, M., Saiful, S., Bettahalli, S. N. M., Schmitmeier, S., Wessling, M. (2008). Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. Journal of Membrane Science, 308, 1-34.
[61] Jiang, J.-H., Zhu, L.-P., Li, X.-L., Xu, Y.-Y., &; Zhu, B.-K. (2010). Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. Journal of Membrane Science, 364(1–2), 194-202.
[62] Zhao, Y.-F., Zhu, L.-P., Yi, Z., Zhu, B.-K., &; Xu, Y.-Y. (2013). Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive. Journal of Membrane Science, 440, 40-47.
[63] Xiang, T., Zhang, L.-S., Wang, R., Xia, Y., Su, B.-H., &; Zhao, C.-S. (2014). Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP. Journal of Colloid and Interface Science, 432, 47-56.
[64] Eash, H.-J., Jones, H.-M., Hattler, B.-G., Federspiel, W.-J. (2004). Evaluation of plasma resistant hollow fiber membranes for artificial lungs. American Society for Artificial Internal Organs Journal, 50, 491-497.
[65] Eya, K., Tatsumi, E., Taenaka, Y., Takewa, Y., Wakisaka, Y., Toda, K., Nakatani, T., Msuzawa, T., Baba, Y., Miyazaki, K., Nishimura, T., Ohno, T., Ahn, J.-M., Takano, H.,Mimura, R., Tanaka, S., Wada, T. (1996). Development of a membrane oxygenator for long-term respiratory support and its experimental evaluation in prolonged ECMO. 42, M832-M836.
[66] Niimi, Y., Yamane, S., Yamaji, K., Tayama, E., Sueoka, A., &; Nose, Y. (1997). Protein adsorption and platelet adhesion on the surface of an oxygenator membrane. American Society for Artificial Internal Organs Journal,43, M706-M710.
[67] Al Meslmani, B., Mahmoud, G., Strehlow, B., Mohr, E., Leichtweiß, T., &; Bakowsky, U. (2014). Development of thrombus-resistant and cell compatible crimped polyethylene terephthalate cardiovascular grafts using surface co-immobilized heparin and collagen. Materials Science and Engineering: C, 43, 538-546.
[68] Badr, I. H. A., Abdel-Sattar, R., &; Keshk, S. M. A. S. (2015). Enhancing biocompatibility of some cation selective electrodes using heparin modified bacterial cellulose. Carbohydrate Polymers, 134, 687-694.
[69] Sask, K. N., Zhitomirsky, I., Berry, L. R., Chan, A. K. C., &; Brash, J. L. (2010). Surface modification with an antithrombin–heparin complex for anticoagulation: Studies on a model surface with gold as substrate. Acta Biomaterialia, 6(8), 2911-2919.
[70] Van Veen, S. Q., Cheung, C. W., Meijers, J. C. M., Van Gulik, T. M., &; Boermeester, M. A. (2006). Anticoagulant and anti-inflammatory effects after peritoneal lavage with antithrombin in experimental polymicrobial peritonitis. Journal of Thrombosis and Haemostasis, 4(11), 2343-2351.
[71] Niimi, Y., Ichinose, F., Ishiguro, Y., Terui, K., Uezono, S., Morita, S., &; Yamane, S. (1999). The effects of heparin coating of oxygenator fibers on platelet adhesion and protein adsorption. Anesthesia and Analgesia, 89(3), 573-579.
[72] Wang, Y.-B., Gong, M., Yang, S., Nakashima, K., &; Gong, Y.-K. (2014). Hemocompatibility and film stability improvement of crosslinkable MPC copolymer coated polypropylene hollow fiber membrane. Journal of Membrane Science, 452, 29-36.
[73] Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306.
[74] Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., &; De Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing - A review. Renewable and Sustainable Energy Reviews, 27, 622-653.
[75] Lee, O. K., Seong, D. H., Lee, C. G., &; Lee, E. Y. (2015). Sustainable production of liquid biofuels from renewable microalgae biomass. Journal of Industrial and Engineering Chemistry, 29, 24-31.
[76] Sun, X., Wang, C., Tong, Y., Wang, W., &; Wei, J. (2013). s of microfiltration and ultrafiltration for algae harvesting. Algal Research, 2(4), 437-444.
[77] Bilad, M. R., Arafat, H. A., &; Vankelecom, I. F. J. (2014). Membrane technology in microalgae cultivation and harvesting: A review. Biotechnology Advances, 32(7), 1283-1300.
[78] Honda, R., Rukapan, W., Komura, H., Teraoka, Y., Noguchi, M., &; Hoek, E. M. V. (2015). Effects of membrane orientation on fouling characteristics of forward osmosis membrane in concentration of microalgae culture. Bioresource Technology, 197, 429-433.
