跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 16:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳逸甯
研究生(外文):Yi-Ning Wu
論文名稱:超重力系統中以深共熔溶 劑混合醇胺吸收二氧化碳
論文名稱(外文):Capture of Carbon Dioxide by a Mixture of Alkanolamine and Deep Eutectic Slovent in a Rotating Packed Bed
指導教授:陳昱劭
指導教授(外文):Yu-Shao Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:149
中文關鍵詞:旋轉填充床二氧化碳深共熔溶劑醇胺
外文關鍵詞:rotating packed bedcarbon dioxidedeep eutectic solventalkanolamine
相關次數:
  • 被引用被引用:2
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究於旋轉填充床反應器中利用化學吸收之方式移除二氧化碳,吸收劑為單乙醇胺(MEA)和2-甲基乙醇胺(MMEA)混合深共熔溶劑(DES),其中DES為氯化膽鹼/乙二醇,並改變轉速、氣體流率、溫度與吸收劑配方之醇胺濃度及吸收劑中水與DES比例等操作參數,藉由測量實驗系統中氣體出口之二氧化碳濃度數值變化,探討操作參數對二氧化碳移除率、總括體積氣膜質傳係數及吸收劑之二氧化碳負載量之影響。
實驗結果顯示,移除率會隨著溫度、吸收劑中醇胺濃度及吸收劑中水的比例的增加而上升,隨氣體流率增加而下降,在轉速為600~1800 rpm時,移除率會隨轉速上升,當轉速提升至2400 rpm時則有些微下降,而MMEA的移除率高於MEA。總括體積氣膜質傳係數隨轉速、溫度、吸收劑中醇胺濃度及吸收劑中水的比例的增加而上升,但是提高氣量會使氣-液在床體中接觸時間縮短,不利反應,故提高氣量會使總括體積氣膜質傳係數下降。吸收劑之二氧化碳負載量則會隨著轉速、氣體流率、溫度及吸收劑中水的比例的增加而上升,隨吸收劑中醇胺濃度增加而下降。再生能量隨吸收劑中水量減少再生能量下降,且吸收劑中含MMEA之再生能量較MEA低。
本實驗在吸收劑為MMEA/DES/H2O(30:40:30)操作在氣量為50 L/min、液量為0.1 L/min、溫度為40℃及轉速在2400 rpm下,與30 wt% MEA水溶液相比,移除率可提高20.5%,再生能量則可由3.61 GJ/ton CO2降低為2.88 GJ/ton CO2。


In this study, a mixture of alkanolamine, such as MEA and MMEA, with a deep eutectic solvent (DES) of choline chloride (ChCl)/ethylene glycol (EG) used as an absorbent to capture CO2 from gas stream in a rotating packed bed. The effects of rotating speed, gas flow rate, temperature, concentration of alkanolamine and ratio of water and DES in the absorbent on CO2 removal efficiency (E), mass transfer coefficient (KGa) and CO2 loading were investigated.
Experimental results showed that CO2 removal efficiency increased with increasing temperature, concentration of alkanolamine, ratio of water in the absorbent and rotating speed ranging between 600 and 1800 rpm, but decreased with increasing gas flow rate. A decreased of ratio of water in the absorbent reduced the removal efficiency because of the increasing viscosity. The removal efficiency of MMEA is higher than that of MEA, because of the reaction rate of MMEA is higher. The mass transfer coefficient values increased with increasing rotating speed, temperature, concentration of alkanolamine and ratio of water in the absorbent. Increasing gas flow rate reduced the contact time of gas and liquid in the rotating packed bed, and thus, the mass transfer coefficient decreased with the gas flow rate. The regeneration energy of each absorbent was calculated in this study. Results showed that the regeneration energy decreased with increasing the ratio of water in the absorbent. Besides, the regeneration energy of MMEA is lower than that of MEA.
In this study, an optimum composition of absorbent of MMEA/DES/H2O (30:40:30) was obtained. Compared with 30 wt% MEA solution, the removal efficiency of the proposed absorbent was increased from 69% to 86.8% at gas flow rate of 50 L/min, liquid flow rate of 0.1 L/min, while the regeneration energy can be reduced from 3.61 GJ/ton CO2 to 2.88 GJ/ton CO2. This shows that the use of DES mixed with alkanolamine has a great potential for CO2 capture in a higee system.


