|
[1] Ganiyu, S. O., van Hullebusch, E. D., Cretin, M., Esposito, G., &; Oturan, M. A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Separation and Purification Technology. [2] Şenay, R. H., Gökalp, S. M., Türker, E., Feyzioğlu, E., Aslan, A., &; Akgöl, S. (2015). A new morphological approach for removing acid dye from leather waste water: Preparation and characterization of metal-chelated spherical particulated membranes (SPMs). Journal of Environmental Management, 151, 295-302. [3] Yao, L., Zhang, L., Zhang, Y., Wang, R., Wongchitphimon, S., &; Dong, Z. (2015). Self-assembly of rare-earth Anderson polyoxometalates on the surface of imide polymeric hollow fiber membranes potentially for organic pollutant degradation. Separation and Purification Technology, 151, 155-164. [4] Chen, W., Su, Y., Peng, J., Zhao, X., Jiang, Z., Dong, Y., . . . Liu, J. (2011). Efficient wastewater treatment by membranes through constructing tunable antifouling membrane surfaces. Environmental Science and Technology, 45(15), 6545-6552. [5] Zhu, W.-P., Gao, J., Sun, S.-P., Zhang, S., &; Chung, T.-S. (2015). Poly(amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal. Journal of Membrane Science, 487, 117-126. [6] Tomé, L. C., Gouveia, A. S. L., Freire, C. S. R., Mecerreyes, D., &; Marrucho, I. M. (2015). Polymeric ionic liquid-based membranes: Influence of polycation variation on gas transport and CO2 selectivity properties. Journal of Membrane Science, 486, 40-48. [7] Vrbata, P., Berka, P., Stránská, D., Doležal, P., Musilová, M., &; Čižinská, L. (2013). Electrospun drug loaded membranes for sublingual administration of sumatriptan and naproxen. International Journal of Pharmaceutics, 457(1), 168-176. [8] Kenawy, E.-R., Kamoun, E. A., Mohy Eldin, M. S., &; El-Meligy, M. A. (2014). Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications. Arabian Journal of Chemistry, 7(3), 372-380. [9] Nie, C., Ma, L., Xia, Y., He, C., Deng, J., Wang, L., . . . Zhao, C. (2015). Novel heparin-mimicking polymer brush grafted carbon nanotube/PES composite membranes for safe and efficient blood purification. Journal of Membrane Science, 475, 455-468 [10] Hwang, T., Kotte, M. R., Han, J.-I., Oh, Y.-K., &; Diallo, M. S. (2015). Microalgae recovery by ultrafiltration using novel fouling-resistant PVDF membranes with in situ PEGylated polyethyleneimine particles. Water Research, 73, 181-192. [11] Kang, G.-d., &; Cao, Y.-m. (2014). Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review. Journal of Membrane Science, 463, 145-165. [12] Ren, P.-F., Fang, Y., Wan, L.-S., Ye, X.-Y., &; Xu, Z.-K. (2015). Surface modification of polypropylene microfiltration membrane by grafting poly(sulfobetaine methacrylate) and poly(ethylene glycol): Oxidative stability and antifouling capability. Journal of Membrane Science, 492, 249-256. [13] Venault, A., Chang, Y., Wang, D.-M., &; Lai, J.-Y. (2012). Surface anti-biofouling control of PEGylated poly(vinylidene fluoride) membranes via vapor-induced phase separation processing. Journal of Membrane Science, 423–424, 53-64. [14] Venault, A., Liu, Y.-H., Wu, J.-R., Yang, H.-S., Chang, Y., Lai, J.-Y., &; Aimar, P. (2014). Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly (ethylene glycol) methacrylate blend. Journal of Membrane Science, 450, 340-350. [15] Venault, A., Wu, J.-R., Chang, Y., &; Aimar, P. (2014). Fabricating hemocompatible bi-continuous PEGylated PVDF membranes via vapor-induced phase inversion. Journal of Membrane Science, 470, 18-29. [16] Mansouri, J., Harrisson, S., &; Chen, V. (2010). Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities. Journal of Materials Chemistry, 20(22), 4567-4586. [17] Vera, L., González, E., Díaz, O., Sánchez, R., Bohorque, R., &; Rodríguez-Sevilla, J. (2015). Fouling analysis of a tertiary submerged membrane bioreactor operated in dead-end mode at high-fluxes. Journal of Membrane Science, 493, 8-18. [18] Hilal, N., Ogunbiyi, O. O., Miles, N. J., &; Nigmatullin, R. (2005). Methods employed for control of fouling in MF and UF membranes: A comprehensive review. Separation Science and Technology, 40(10), 1957-2005. [19] Jiang, S., &; Cao, Z. (2010). Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials, 22(9), 920-932 [20] Liu, F., Hashim, N. A., Liu, Y., Abed, M. R. M., &; Li, K. (2011). Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 375(1-2), 1-27. [21] Banerjee, I., Pangule, R. C., &; Kane, R. S. (2011). Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 23(6), 690-718. [22] Schlenoff, J. B. (2014). Zwitteration: Coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir, 30(32), 9625-9636. [23] Chen, S., Li, L., Zhao, C., &; Zheng, J. (2010). Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 51(23), 5283-5293. [24] Bhattacharya, A., &; Misra, B. N. (2004). Grafting: A versatile means to modify polymers: Techniques, factors and applications. Progress in Polymer Science (Oxford), 29(8), 767-814. [25] Kato, K., Uchida, E., Kang, E. T., Uyama, Y., &; Ikada, Y. (2003). Polymer surface with graft chains. Progress in Polymer Science (Oxford), 28(2), 209-259. [26] Zhao, Y.-F., Zhang, P.-B., Sun, J., Liu, C.-J., Yi, Z., Zhu, L.-P., &; Xu, Y.-Y. (2015). Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Journal of Colloid and Interface Science, 448, 380-388. [27] Ren, P.-F., Fang, Y., Wan, L.-S., Ye, X.-Y., &; Xu, Z.-K. (2015). Surface modification of polypropylene microfiltration membrane by grafting poly(sulfobetaine methacrylate) and poly(ethylene glycol): Oxidative stability and antifouling capability. Journal of Membrane Science, 492, 249-256 [28] Boributh, S., Chanachai, A., &; Jiraratananon, R. (2009). Modification of PVDF membrane by chitosan solution for reducing protein fouling. Journal of Membrane Science, 342(1-2), 97-104. [29] Ma, W., Rajabzadeh, S., &; Matsuyama, H. Preparation of antifouling poly(vinylidene fluoride) membranes via different coating methods using a zwitterionic copolymer. Applied Surface Science. [30] Saffar, A., Carreau, P. J., Ajji, A., &; Kamal, M. R. (2014). Development of polypropylene microporous hydrophilic membranes by blending with PP-g-MA and PP-g-AA. Jour nal of Membrane Science, 462, 50-61. [31] Liu, Y., Su, Y., Zhao, X., Li, Y., Zhang, R., &; Jiang, Z. (2015). Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface modifier with crosslinked hydrophobic segments. Journal of Membrane Science, 486, 195-206. [32] Yi, Z., Zhu, L.-P., Zhang, H., Zhu, B.-K., &; Xu, Y.-Y. (2014). Ionic liquids as co-solvents for zwitterionic copolymers and the preparation of poly(vinylidene fluoride) blend membranes with dominated β-phase crystals. Polymer, 55(11), 2688-2696. [33] Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L, Whitesides GM. Surveying for surfaces that resist the adsorption of proteins, Journal of the American Chemical Society 122 (2000) 8303-8304. [34] Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM, Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer, Langmuir 17 (2001) 2841-2850. [35] Kane RS, Deschatelets P, Whitesides GM, Kosmotropes form the basis of protein-resistant surfaces. Langmuir 19 (2003) 2388-2391. [36] Karunakaran, M., Nunes, S. P., Qiu, X., Yu, H., &; Peinemann, K.