[79] Gerardo, M. L., Zanain, M. A., &; Lovitt, R. W. (2015). Pilot-scale cross-flow microfiltration of Chlorella minutissima: A theoretical assessment of the operational parameters on energy consumption. Chemical Engineering Journal, 280, 505-513.
[80] Kim, K., Shin, H., Moon, M., Ryu, B.-G., Han, J.-I., Yang, J.-W., &; Chang, Y. K. (2015). Evaluation of various harvesting methods for high-density microalgae, Aurantiochytrium sp. KRS101. Bioresource Technology, 198, 828-835.
[81] Rao Kotte, M., Hwang, T., Han, J.-I., &; Diallo, M. S. (2015). A one-pot method for the preparation of mixed matrix polyvinylidene fluoride membranes with in situ synthesized and PEGylated polyethyleneimine particles. Journal of Membrane Science, 474, 277-287.
[82] Chiag YC, Chang Y, Chen WY, Ruaan R.C. Biofouling resistance of ultrafiltration membranes controlled by surface self-assembled coating with PEGylated copolymers, Langmuir 28 (2012) 1399-1407.
[83] Venault, A., Ballad, M. R. B., Liu, Y.-H., Aimar, P., &; Chang, Y. (2015). Hemocompatibility of PVDF/PS-b-PEGMA membranes prepared by LIPS process. Journal of Membrane Science, 477, 101-114.
[84] Sawada, S.-i., Ursino, C., Galiano, F., Simone, S., Drioli, E., &;Figoli, A. (2015). Effect of citrate-based non-toxic solvents on poly(vinylidene fluoride) membrane preparation via thermally induced phase separation. Journal of Membrane Science, 493, 232-242. doi: http://dx.doi.org/10.1016/j.memsci.2015.07.003
[85] Grosso, V., Vuono, D., Bahattab, M. A., Di Profio, G., Curcio, E., Al-Jilil, S. A., . . .Fontananova, E. (2014). Polymeric and mixed matrix polyimide membranes. Separation and Purification Technology, 132, 684-696. doi: http://dx.doi.org/10.1016/j.seppur.2014.06.023
[86] Song, H., Shao, J., He, Y., Liu, B., &;Zhong, X. (2012). Natural organic matter removal and flux decline with PEG–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis. Journal of Membrane Science, 405–406, 48-56. doi: http://dx.doi.org/10.1016/j.memsci.2012.02.063
[87] Fan, X., Su, Y., Zhao, X., Li, Y., Zhang, R., Zhao, J., . . . Liu, Y. (2014). Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal. Journal of Membrane Science, 464, 100-109.
[88] Huang YT. and Su CP., (2014), High lipid content and productivity of microalgae cultivating under elevated CO2, International Journal of Environmental Science and Technology, 11(3):703-710.
[89] Boccaccio T, Bottino A, Capannelli G, Piaggio P, Characterization of PVDF membranes by vibrational spectroscopy, Journal of Membrane Science 210(2002) 315-329.
[90] Salimi A, Yousefi AA, Conformational changes and phase transformation mechanisms in PVDF solution-cast films, Journal of Polymer Science Part B: Polymer Physics 42 (2004) 3487-3495.
[91] Gregorio Jr R, Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions, Journal of Applied Polymer Science 100 (2006) 3272–3279.
[92] Siri A, Alkan C, Biçer A, Karaipekli A, Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid–solid phase change materials, Solar Energy Materials &; Solar Cells 95 (2011) 3195–3201.

[93] Jin J, Jiang W, Shi Q, Zhao J, Yin J, Stagnaro P, Fabrication of PP-g-PEGMA-gheparin and its hemocompatibility: from protein adsorption to anticoagulant tendency, Applied Surface Science 258 (2012) 5841–5849.
[94] Hester JF, Mayes, AM, Design and performance of foul-resistant poly(vinylidene fluoride) membranes prepared in a single-step by surface segregation, Journal of Membrane Science 202 (2002) 119-135.
[95] Qiu GM, Zhu LP, Zhu BK, Xu YY, Qiu GL, Grafting of styrene/maleic anhydride copolymer onto PVDF membrane by supercritical carbon dioxide: preparation, characterization and biocompatibility, The Journal of Supercritical Fluids 45 (2008) 374-383.
[96] Sui Y, Wang Z, Gao X, Gao C, Antifouling PVDF ultrafiltration membranes incorporating PVDF-g-PHEMA additive via atom transfer radical graft polymerizations, Journal of Membrane Science 413-414 (2012) 38-47.
[97] MacRitchie, F. (1998). Reversibility of protein adsorption. In M. Dietmar &; M.
Reinhard (Eds.), Studies in Interface Science (Vol. Volume 7, pp. 149-177): Elsevier.