目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
第二章 文獻回顧 2
2-1 二氧化碳的簡介 2
2-2 移除二氧化碳的方法 3
2-3 二氧化碳之分離技術 5
2-4 深共熔溶劑 (deep eutectic solvent, DES) 14
2-4-1 深共熔溶劑簡介 15
2-4-2 深共熔溶劑之應用 22
2-4-3 深共熔溶劑吸收二氧化碳之應用 24
2-5 超重力技術 32
2-5-1 超重力技術簡介 32
2-5-2 旋轉填充床之介紹 35
2-5-3 旋轉填充床之特性 38
2-5-4 旋轉填充床應用 45
2-5-5 旋轉填充床吸收二氧化碳之應用 51
第三章 實驗方法 57
3-1 實驗裝置及儀器 57
3-1-1 旋轉填充床 57
3-1-2 實驗儀器 60
3-1-3 實驗藥品 60
3-2 實驗方法 61
3-2-1 吸收劑配製 61
3-2-2 吸收劑物性量測 62
3-2-3 吸收實驗流程 62
3-2-4 吸收劑再生實驗 65
3-2-5 數據分析 67
3-2-6 再生能量計算 71
第四章 結果與討論 73
4-1 以深共熔溶劑物理吸收二氧化碳 73
4-2 化學吸收二氧化碳之移除率 74
4-2-1 轉速之影響 74
4-2-2 氣體流率之影響 76
4-2-3 溫度之影響 79
4-2-4 濃度之影響 81
4-2-5 吸收劑中水與DES比例之影響 83
4-3 化學吸收二氧化碳之總括體積氣膜質傳係數 85
4-3-1 轉速之影響 85
4-3-2 氣體流率之影響 87
4-3-3 溫度之影響 89
4-3-4 濃度之影響 91
4-3-5 吸收劑中水與DES比例之影響 92
4-4 化學吸收二氧化碳之吸收劑二氧化碳負載量 93
4-4-1 轉速之影響 93
4-4-2 氣體流率之影響 95
4-4-3 溫度之影響 97
4-4-4 濃度之影響 98
4-4-5 吸收劑中水與DES比例之影響 99
4-5 再生實驗及再生能量計算 100
4-5-1 再生實驗 100
4-5-2 再生能量計算 102
4-6 與文獻中吸收劑比較 105
第五章 結論 107
符號表 109
參考文獻 112
附錄A.1 吸收二氧化碳結果之數據 (進料溫度為30℃) 122
附錄A.2 吸收二氧化碳結果之數據 (進料溫度為40℃) 124
附錄A.3 吸收二氧化碳結果之數據 (進料溫度為60℃) 132
附錄B 二氧化碳負載量 136
附錄C 本研究所用吸收劑之再生能量(以1 kg計算) 137

圖目錄
Fig. 2- 1 三種捕獲二氧化碳方式之示意圖 4
Fig. 2- 2 吸收塔捕捉二氧化碳實驗流程裝置圖 13
Fig. 2- 3 構成ILs與DES之原料結構式 14
Fig. 2- 4 DES之共熔點示意圖 16
Fig. 2- 5 ChCl與氫予體作用示意圖 16
Fig. 2- 6 可形成DES之氫予體及氫鍵受體 17
Fig. 2- 7 不同莫耳比例下ChCl與ZnCl2、SnCl2及FeCl3所構成之系統的 19
Fig. 2- 8 ChCl/ZnCl2在莫耳比為1:2時溫度與黏度關係 19
Fig. 2- 9 ChCl/CrCl3•6H2O在不同莫耳比例下溫度與黏度關係 20
Fig. 2- 10 構成type Ⅲ DES之各種有機鹽類與氫予體結構 20
Fig. 2- 11 利用ChCl/尿素應用於有機合成的例子 23
Fig. 2- 12在ChCl/尿素中加入不同重量百分比的水,在不同溫度壓力下之二氧化碳溶解度 25
Fig. 2- 13 RPB之結構示意圖 34
Fig. 2- 14 SDR之結構示意圖 34
Fig. 2- 15逆流式旋轉填充床示意圖 35
Fig. 2- 16 錯流式旋轉填充床流程示意圖 36
Fig. 2- 17 (a)加裝擋板之旋轉填充床,填充床之填料分布圖(b)葉片(c)擋板 37
Fig. 2- 18 氣液流率對壓降之影響 40
Fig. 2- 19 氣體流率對壓降之影響 40
Fig. 2- 20 旋轉填充床中液體的三種流動型態 42
Fig. 2- 21 填充床中液體分佈情形 42
Fig. 2- 22氣提溶氧實驗流程圖 45
Fig. 2- 23 利用逆流式旋轉填充床氣提氨之流程圖 46