-V. (2014). Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation. Journal of Membrane Science, 453, 471-477. [37] Yi, Z., Zhu, L.-P., Xu, Y.-Y., Gong, X.-N., &; Zhu, B.-K. (2011). Surface zwitterionicalization of poly(vinylidene fluoride) porous membranes by post-reaction of the amphiphilic precursor. Journal of Membrane Science, 385–386, 57-66. [38] Zhu, L.-P., Xu, L., Zhu, B.-K., Feng, Y.-X., &; Xu, Y.-Y. (2007). Preparation and characterization of improved fouling-resistant PPESK ultrafiltration membranes with amphiphilic PPESK-graft-PEG copolymers as additives. Journal of Membrane Science, 294(1–2), 196-206. [39] Zhu, L.-P., Du, C.-H., Xu, L., Feng, Y.-X., Zhu, B.-K., &; Xu, Y.-Y. (2007). Amphiphilic PPESK-g-PEG graft copolymers for hydrophilic modification of PPESK microporous membranes. European Polymer Journal, 43(4), 1383-1393. [40] Sabir, A., Shafiq, M., Islam, A., Sarwar, A., Dilshad, M. R., Shafeeq, A., . . . Jamil, T. (2015). Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis. Carbohydrate Polymers, 132, 589-597. [41] Ahmad, A., Waheed, S., Khan, S. M., e-Gul, S., Shafiq, M., Farooq, M., . . . Jamil, T. (2015). Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis. Desalination, 355, 1-10. [42] Kiani, S., Mousavi, S. M., Shahtahmassebi, N., &; Saljoughi, E. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol. Applied Surface Science. [43] Zhou, Z., Rajabzadeh, S., Rajjak Shaikh, A., Kakihana, Y., Ishigami, T., Sano, R., &; Matsuyama, H. Preparation and characterization of antifouling poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate) membranes. Journal of Membrane Science. [44] Cassano, A., &; Basile, A. (2011). 20 - Membranes for industrial microfiltration and ultrafiltration. In A. Basile &; S. P. Nunes (Eds.), Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications (pp. 647-679): Woodhead Publishing. [45] Padaki, M., Murali, R. S., Abdullah, M.S., Midsan, N., Moslehyani, A., Kassim, M. A., Hilal, N.,Ismail, A. F. (2015). Membrane technology enhancement in oil–water separation. A review. Desalination, 357, 197-207. [46] Zhang, R., Shi, W., Yu, S., Wang, W., Zhang, Z., Zhang, B., . . . Bao, X. (2015). Influence of salts, anion polyacrylamide and crude oil on nanofiltration membrane fouling during desalination process of polymer flooding produced water. Desalination, 373, 27-37. [47] Ulucan, K., &; Kurt, U. (2015). Comparative study of electrochemical wastewater treatment processes for bilge water as oily wastewater: A kinetic approach. Journal of Electroanalytical Chemistry, 747, 104-111. [48] Jeganathan, J., Nakhla, G., &; Bassi, A. (2006). Long-term performance of high-rate anaerobic reactors for the treatment of oily wastewater. Environmental Science and Technology, 40(20), 6466-6472. [49] Muppalla, R., Jewrajka, S. K., &; Reddy, A. V. R. (2015). Fouling resistant nanofiltration membranes for the separation of oil–water emulsion and micropollutants from water. Separation and Purification Technology, 143, 125-134. [50] Li, N.N., Fane, A, G., Ho, W. S. W., &; Matsuura, T. Advanced membrane technology and applications (P. 47). Wiley &; Sons, Inc., Hoboken, New Jersey (2008). [51] Baker, R.W. Membrane technology and applications (2nd ed.). John Wiley &; Sons Ltd., England (2004). [52] Madaeni, S. S., &; Heidary, F. (2011). Improving separation capability