跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 12:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林子平
研究生(外文):Tzu-Ping Lin
論文名稱:氮化鋁磊晶薄膜於不同基板上殘餘應力機制之研究
論文名稱(外文):Study on Residual Stress Mechanism of AlN Epitaxial Films on Various Substrates
指導教授:高慧玲高慧玲引用關係
指導教授(外文):Hui-Ling Kao
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:62
中文關鍵詞:低溫濺鍍、氮化鋁、拉曼光譜、熱膨脹係數、殘餘應力
外文關鍵詞:low-temperature sputteringAlNRaman spectrathermal expan-sion coefficientresidual stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以迴旋濺鍍(helicon sputtering)系統,低溫500˚C沉積1um厚度的氮化鋁(AlN)薄膜於c軸取向之藍寶石(Sapphire)、氮化鎵(4um-GaN/Sapphire)以及(111)-面取向之氧化鎂(MgO)等三種不同的基板之上。透過拉曼光譜量測觀察E2(high)聲子頻率之位移以及X光繞射量測分析薄膜晶格應變,並與文獻中無受應力之AlN的E2(high)聲子頻率相比,呈藍位移(blue shift)的現象,這意味著濺鍍於GaN(0002)、Sapphire(0006)以及MgO(111)基板上之AlN薄膜受一殘餘的壓縮應變(residual compressive strain)影響,分析結果顯示,薄膜與基板彼此間熱膨脹係數之差異主導著最後薄膜的殘餘應變。藉由拉曼聲子峰值位置的偏移以及晶格常數的變化我們獲得一線性的關係,其雙軸應力係數為 -2.71 ± 0.3 cm-1/GPa。而進一步地觀察於MgO(111)基板上不同厚度的AlN薄膜與殘餘應變之間的關係發現,可以使用控制薄膜的厚度的方法,加以消除殘餘應力對薄膜的物理性質甚或是光電元件的表現造成影響。
本實驗中除了X光繞射量測,亦建立了拉曼光譜量測為另一簡單且有效率的監測方式,用以量測AlN薄膜中的雙軸應力。


Epitaxial films of wurtzite AlN were grown on c-plane sapphire, GaN(0002) and MgO(111) by helicon sputtering system. The lattice strain of the films was analyzed by high-resolution X-ray diffraction and E2 (high)-phonon frequency was observed by Raman scattering. The compressive strain was induced by the thermal expansion coefficient mismatch between film and substrates during the cooling process from elevated growth temperatures, which pushed the phonon peak position of AlN toward longer wavelength. The analysis showed that the thermal mismatch between the epilayers and the sub-strates played a major role in determining the residual stress in the films. A lin-ear coefficient of -2.71 ± 0.3 cm-1/GPa characterizing the relationship between the Raman-shift and the biaxial stress of the AlN films was obtained.
Furthermore, the results were clearly revealed by Raman spectra, in which the phonon peak position of AlN film decreased with the film thickness increased on MgO(111) substrates. The work here established Raman spectra as another simple and effective method for monitoring the biaxial stress in AlN epilayers.


摘要
Abstract
目錄
圖目錄
表目錄
第一章 緒論
1-1 簡介與文獻回顧
1-2 論文架構
第二章 理論背景與實驗原理
2-1 濺鍍原理
2-1-1 電漿與濺鍍
2-1-2 迴旋濺鍍系統
2-2 應力理論
2-2-1 本質應力 - 薄膜晶格應力
2-2-2 非本質應力 - 薄膜熱應力
2-3 X光繞射量測原理
2-3-1 Gonio scan
2-3-2 Omega scan
2-4 拉曼光譜量測原理
2-4-1 拉曼光譜簡介
2-4-2 六方最密堆積構成纖鋅礦型結構的晶格振動
第三章 研究方法及步驟
3-1 實驗流程
3-2 氮化鋁薄膜沉積
3-3 實驗量測系統
3-3-1 X光繞射量測
3-3-2 拉曼光譜量測
第四章 結果與討論
4-1 濺鍍於不同基板之AlN薄膜應變分析
4-1-1 AlN薄膜晶格應變分析
4-1-2 AlN薄膜熱應變分析
4-1-3 拉曼E2(high)聲子頻率與X光繞射量測之關係
4-2 不同厚度AlN薄膜於MgO(111)基板上的應力分析
第五章 結論
參考文獻


[1]Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminum nitride light-emitting diode with a wavelength of 210 nanometers”, Nature (London) 441(18), 325–328 (2006).