Fig. 2- 24錯流式旋轉填充床吸收VOCs之流程圖 47
Fig. 2- 25 於旋轉填充床中吸收臭氧之流程圖 48
Fig. 2- 26 旋轉填充床製備硫化鋅奈米粒子之實驗裝置圖 49
Fig. 2- 27旋轉填充床製備氧化銅奈米粒子之實驗流程圖 50
Fig. 2- 28逆流式旋轉填充床捕捉二氧化碳實驗流程圖 54
Fig. 2- 29逆流式旋轉填充床捕捉二氧化碳實驗流程圖 54
Fig. 3- 1旋轉填充床之(a)示意圖 (b)裝置主體 58
Fig. 3- 2旋轉填充床內不鏽鋼金屬絲網構造圖 59
Fig. 3- 3二氧化碳吸收實驗裝置流程圖 63
Fig. 3- 4 吸收劑再生實驗裝置圖 65
Fig. 3- 5 批次吸收實驗流程圖 66
Fig. 3- 6旋轉填充床內控制體積示意圖 68
Fig. 3- 7 電位滴定曲線 70
Fig. 4- 1液量0.1 L/min,溫度40℃時,四種吸收劑轉速對二氧化碳移除率之影響,氣量為 (a) 10 L/min (b) 30 L/min (c) 50 L/min 75
Fig. 4- 2液量0.1 L/min,溫度為40℃時,四種吸收劑氣量對二氧化碳移除率之影響,轉速為 (a) 600 rpm (b) 1800 rpm 77
Fig. 4- 3液量0.1 L/min,溫度為60℃時,四種吸收劑氣量對二氧化碳移除率之影響,轉速為 (a) 600 rpm (b) 1800 rpm 77
Fig. 4- 4液量0.1 L/min,氣量50 L/min時,四種吸收劑溫度對二氧化碳移除率之影響,轉速為 (a) 600 rpm (b) 1800 rpm 80
Fig. 4- 5液量0.1 L/min,氣量50 L/min,溫度40 ℃時,使用DES混合不同種類及濃度之醇胺對二氧化碳移除率之影響 81
Fig. 4- 6液量0.1 L/min,氣量50 L/min,溫度40 ℃時,吸收劑中水與DES比例之影響對二氧化碳移除率之影響 84

Fig. 4- 7液量0.1 L/min,溫度40℃時,四種吸收劑轉速對KGa值之影響,氣量為 (a)10 L/min (b) 30 L/min (c) 50 L/min 86
Fig. 4- 8液量0.1 L/min,溫度60℃時,MMEA/DES(30:70)在不同氣量下轉速對HTU之影響 86
Fig. 4- 9液量0.1 L/min,溫度為40℃時,四種吸收劑氣量對KGa值之影響,轉速為 (a) 600 rpm (b) 轉速為1800 rpm 88
Fig. 4- 10液量0.1 L/min,溫度為60℃時,四種吸收劑氣量對KGa值之影響,轉速為 (a) 600 rpm (b) 轉速為1800 rpm 88
Fig. 4- 11液量0.1 L/min,氣量50 L/min時,四種吸收劑溫度對KGa值之影響,轉速為 (a) 600 rpm (b) 1800 rpm 90
Fig. 4- 12液量0.1 L/min,氣量50 L/min,溫度40 ℃時,使用DES混合不同種類及濃度之醇胺對KGa值之影響 91
Fig. 4- 13液量0.1 L/min,氣量50 L/min,溫度40 ℃時,吸收劑中水與DES比例之影響對KGa值之影響 92
Fig. 4- 14液量0.1 L/min,溫度40 ℃時,四種吸收劑轉速對二氧化碳負載量之影響,氣量為 (a) 10 L/min (b) 30 L/min (c) 50 L/min 94
Fig. 4- 15 滴定測量與式(3-6)計算之二氧化碳負載量 94
Fig. 4- 16液量0.1 L/min,溫度為40℃時,四種吸收劑氣量對二氧化碳負載量之影響,轉速為 (a) 600 rpm (b) 1800 rpm 96
Fig. 4- 17液量0.1 L/min,溫度為60℃時,四種吸收劑氣量對二氧化碳負載量之影響,轉速為 (a) 600 rpm (b) 1800 rpm 96
Fig. 4- 18液量0.1 L/min,氣量50 L/min時,四種吸收劑溫度對二氧化碳負載量之影響,轉速為 (a) 600 rpm (b) 1800 rpm 97
Fig. 4- 19液量0.1 L/min,氣量50 L/min,溫度40 ℃時,使用DES混合不同種類及濃度之醇胺對二氧化碳負載量之影響 98