[98] Jin, J., Jiang, W., shi, Q., Zhao, J., Yin, J., &; Stagnaro, P. (2012). Fabrication of PP-g-PEGMA-g-heparin and its hemocompatibility: From protein adsorption to anticoagulant tendency. Applied Surface Science, 258(15), 5841-5849.
[99] Chang, Y., Shih, Y. J., Ko, C. Y., Jhong, J. F., Liu, Y. L., &; Wei, T. C. (2011). Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface pegylation. Langmuir, 27(9), 5445-5455.
[100] L.E. Corum, C.D. Eichinger, T.W. Hsiao, V. Hlady, Using microcontact printing of fibrinogen to control surface-induced platelet adhesion and activation, Langmuir 27 (2011) 8316-8322.
[101] Corum, L. E., &; Hlady, V. (2012). The effect of upstream platelet–fibrinogen interactions on downstream adhesion and activation. Biomaterials, 33(5), 1255-1260.
[102] Sivaraman, B., &; Latour, R. A. (2010). The relationship between platelet adhesion on surfaces and the structure versus the amount of adsorbed fibrinogen. Biomaterials, 31(5), 832-839.
[102] Lin, D.-J., Lin, D.-T., Young, T.-H., Huang, F.-M., Chen, C.-C., &; Cheng, L.-P. (2004). Immobilization of heparin on PVDF membranes with microporous structures. Journal of Membrane Science, 245(1–2), 137-146.
[103] Chang, Y., Chang, W.-J., Shih, Y.-J., Wei, T.-C., &; Hsiue, G.-H. (2011). Zwitterionic Sulfobetaine-Grafted Poly(vinylidene fluoride) Membrane with Highly Effective Blood Compatibility via Atmospheric Plasma-Induced Surface Copolymerization. AC14
S Applied Materials &; Interfaces, 3(4), 1228-1237.
[104] Secomb, T.W., and Hsu, R. (1996). Analysis of red blood cell motion through cylindrical micropores: effects of cell properties. Biophysics Journal, 1095-1101.
[105] O. Linderkamp, J. Pӧschl, P. Ruel, Blood cell deformation in neonates who have sepsis, NeoReviews 7 (2013) 517-523.
[106] Liu, P.-S., Chen, Q., Wu, S.-S., Shen, J., &; Lin, S.-C. (2010). Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. Journal of Membrane Science, 350(1–2), 387-394.
[107] Gladwin, M. T., Kanias, T., &; Kim-Shapiro, D. B. (2012). Hemolysis and cell-free hemoglobin drive an intrinsic mechanism for human disease.
[108] Shi, Q., Fan, Q., Ye, W., Hou, J., Wong, S.-C., Xu, X., &; Yin, J. (2015). Binary release of ascorbic acid and lecithin from core–shell nanofibers on blood-contacting surface for reducing long-term hemolysis of erythrocyte.
[109] Makroo, R. N., Raina, V., Bhatia, A., Gupta, R., Majid, A., Thakur, U. K., &; Rosamma, N. L. (2010). Evaluation of Red Cell Hemolysis in Packed Red Cells During Processing and Storage
[110] Upadhyay, J., Kumar, A., Gogoi, B., &; Buragohain, A. K. (2015). Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process.
[111] Anderson, J. M. (2001). Biological responses to materials. Annual Review of Materials Science, 31, 81-110.
[112] Amarnath, L. P., Srinivas, A., &; Ramamurthi, A. (2006). In vitro hemocompatibility testing of UV-modified hyaluronan hydrogels. Biomaterials, 27(8), 1416-1424.
[113] Fan, X., Su, Y., Zhao, X., Li, Y., Zhang, R., Zhao, J., . . . Liu, Y. (2014). Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal. Journal of Membrane Science, 464, 100-109.
[114] Chen, Y.-W., Chang, Y., Lee, R.-H., Li, W.-T., Chinnathambi, A., Alharbi, S. A., &; Hsiue, G.-H. (2014). Adjustable Bioadhesive Control of PEGylated Hyperbranch Brushes on Polystyrene Microplate Interface for the Improved Sensitivity of Human Blood Typing. Langmuir, 30(30), 9139-9146.
[115] Zhang, X., Hu, Q., Sommerfeld, M., Puruhito, E., &; Chen, Y. (2010). Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresource Technology, 101(14), 5297-5304.
[116] Ríos, S. D., Salvadó, J., Farriol, X., &; Torras, C. (2012). Antifouling microfiltration strategies to harvest microalgae for biofuel. Bioresource Technology, 119, 406-418.
[117] Li, J.-H., Li, M.-Z., Miao, J., Wang, J.-B., Shao, X.-S., &; Zhang, Q.-Q. (2012). Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive. Applied Surface Science, 258(17), 6398-6405.
[118] Hashim, N. A., Liu, F., &; Li, K. (2009). A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer. Journal of Membrane Science, 345(1–2), 134-141.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
None related journal articles
 
system icon system icon