[2]D. G. Zhao, S. J. Xu, M. H. Xie, S. Y. Tong, and Hui Yang, “Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6HSiC(0001), and c-plane sapphire”, Applied Physics Letters 83, 677 (2003)
[3]F C Wang, C L Cheng, Y F Chen, C F Huang and C C Yang, “Residual thermal strain in thick GaN epifilms revealed by cross-sectional Raman scatter-ing and cathodoluminescence spectra”, Semicond. Sci. Technol. 22 (2007) 896–899
[4]莊達人, “VLSI製造技術”, 高立圖書, 2013.
[5]G. G. Stoney, “The tension of metallic films deposited by electrolysis”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 82, pp. 172-175, 1909.
[6]W. Nix, “Mechanical properties of thin films”, Metallurgical and Materi-als Transactions A, vol. 20, pp. 2217-2245, 1989.
[7]Z. B. Zhao, S. M. Yalisove, Z. U. Rek, and J. C. Bilello, “Evolution of anisotropic microstructure and residual stress in sputtered Cr films”, Journal of Applied Physics, vol. 92, pp. 7183-7192, 2002.
[8]S. Timoshenko, “Analysis of bi-metal thermostats”, Journal of the Opti-cal Society of America, vol. 11, pp. 233-255, 1925.
[9]L. Freund, “The stress distribution and curvature of a general composi-tionally graded semiconductor layer”, Journal of Crystal Growth, vol. 132, pp. 341-344, 1993.
[10]L. Freund, “Substrate curvature due to thin film mismatch strain in the nonlinear deformation range”, Journal of the Mechanics and Physics of Solids, vol. 48, pp. 1159-1174, 2000.
[11]L. Freund, “Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations”, Applied Physics Letters, vol. 74, pp. 1987-1989, 1999.
[12]Y. Zhang, “Applicability range of Stoney''s formula and modified formu-las for a film/substrate bilayer”, Journal of Applied Physics, vol. 99, pp. 053513, 2006.
[13]A. Mezin, “Coating internal stress measurement through the curvature method: A geometry-based criterion delimiting the relevance of Stoney''s formu-la”, Surface and Coatings Technology, vol. 200, pp. 5259-5267, 2006.
[14]C. Hsueh, “Modeling of elastic deformation of multilayers due to residual stresses and external bending”, Journal of Applied Physics, vol. 91, pp. 9652-9656, 2002.
[15]X. Feng, Y. Huang, and A. Rosakis, “Multi-layer thin films/substrate sys-tem subjected to non-uniform misfit strains”, International Journal of Solids and Structures, vol. 45, pp. 3688-3698, 2008.
[16]Y. Hu and W. Huang, “Elastic and elastic-plastic analysis of multilayer thin films: Closed-form solutions”, Journal of Applied Physics, vol. 96, pp. 4154-4160, 2004.
[17] A. Boe, A. Safi, M. Coulombier, D. Fabregue, T. Pardoen, and J. P. Raskin, “MEMS-based microstructures for nanomechanical characterization of thin films”, Smart Materials and Structures, vol. 18, pp. 115018, 2009.
[18]A. Reddy, H. Kahn, and A. H. Heuer, “A MEMS-based evaluation of the mechanical properties of metallic thin films”, Journal of Microelectromechani-cal Systems, vol. 16, pp. 650-658, 2007.
[19]J. Zang and F. Liu, “Theory of bending of Si nanocantilevers induced by molecular adsorption: a modified Stoney formula for the calibration of nano-mechanochemical sensors”, Nanotechnology, vol. 18, pp. 405501, 2007.
[20]D. J. Li, M. Tan, G. Q. Liu, H. Liu, and X. Sun, “Preparation and charac-terization of ZrB2/AlN multilayers by N+ beam assisted deposition”, Surface and Coatings Technology, vol. 205, pp. 3791-3797, 2011.
[21]R. C. Hibbeler, “Mechanics of Materials”, 5th edition, Prentice Hall, 2003.
[22]V. Darakchieva, T. Paskova, M. Schubert, H. Arwin, P. P. Paskov, B. Monemar, D. Hommel, M. Heuken, J. Off, F. Scholz, B. A. Haskell, P. T. Fini, J. S. Speck, and S. Nakamura, “Anisotropic strain and phonon deformation potentials in GaN”, Phys. Rev. B 75, 195217 (2007).
[23]S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, Appl. Phys. Lett. 70, 420 (1997).
[24]T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yama-shita, K. Nishino, L. T. Romano, and S. Sakai, Jpn. J. Appl. Phys. 37, L398 (1998).