Fig. 4- 20液量0.1 L/min,氣量50 L/min,溫度40 ℃時,吸收劑中水與DES比例之影響對二氧化碳負載量之影響 99
Fig. 4- 21 40℃下MEA/DES(30:70)吸收二氧化碳時濃度隨時間之變化 101
Fig. 4- 22 40℃下MMEA/DES(30:70) 吸收二氧化碳時濃度隨時間之變化 101
Fig. 4- 23 本實驗所用之吸收劑包含MEA之再生能量 103
Fig. 4- 24本實驗所用之吸收劑包含MMEA之再生能量 103
Fig. 4- 25 30 wt% MMEA吸收劑中,吸收劑組成對移除率與再生能量之影響 104


表目錄
Table 2- 1各種吸收劑的優缺點 8
Table 2- 2 DES之分類通式 17
Table 2- 3 ChCl與不同HBD所構成DES之凝固點(Tf)與HBD之熔點(Tm*) 21
Table 2- 4 不同DES在25 °C之密度與黏度 21
Table 2- 5 二氧化碳在DES及其水溶液中之溶解性質 25
Table 2- 6 在ChCl/尿素中加入不同重量百分比的水,在不同溫度壓力下之二氧化碳溶解度 26
Table 2- 7 以ChCl為基底之深共熔溶劑密度 27
Table 2- 8以ChCl為基底之深共熔溶劑熱穩定性 27
Table 2- 9在一大氣壓下以ChCl為基底之深共熔溶劑黏度 28
Table 2- 10 在一大氣壓25 ℃下以ChCl為基底之深共熔溶劑表面張力 28
Table 2- 11 深共熔溶劑與傳統醇胺吸收劑物性之比較 29
Table 2- 12 氫予體在25℃, 10bar下之二氧化碳溶解度 30
Table 2- 13 DES在25℃, 10bar下之二氧化碳溶解度 31
Table 2- 14 此文獻所使用三種不同RPB之規格 48
Table 3- 1旋轉填充床之規格 59
Table 3- 2 二氧化碳吸收實驗操作參數及範圍 63
Table 3- 3 實驗所用吸收劑組成之配方 64
Table 3- 4 不同物質之反應熱及比熱 72
Table 4- 1 氣量50 L/min,液量0.1 L/min及溫度40℃以DES吸收二氧化碳,轉速與移除率關係 73
Table 4- 2醇胺濃度為30 wt%時與水及DES混合在40℃下之黏度與密度 78
Table 4- 3醇胺濃度為30 wt%時與水及DES混合在不同溫度時之黏度 80
Table 4- 4 40℃下在DES中添加不同濃度及種類之醇胺時之黏度與密度 82
Table 4- 5 40℃下在30 wt%醇胺/DES中用不同比例的水取代DES之黏度與密度 84
Table 4- 6 再生實驗之操作條件 101
Table 4- 7 將本研究吸收劑與文獻做比較 106




Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K., “Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids,” J. Am. Chem. Soc., 2004, 126, 9142-9147.
Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R., “Ionic Liquids Based upon Metal Halide/Substituted Quaternary Ammonium Salt Mixtures,” Inorg. Chem., 2004, 43, 11, 3447-3452.
Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., “Ionic Liquid Analogues Formed from Hydrated Metal Salts,” Chem. Eur. J., 2004, 10, 3769-3774.
Abbott, A.P., Capper, G., McKenzie, K.J., Ryder, K.S., “Electrodeposition of Zinc-Tin Alloys from Deep Eutectic Solvents Based on Choline Chloride,” J. Electroanal. Chem., 2007, 599, 288-294.