of regenerated cellulose ultrafiltration membrane by surface modification. Applied Surface Science, 257(11), 4870-4876. [53] Nagarale, R. K., Gohil, G. S., &; Shahi, V. K. (2006). Recent developments on ion-exchange membranes and electro-membrane processes. Advances in Colloid and Interface Science, 119(2-3), 97-130. [54] Chakrabarty, T., Rajesh, A. M., Jasti, A., Thakur, A. K., Singh, A. K., Prakash, S., . . .Shahi, V. K. (2011). Stable ion-exchange membranes for water desalination by electrodialysis. Desalination, 282, 2-8. [55] Hosseini, S. M., Rafiei, S., Hamidi, A. R., Moghadassi, A. R., &; Madaeni, S. S. (2014). Preparation and electrochemical characterization of mixed matrix heterogeneous cation exchange membranes filled with zeolite nanoparticles: Ionic transport property in desalination. Desalination, 351, 138-144. [56] Hosseini, S. M., Askari, M., Koranian, P., Madaeni, S. S., &; Moghadassi, A. R. (2014). Fabrication and electrochemical characterization of PVC based electrodialysis heterogeneous ion exchange membranes filled with Fe3O4 nanoparticles. Journal of Industrial and Engineering Chemistry, 20(4), 2510-2520. [57] Sun, S., Yue, Y., Huang, X., &; Meng, D. (2003). Protein adsorption on blood-contact membranes. Journal of Membrane Science, 222(1–2), 3-18. [58] Zhu, L.-J., Liu, F., Yu, X.-M., Gao, A.-L., &; Xue, L.-X. (2015). Surface zwitterionization of hemocompatible poly(lactic acid) membranes for hemodiafiltration. Journal of Membrane Science, 475, 469-479. [59] Oo, Z. Y., Deng, R., Hu, M., Ni, M., Kandasamy, K., bin Ibrahim, M. S., . . . Zink, D. (2011). The performance of primary human renal cells in hollow fiber bioreactors for bioartificial kidneys. Biomaterials, 32(34), 8806-8815. [60] Dimitrios, F. S., Papenburg, B. J., Girones, M., Saiful, S., Bettahalli, S. N. M., Schmitmeier, S., Wessling, M. (2008). Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. Journal of Membrane Science, 308, 1-34. [61] Jiang, J.-H., Zhu, L.-P., Li, X.-L., Xu, Y.-Y., &; Zhu, B.-K. (2010). Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. Journal of Membrane Science, 364(1–2), 194-202. [62] Zhao, Y.-F., Zhu, L.-P., Yi, Z., Zhu, B.-K., &; Xu, Y.-Y. (2013). Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive. Journal of Membrane Science, 440, 40-47. [63] Xiang, T., Zhang, L.-S., Wang, R., Xia, Y., Su, B.-H., &; Zhao, C.-S. (2014). Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP. Journal of Colloid and Interface Science, 432, 47-56. [64] Eash, H.-J., Jones, H.-M., Hattler, B.-G., Federspiel, W.-J. (2004). Evaluation of plasma resistant hollow fiber membranes for artificial lungs. American Society for Artificial Internal Organs Journal, 50, 491-497. [65] Eya, K., Tatsumi, E., Taenaka, Y., Takewa, Y., Wakisaka, Y., Toda, K., Nakatani, T., Msuzawa, T., Baba, Y., Miyazaki, K., Nishimura, T., Ohno, T., Ahn, J.-M., Takano, H.,Mimura, R., Tanaka, S., Wada, T. (1996). Development of a membrane oxygenator for long-term respiratory support and its experimental evaluation in prolonged ECMO. 42, M832-M836. [66] Niimi, Y., Yamane, S., Yamaji, K., Tayama, E., Sueoka, A., &; Nose, Y. (1997). Protein adsorption and platelet adhesion on the surface of an oxygenator membrane. American Society for Artificial Internal Organs Journal,43, M706-M710. [67] Al Meslmani, B., Mahmoud, G., Strehlow, B., Mohr, E., Leichtweiß, T., &; Bakowsky, U. (2014). Development of thrombus-resistant and cell compatible crimped polyethylene terephthalate cardiovascular grafts using surface