[25]N. G. Weimann, L. F. Eastman, D. Doppalpudi, H. M. Ng, and T. D. Moustakas, J. Appl. Phys. 83, 3656(1998).
[26]V. Lebedev, F. M. Morales, H. Romanus, S. Krischok, G. Ecke, V. Ci-malla, M. Himmerlick, T. Stauden, D. Cengher, and O. Ambacher, J. Appl. Phys. 98, 093508 (2005).
[27]Jozef Keckes, “Simultaneous determination of experimental elastic and thermal strains in thin films”,J. Appl. Cryst. (2005). 38, 311–318
[28]林麗娟, “X光繞射原理及其應用”, 工業材料86期, 1994.02
[29]鄭信民, 林麗娟, “X光繞射應用簡介”, 工業材料181期, 2002.01
[30]Shen S. C. 2002 Semiconductor Spectroscopy and Optical Properties (Beijing: Scientific)
[31]Cheng G X 2001 Raman and Brillouin Scattering —Principles and Ap-plications (Beijing: Scientific)
[32]Ashraful Ghani Bhuiyan, Akihiro Hashimoto, and Akio Yamamoto, J. Appl. Phys. 94, 2779 (2003).
[33]F C Wang, C L Cheng, Y F Chen, C F Huang and C C Yang, “Residual thermal strain in thick GaN epifilms revealed by cross-sectional Raman scatter-ing and cathodoluminescence spectra”, Semiconductor Science and Technology, Volume 22, Number 8, 12 July 2007.
[34]S. A. Holt, C. F. Jones, G. S. Watson, A. Crossley, C. Johnston, C. J. Sofield, and S. Myhra, “Surface modification of MgO substrates from aque-ous exposure: an atomic force microscopy study ”, Thin Solid Films 292, 96–102 (1997).
[35]M. P. Delplancke-Ogletree, M. Ye, R. Winand, J. F. de Marneffe, and R. Deltour, “Influences of thermal annealing and humidity exposure on surface structure of (100) single-crystal MgO substrate”, Journal of Materials Research 14(5), 2133–2137 (1999).
[36]T. Minamikawa, T. Suzuki, Y. Yonezawa, K. Segawa, A. Morimoto, T. Shimizu, “Annealing Temperature Dependence of MgO Substrates on the Quality of YBa2Cu3Ox Films Prepared by Pulsed Laser Ablation”, Japanese Journal of Applied Physics 34, 4038–4042 (1995).
[37]Annick F. Dégardin, Frédéric Houzé, and Alain J. Kreisler, “MgO Sub-strate Surface Optimization for YBaCuO Thin Film Growth”, IEEE Transac-tions on Applied Superconductivity 13(2), 2721–2724 (2003).
[38]T. Awaji, K. Sakuta, Y. Sakaguchi, and T. Kobayashi, “Improved Sur-face Crystallinity of MgO Crystal Substrate through Annealing in Oxygen At-mosphere”, Japanese Journal of Applied Physics 31, L642–645 (1992).
[39]D. K. Aswal, K. P. Muthe, Shilpa Tawde, Sipra Chodhury, N. Bagkar, Ajay Singh, S. K. Gupta, and J. V. Yakhmi, “XPS and AFM investigations of annealing induced surface modifications of MgO single crystals”, Journal of Crystal Growth 236, 661–666 (2002).
[40]H. J. Trodahl, F. Martin, P. Muralt, and N. Setter, “Raman spectroscopy of sputtered AlN films: E 2 ( high ) biaxial strain dependence”, Applied Physics Letters 89, 061905 (2006)
[41]W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Etten-berg and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap”, J. Appl. Phys. 44, 292 (1973)
[42]Douglas D. Cannon, Jifeng Liu, Yasuhiko Ishikawa, Kazumi Wada, Da-vid T. Danielson, Samerkhae Jongthammanurak, Jurgen Michel, and Lionel C. Kimerling, “Tensile strained epitaxial Ge films on Si(100) substrates with po-tential application in L-band telecommunications”, Applied Physics Letters 84, 906 (2004)
[43]J.-M. Wagner and F. Bechstedt, “Properties of strained wurtzite GaN and AlN: Ab initio studies”, PHYSICAL REVIEW B 66, 115202 (2002)
[44]T. Prokofyeva et al., “Vibrational properties of AlN grown on (111)-oriented silicon”, PhysRevB.63.125313, 7 March 2001.
[45]A. Sarua, M. Kuball, and J. E. Van Nostrand, “Deformation potentials of the E 2 (high) phonon mode of AlN”, Applied Physics Letters 81, 1426 (2002)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top