Abass A.O., “CO2 Capture and Separation Technologies for End-of-Pipe Applications - A Review,” Energy, 2010, 35, 2610-2628.
Abu-Zahra, M.R.M., Schneiders, L.H.J., Niederer, J.P.M., Feron, P.H.M., Versteeg, G.F., “CO2 Capture from Power Plants Part I. A parametric Study of the Technical Performance Based on Monoethanolamine,” Int. J. Greenh. Gas Control, 2007, 1, 37-46.
Ali, E., Hadj-Kali, M.K., Mulyono, S., Alnashef, I., Fakeeha, A., Mjalli, F., Hayyan, A., “Solubility of CO2 in Deep Eutectic Solvents: Experiments and Modeling Using the Peng-Robinson Equation of State,” Chem. Eng. Res. Des., 2014, 92, 1898-1906.

Aroonwilas, A., Tontiwachwuthikul, P., “Mass Transfer Coefficients and Correlation for CO2 Absorption into 2-Amino-2-methyl-1-propanol (AMP) Using Structured Packing,” Ind. Eng. Chem. Res., 1998, 37, 569-575.
Barbarossa, V., Barzagli, F., Mani, F., Lai, S., Stoppioni, P., Vanga, G., “Efficient CO2 Capture by Non-Aqueous 2-Amino-2-Methyl-1-Propanol (AMP) and Low Temperature Solvent Regeneration,” RSC., 2013, 3, 12349-12355.
Barzagli, F., Mani, F., Peruzzini, M., “Efficient CO2 Absorption and Low Temperature Desorption with Non-Aqueous Solvents Based on 2-Amino-2-Methyl-1-Propanol (AMP),” Int. J. Greenh. Gas Control, 2013, 16, 217-223.
Burns, J.R., Ramshaw, C., “Process Intensification: Visual Study of Liquid Maldistribution in Rotating Packed Beds,” Chem. Eng. Sci., 1996, 51, 8, 1347-1352.
Chakma, A., “CO2 Capture Processes - Opportunities for Improved Energy Efficiencies,” Energ. Convers. Manage., 1997, 38, 51-56.
Chen, J.F., Lia, Y.L., Wang, Y.H., Yun, J., Cao D., “Preparation and Characterization of Zinc Sulfide Nanoparticles under High-Gravity Environment,” Mater. Res. Bull., 2004, 39, 185-194.
Chen, S.I., Chen, S.Y., Fei, X.Y., Zhang, Y.C., Qin, L.A., “Solubility and Characterization of CO2 in 40 mass% N‑Ethylmonoethanolamine Solutions: Explorations for an Efficient Nonaqueous Solution,” Ind. Eng. Chem. Res., 2015, 54, 7212-7218.
Chen, Y.S., “Correlations of Mass Transfer Coefficients in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 2011, 50, 1778-1785.

Chen, Y.S., Lin, C.C., Liu, H.S., “Mass Transfer in a Rotating Packed Bed with Viscous Newtonian and Non-Newtonian Fluids,” Ind. Eng. Chem. Res., 2005, 44, 1043-1051.
Chen, Y.S., Lin, F.Y., Lin, C.C., Tai, C.Y.D., Liu, H.S., “Packing Characteristics for Mass Transfer in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 2006, 45, 6846-6853.
Chen, Y.S., Liu, H.S., “Absorption of VOCs in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 2002, 41, 1583-1588.
Cheng, H.H., Shen, J.F., Tan, C.S., “CO2 Capture from Hot Stove Gas in Steel Making Process,” Int. J. Greenh. Gas Control, 2010, 4, 525-531.
Cheng, H.H., Tan C.S., “Carbon Dioxide Capture by Blended Alkanolamines in Rotating Packed Bed,” Energy Procedia, 2008, 1, 925-932.
Dow Chemical, “Gas Sweetening,” 1998.
Dubois, L., Thomas, D., “Study of the Postcombustion CO2 Capture by Absorption into Amine(s) Based Solvents: Application to Cement Flue Gases,” Energy Procedia, 2013, 37, 1639-1647.
Dugas, R.E., Rochelle, G.T., “Modeling CO2 Absorption into Concentrated Aqueous Monoethanolamine and Piperazine,” Chem. Eng., Sci. 2011, 66, 5212-5218.