co-immobilized heparin and collagen. Materials Science and Engineering: C, 43, 538-546. [68] Badr, I. H. A., Abdel-Sattar, R., &; Keshk, S. M. A. S. (2015). Enhancing biocompatibility of some cation selective electrodes using heparin modified bacterial cellulose. Carbohydrate Polymers, 134, 687-694. [69] Sask, K. N., Zhitomirsky, I., Berry, L. R., Chan, A. K. C., &; Brash, J. L. (2010). Surface modification with an antithrombin–heparin complex for anticoagulation: Studies on a model surface with gold as substrate. Acta Biomaterialia, 6(8), 2911-2919. [70] Van Veen, S. Q., Cheung, C. W., Meijers, J. C. M., Van Gulik, T. M., &; Boermeester, M. A. (2006). Anticoagulant and anti-inflammatory effects after peritoneal lavage with antithrombin in experimental polymicrobial peritonitis. Journal of Thrombosis and Haemostasis, 4(11), 2343-2351. [71] Niimi, Y., Ichinose, F., Ishiguro, Y., Terui, K., Uezono, S., Morita, S., &; Yamane, S. (1999). The effects of heparin coating of oxygenator fibers on platelet adhesion and protein adsorption. Anesthesia and Analgesia, 89(3), 573-579. [72] Wang, Y.-B., Gong, M., Yang, S., Nakashima, K., &; Gong, Y.-K. (2014). Hemocompatibility and film stability improvement of crosslinkable MPC copolymer coated polypropylene hollow fiber membrane. Journal of Membrane Science, 452, 29-36. [73] Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306. [74] Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., &; De Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing - A review. Renewable and Sustainable Energy Reviews, 27, 622-653. [75] Lee, O. K., Seong, D. H., Lee, C. G., &; Lee, E. Y. (2015). Sustainable production of liquid biofuels from renewable microalgae biomass. Journal of Industrial and Engineering Chemistry, 29, 24-31. [76] Sun, X., Wang, C., Tong, Y., Wang, W., &; Wei, J. (2013). s of microfiltration and ultrafiltration for algae harvesting. Algal Research, 2(4), 437-444. [77] Bilad, M. R., Arafat, H. A., &; Vankelecom, I. F. J. (2014). Membrane technology in microalgae cultivation and harvesting: A review. Biotechnology Advances, 32(7), 1283-1300. [78] Honda, R., Rukapan, W., Komura, H., Teraoka, Y., Noguchi, M., &; Hoek, E. M. V. (2015). Effects of membrane orientation on fouling characteristics of forward osmosis membrane in concentration of microalgae culture. Bioresource Technology, 197, 429-433. [79] Gerardo, M. L., Zanain, M. A., &; Lovitt, R. W. (2015). Pilot-scale cross-flow microfiltration of Chlorella minutissima: A theoretical assessment of the operational parameters on energy consumption. Chemical Engineering Journal, 280, 505-513. [80] Kim, K., Shin, H., Moon, M., Ryu, B.-G., Han, J.-I., Yang, J.-W., &; Chang, Y. K. (2015). Evaluation of various harvesting methods for high-density microalgae, Aurantiochytrium sp. KRS101. Bioresource Technology, 198, 828-835. [81] Rao Kotte, M., Hwang, T., Han, J.-I., &; Diallo, M. S. (2015). A one-pot method for the preparation of mixed matrix polyvinylidene fluoride membranes with in situ synthesized and PEGylated polyethyleneimine particles. Journal of Membrane Science, 474, 277-287. [82] Chiag YC, Chang Y, Chen WY, Ruaan R.C. Biofouling resistance of ultrafiltration membranes controlled by surface self-assembled coating with PEGylated copolymers, Langmuir 28 (2012) 1399-1407. [83] Venault, A., Ballad, M. R. B., Liu, Y.-H., Aimar, P., &; Chang, Y. (2015). Hemocompatibility of PVDF/PS-b-PEGMA membranes prepared by LIPS process. Journal of Membrane Science, 477, 101-114. [84] Sawada, S.