Fischer, V., “Properties and Applications of Deep Eutectic Solvents and Low-Melting Mixtures,” PhD dissertation, Universität Regensburg, 2015.
Francisco, M., Bruinhorst, A., Kroon, M.C., “Low-Transition-Temperature Mixtures (LTTMs): A New Generation of Designer Solvents,” Angew. Chem. Int. Ed., 2013, 52, 3074-3085.
Fu, K.Y., Rongwong, W., Liang, Z.W., Na, Y.Q., Idem, R., Tontiwachwuthikul, P., “Experimental Analyses of Mass Transfer and Heat Transfer of Post-Combustion CO2 Absorption Using Hybrid Solvent MEA-MeOH in An Absorber,” Chem. Eng. J., 2015, 260, 11-19.
Gambino, M., Bros, J.P., “Capacite Calorifique de L''uree et de Quelques Melanges Eutectiques a Base D''uree Entre 30 et 140° C,” Thermochimica Acta, 1988, 127, 223.
Gill, R.A., Polley, H.W., Johnson, H.B., Anderson, L.J., Maherali, H., Jackson, R.B., “Nonlinear Grassland Responses to Past and Future Atmospheric CO2,” Nature, 2002, 417, 279-282.
Gorke, J.T., Srienc, F., Kazlauskas, R. J., “Hydrolase-Catalyzed Biotransformations in Deep Eutectic Solvents,” Chem. Commun., 2008, 1235-1237.
Guo, K., Guo, F., Feng, Y., Chen, J., Zheng, C., Gardner, N.C., “Synchronous Visual and RTD Study on Liquid Flow in Rotating Packed-Bed Contactor,” Chem. Eng. Sci., 2000, 55, 1699-1706.
Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S., “Perspectives on Microalgal CO2-Emission Mitigation Systems - A Review,” Bio. technol., Adv. 2011, 29, 189-198.
Jassim, M.S., Rochelle, G., Eimer, D., Ramshaw, C., “Carbon Dioxide Absorption and Desorption in Aqueous Monoethanolamine Solutions in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 2007, 46, 2823-2833.
Jou, F.Y., Otto, F.D., Mather, A.E., “Solubility of H2S and CO2 in Diethylene Glycol at Elevated Pressures,” Fluid Phase Equilib., 2000, 175, 53-61.

Kierzkowska-Pawlak, H., Siemieniec, M., Chacuk, A., “Reaction Kinetics of CO2 in Aqueous Methyldiethanolamine Solutions Using the Stopped-Flow Technique,” Chem. Eng. Prog., 2011, 33, 1, 7-18.
Kim, I., Svendsen, H.F., “Comparative Study of the Heats of Absorption of Post-Combustion CO2 Absorbents,” Int. J. Greenh. Gas Control, 2011, 5, 390-395.
Kohlz, A.L., Nielsen R.B., “Gas Purification (Fifth Edition),” Gulf Publishing Company, 1997, Texas.
Kumar, M.P., Rao, D.P., “Studies on a High-Gravity Gas-Liquid Contactor,” Ind. Eng. Chem. Res., 1990, 29, 917-920.
Leron, R.B., Li, M.H., “Molar Heat Capacities of Choline Chloride-Based Deep Eutectic Solvents and Their Binary Mixtures with Water,” Thermochimica Acta, 2012, 530, 52-57.
Li L.,“Carbon Dioxide Solubility and Mass Transfer in Aqueous Amines for Carbon Capture,” PhD dissertation, The University of Texas at Austin, 2015.
Lin, C.C. , Wei, T.Y. , Hsu, S.K., Liu, W.T., “Performance of a Pilot-Scale Cross-Flow Rotating Packed Bed in Removing VOCs from Waste Gas Streams,” Sep. Purif. Technol., 2006, 52, 274-279.
Lin, C.C., Chao, C.Y., Liu, M.Y., Lee, Y.L., “Feasibility of Ozone Absorption by H2O2 Solution in Rotating Packed Beds,” J. Hazard. Mater., 2009, 167, 1014-1020.
Lin, C.C., Chen B.C., “Carbon Dioxide Absorption into NaOH Solution in a Cross-flow Rotating Packed Bed,” J. Ind. Eng. Chem., 2007, 13, 7, 1083-1090.