-i., Ursino, C., Galiano, F., Simone, S., Drioli, E., &;Figoli, A. (2015). Effect of citrate-based non-toxic solvents on poly(vinylidene fluoride) membrane preparation via thermally induced phase separation. Journal of Membrane Science, 493, 232-242. doi: http://dx.doi.org/10.1016/j.memsci.2015.07.003 [85] Grosso, V., Vuono, D., Bahattab, M. A., Di Profio, G., Curcio, E., Al-Jilil, S. A., . . .Fontananova, E. (2014). Polymeric and mixed matrix polyimide membranes. Separation and Purification Technology, 132, 684-696. doi: http://dx.doi.org/10.1016/j.seppur.2014.06.023 [86] Song, H., Shao, J., He, Y., Liu, B., &;Zhong, X. (2012). Natural organic matter removal and flux decline with PEG–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis. Journal of Membrane Science, 405–406, 48-56. doi: http://dx.doi.org/10.1016/j.memsci.2012.02.063 [87] Fan, X., Su, Y., Zhao, X., Li, Y., Zhang, R., Zhao, J., . . . Liu, Y. (2014). Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal. Journal of Membrane Science, 464, 100-109. [88] Huang YT. and Su CP., (2014), High lipid content and productivity of microalgae cultivating under elevated CO2, International Journal of Environmental Science and Technology, 11(3):703-710. [89] Boccaccio T, Bottino A, Capannelli G, Piaggio P, Characterization of PVDF membranes by vibrational spectroscopy, Journal of Membrane Science 210(2002) 315-329. [90] Salimi A, Yousefi AA, Conformational changes and phase transformation mechanisms in PVDF solution-cast films, Journal of Polymer Science Part B: Polymer Physics 42 (2004) 3487-3495. [91] Gregorio Jr R, Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions, Journal of Applied Polymer Science 100 (2006) 3272–3279. [92] Siri A, Alkan C, Biçer A, Karaipekli A, Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid–solid phase change materials, Solar Energy Materials &; Solar Cells 95 (2011) 3195–3201.
[93] Jin J, Jiang W, Shi Q, Zhao J, Yin J, Stagnaro P, Fabrication of PP-g-PEGMA-gheparin and its hemocompatibility: from protein adsorption to anticoagulant tendency, Applied Surface Science 258 (2012) 5841–5849. [94] Hester JF, Mayes, AM, Design and performance of foul-resistant poly(vinylidene fluoride) membranes prepared in a single-step by surface segregation, Journal of Membrane Science 202 (2002) 119-135. [95] Qiu GM, Zhu LP, Zhu BK, Xu YY, Qiu GL, Grafting of styrene/maleic anhydride copolymer onto PVDF membrane by supercritical carbon dioxide: preparation, characterization and biocompatibility, The Journal of Supercritical Fluids 45 (2008) 374-383. [96] Sui Y, Wang Z, Gao X, Gao C, Antifouling PVDF ultrafiltration membranes incorporating PVDF-g-PHEMA additive via atom transfer radical graft polymerizations, Journal of Membrane Science 413-414 (2012) 38-47. [97] MacRitchie, F. (1998). Reversibility of protein adsorption. In M. Dietmar &; M. Reinhard (Eds.), Studies in Interface Science (Vol. Volume 7, pp. 149-177): Elsevier. [98] Jin, J., Jiang, W., shi, Q., Zhao, J., Yin, J., &; Stagnaro, P. (2012). Fabrication of PP-g-PEGMA-g-heparin and its hemocompatibility: From protein adsorption to anticoagulant tendency. Applied Surface Science, 258(15), 5841-5849. [99] Chang, Y., Shih, Y. J., Ko, C. Y., Jhong, J. F., Liu, Y. L., &; Wei, T. C. (2011). Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface pegylation. Langmuir, 27(9), 5445-5455. [100] L.E. Corum, C.D. Eichinger, T.W. Hsiao, V. Hlady, Using microcontact printing of fibrinogen to control surface-induced platelet adhesion and activation, Langmuir 27 (2011) 8316-8322. [101] Corum, L. E., &; Hlady, V. (2012). The effect of upstream platelet–fibrinogen interactions on downstream adhesion and activation. Biomaterials, 33(5), 1255-1260. [102] Sivaraman, B., &; Latour, R. A. (2010). The relationship between platelet adhesion on surfaces and the structure versus the amount of adsorbed fibrinogen. Biomaterials, 31(5), 832-839. [102] Lin, D.-J., Lin, D.-T., Young, T.-H., Huang, F.-M., Chen, C.-C., &; Cheng, L.-P. (2004). Immobilization of heparin on PVDF membranes with microporous structures. Journal of Membrane Science, 245(1–2), 137-146. [103] Chang, Y., Chang, W.-J., Shih, Y.-J., Wei, T.-C., &; Hsiue, G.-H. (2011). Zwitterionic Sulfobetaine-Grafted Poly(vinylidene fluoride) Membrane with Highly Effective Blood Compatibility via Atmospheric Plasma-Induced Surface Copolymerization. AC14 S Applied Materials &; Interfaces, 3(4), 1228-1237. [104] Secomb, T.W., and Hsu, R. (1996). Analysis of red blood cell motion through cylindrical micropores: effects of cell properties. Biophysics Journal, 1095-1101. [105] O. Linderkamp, J. Pӧschl, P. Ruel, Blood cell deformation in neonates who have sepsis, NeoReviews 7 (2013) 517-523. [106] Liu, P.-S., Chen, Q., Wu, S.-S., Shen, J., &; Lin, S.-C. (2010). Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. Journal of Membrane Science, 350(1–2), 387-394. [107] Gladwin, M. T., Kanias, T., &; Kim-Shapiro, D. B. (2012). Hemolysis and cell-free hemoglobin drive an intrinsic mechanism for human disease. [108] Shi, Q., Fan, Q., Ye, W., Hou, J., Wong, S.-C., Xu, X., &; Yin, J. (2015). Binary release of ascorbic acid and lecithin from core–shell nanofibers on blood-contacting surface for reducing long-term hemolysis of erythrocyte. [109] Makroo, R. N., Raina, V., Bhatia, A., Gupta, R., Majid, A., Thakur, U. K., &; Rosamma, N. L. (2010). Evaluation of Red Cell Hemolysis in Packed Red Cells During Processing and Storage [110] Upadhyay, J., Kumar, A., Gogoi, B., &; Buragohain, A. K. (2015). Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process. [111] Anderson, J. M. (2001). Biological responses to materials. Annual Review of Materials Science, 31, 81-110. [112] Amarnath, L. P., Srinivas, A., &; Ramamurthi, A. (2006). In vitro hemocompatibility testing of UV-modified hyaluronan hydrogels. Biomaterials, 27(8), 1416-1424. [113] Fan, X., Su, Y., Zhao, X., Li, Y., Zhang, R., Zhao, J., . . . Liu, Y. (2014). Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal. Journal of Membrane Science, 464, 100-109. [114] Chen, Y.-W., Chang, Y., Lee, R.-H., Li, W.-T., Chinnathambi, A., Alharbi, S. A., &; Hsiue, G.-H. (2014). Adjustable Bioadhesive Control of PEGylated Hyperbranch Brushes on Polystyrene Microplate Interface for the Improved Sensitivity of Human Blood Typing. Langmuir, 30(30), 9139-9146. [115] Zhang, X., Hu, Q., Sommerfeld, M., Puruhito, E., &; Chen, Y. (2010). Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresource Technology, 101(14), 5297-5304. [116] Ríos, S. D., Salvadó, J., Farriol, X., &; Torras, C. (2012). Antifouling microfiltration strategies to harvest microalgae for biofuel. Bioresource Technology, 119, 406-418. [117] Li, J.-H., Li, M.-Z., Miao, J., Wang, J.-B., Shao, X.-S., &; Zhang, Q.-Q. (2012). Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive. Applied Surface Science, 258(17), 6398-6405. [118] Hashim, N. A., Liu, F., &; Li, K. (2009). A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer. Journal of Membrane Science, 345(1–2), 134-141.
|