Lin, C.C., Chen, B.C., “Characteristics of Cross-Flow Rotating Packed Beds,” J. Ind. Eng. Chem., 2008, 14, 322-327.
Lin, C.C., Chen, B.C., Chen, Y.S., Hsu, S.K., “Feasibility of a Cross-Flow Rotating Packed Bed in Removing Carbon Dioxide from Gaseous Streams,” Sep. Purif. Technol., 2008, 62, 507-512.
Lin, C.C., Jian, G.S., “Characteristics of a Rotating Packed Bed Equipped with Blade Packings,” Sep. Purif. Technol., 2007, 54, 51-60.
Lin, C.C., Lin, Y.H., Tan, C.S., “Evaluation of Alkanolamine Solutions for Carbon Dioxide Removal in Cross-Flow Rotating Packed Beds,” J. Hazard. Mater., 2010, 175, 344-351.
Lin, C.C., Liu, W.T., Tan, C.S., “Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 2003, 42, 2381-2386.
Lin, C.C., Wu, M.S., “Continuous Production of CuO Nanoparticles in a Rotating Packed Bed,” Ceram Ind., 2016, 42, 2133-2139.
Lin, C.M., Leron, R.B., Caparanga, A.R., Li, M.H., “Henry’s Constant of Carbon Dioxide-Aqueous Deep Eutectic Solvent (Choline Chloride/Ethylene Glycol, Choline Chloride/Glycerol, Choline Chloride/Malonic Acid) Systems,” J. Chem. Thermodynamics, 2014, 68, 216–220.
Lin, P.H., Wong, D.S.H., “Carbon Dioxide Capture and Regeneration with Amine/Alcohol/Water Blends,” Int. J. Greenh. Gas Control, 2014, 26, 69-75.

Littel, R.J., Versteeg, G.F., Van Swaaij W.P.M., “Kinetics of CO2 with Primary and Secondary Amines in Aqueous Solutions-II. Influence of Temperature on Zwitterion Formation and Deprotonation Rates,” Chem. Eng. Sci., 1992, 47, 8, 2037-2943.
Liu, H.S., Lin, C.C., Wu, S.C., Hsu, H.W., “Characteristics of a Rotating Packed Bed,” Ind. Eng. Chem. Res., 1996, 35, 3590-3596.
Luo, P.C., Zhang, Z.B., Jiao, Z., Wang, Z.X., “Investigation in the Design of a CO2 Cleaner System by Using Aqueous Solutions of Monoethanolamine and Diethanolamine,” Ind. Eng. Chem. Res., 2003, 42, 4861-4866.
Luo, Y., Chu, G.W., Zou, H.K., Zhao, Z.Q., Dudukovic, M.P., Chen, J.F., “Gas-Liquid Effective Interfacial Area in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 2012, 51, 16320-16325.
Maham, Y., Hepler, L.G., Mather, A.E., Hakin, A.W., Marriott, R.A., “Molar Heat Capacities of Alkanolamines from 299.1 to 397.8 K Group Additivity and Molecular Connectivity Analyses,” J. Chem. Soc., Faraday Trans., 1997, 93, 9, 1747-1750.
Maugeri, M.S.Z., “Deep Eutectic Solvents: Properties and Biocatalytic Applications,” PhD dissertation, RWTH Aachen University, 2014.
MEGlobal, “Diethylene Glycol Product Guide,” 2005
Miyano, Y., Fujihara, I., “Henry’s Constants of Carbon Dioxide in Methanol at 250-500 K,” Fluid Phase Equilib., 2004, 221, 57-62.

Mudhasakul, S., Ku, H.M., Douglas, P.L., “A Simulation Model of a CO2 Absorption Process with Methyldiethanolamine Solvent and Piperazine as an Activator,” Int. J. Greenh. Gas Control, 2013, 15, 134-141.
Munjal, S., Dudukovć, M.P., Ramachandran, P., “Mass-Transfer in Rotating Packed Beds-I. Development of Gas-Liquid and Liquid-Solid Mass-Transfer Correlations,” Chem. Eng. Sci., 1989, 44, 10, 2245-2256.
Notz, R., Tonnies, I., McCann, N., Scheffknecht, G., Hasse, H., “CO2 Capture for Fossil Fuel-Fired Power Plants,” Chem. Eng. Technol., 2011, 34, 2, 163-172.
Olajire, A.A., “CO2 Capture and Separation Technologies for End-of-Pipe Applications - A Review,” Energy, 2010, 35, 2610-2628.
Pask, S.D., Cai, Z., Mack, H., Marc, L., Nuyken, O., “The Spinning Disk Reactor for Polymers and Nanoparticles,” Macromol. React. Eng., 2013, 7, 98-106.
Rodriguez-Flores, H.A., Mello, L.C., Salvagnini, W.M., de Paiva, J.L., “Absorption of CO2 into Aqueous Solutions of MEA and AMP in a Wetted Wall Column with Film Promoter,” Chem. Eng. Prog., 2013, 73, 1-6.
Sawistoski, H., “Flooding Velocities in Packed Columns Operating at Reduced Pressure,” Chem. Eng. Sci., 1957, 6, 138.
Singh, S.P., Wilson, J.H., Counce, R.M., Villiers-Fisher, J J.F., Jenningst, H.L., “Removal of Volatile Organic Compounds from Groundwater Using a Rotary Air Stripper,” Ind. Eng. Chem. Res., 1992, 31, 574-580.
Smith, E.L., Abbott, A.P., Ryder, K.S., “Deep Eutectic Solvents (DESs) and Their Applications,” Chem. Rev., 2014, 114, 11060-11082.
Sung, W.D., Chen, Y.S., “Characteristics of a Rotating Packed Bed Equipped with Blade Packings and Baffles,” Sep. Purif. Technol., 2012, 93, 52-58.
Tung, H.H., Mah, R.S.H., “Modeling Liquid Mass Transfer in Higee Separation Process,” Chem. Eng. Commun., 1985, 39, 147-153.
Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C., “Post-Combustion CO2 Capture with Chemical Absorption: A State-of-the-Art Review,” Chem. Eng. Res. Des., 2011, 89, 1609-1624.
Wu, S.H., Caparanga, A.R., Leron, R.B., Li, M.H., “Vapor Pressure of Aqueous Choline Chloride-Based Deep Eutectic Solvents (Ethaline, Glyceline, Maline And Reline) at 30–70 ◦C,” Thermochimica Acta, 2012, 544, 1-5.
Xie, Y.J., Dong, H.F., Zhang, S.J., Lu, X.H., Ji, X.Y., “Effect of Water on the Density, Viscosity, and CO2 Solubility in Choline Chloride/Urea,” J. Chem. Eng. Data, 2014, 59, 3344-3352.
Yu C.H., Tan, C.S., “Mixed Alkanolamines with Low Regeneration Energy for CO2 Capture in a Rotating Packed Bed,” Energy Procedia, 2013, 37, 455-460.
Yu, C.H., Cheng, H.H., Tan, C.S., “CO2 Capture by Alkanolamine Solutions Containing Diethylenetriamine and Piperazine in a Rotating Packed Bed,” Int. J. Greenh. Gas Control, 2012, 9, 136-147.
Yu, C.H., Wu, T.W., Tan, C.S., “CO2 Capture by Piperazine Mixed with Non-Aqueous Solvent Diethylene Glycol in a Rotating Packed Bed,” Int. J. Greenh. Gas Control, 2013, 19, 503-509.
Yu, Y.S., Lu, H.F., Zhang, T.T., Zhang, Z.X., Wang, G.X., Rudolph, V., “Determining the Performance of an Efficient Nonaqueous CO2 Capture Process at Desorption Temperatures below 373 K,” Ind. Eng. Chem. Res., 2013, 52, 12622-12634.
Zhang Y.Y., Ji X.Y., Lu X.H., “Application of Choline-Based Deep Eutectic Solvents in CO2 Capture and Separation,” CIESC Journal, 2014, 65, 5, 1721-1728.
Zhao, B.T., Su, Y.X., Tao, W.W., Li, L.L., Peng, Y.C. “Post-Combustion CO2 Capture by Aqueous Ammonia: A State-of-the-Art Review,” Int. J. Greenh. Gas Control, 2012, 9, 355-371.
https://triz-journal.com/breakthrough-carbon-capture-exploiting-trade-offs/
黃小萍;“使用氣提法在旋轉填充床中移除氨之研究,” 中原大學碩士論文2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