|
[1]X. Mei, J. Ouyang, “Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature,” Carbon, vol. 49, pp. 5389-5397, 2011 [2]C. Melios, A. Centeno, A. Zurutuza, V. Panchal, C. E. Giusca, S. Spencer, S. P. Silva, O. Kazakova, “Effects of humidity on the electronic properties of graphene prepared by chemical vapour deposition,” Carbon, vol. 103, pp. 273-280, 2016 [3]A.K. Geim, “GRAPHENE: STATUS AND PROSPECTS,” Science, vol. 324, pp. 1530-1534, 2009 [4]K. S. Novoselov, V. I. Fal´ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, “A roadmap for graphene,” Nature, vol. 490, pp. 192-200, 2012 [5]Y. H. Zhao, Y. F. Zhang, S. L. Bai, “High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam,” Composites: Part A, vol. 85, pp. 148-155, 2016 [6]W. S. Hummers, R. E. Offeman, “Preparation of Graphitic Oxide,” Journal of the American Chemical Society, vol. 80, pp. 1139-1147, 1958 [7]L. Staudenmaier, “Verfahren zur Darstellung der Graphitsäure,” Berichte der deutschen chemischen Gesellschaft, vol. 31, pp. 1481-1487, 1898 [8]B. C. Brodie, “On the Atomic Weight of Graphite,” Philosophical Transactions of the Royal Society of London, vol. 149, pp. 249-259, 1859 [9]Hofmann U, Frenzel A, “The reduction of graphite oxide by hydrogen sulfide,” Kolloid-Z, vol. 68, pp. 149-151, 1934 [10]Y. Qiu, F. Guo, R. Hurt, I. Kulaots, “Explosive thermal reduction of graphene oxide-based materials: Mechanism and safety implications,” Carbon, vol. 72, pp. 215-223, 2014 [11]S. Stankovich, D. A. Dikin, R. D. Piner, K, A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, pp. 1558-1565, 2007 [12]X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, B. Wang, “Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites,” Materials and Design, vol. 94, pp. 50-60, 2016 [13]C. Y. Ho, C. C. Liang, H. W. Wang, “Investigation of low thermal reduction of graphene oxide for dye-sensitized solar cell counter electrode,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 481, pp. 222-228, 2015
[14]D.W. Lee, L. De Los Santos V., J. W. Seo, L. Leon Felix, A. BustamanteD., J. M. Cole, C. H. W.Barnes, “The structure of graphite oxide: Investigation of its surface chemical groups,” The Journal of Physical Chemistry B, vol. 114, pp. 5723-5728, 2010 [15]S. Shamaila, A. K. Leghari Sajjad, A. Iqbal, “Modifications in development of graphene oxide synthetic routes,” Chemical Engineering Journal, vol. 294, pp. 458-477, 2016 [16]R. Dong, L. Liu, “Preparation and properties of acrylic resin coating modified by functional graphene oxide,” Applied Surface Science, vol. 368, pp. 378-387, 2016 [17]C. Go´ mez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, “Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets,” Nano Letters, vol. 7, pp. 3499-3503, 2007 [18]M. M. Storm, R. E. Johnsen, P. Norby, “In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxide,” Journal of Solid State Chemistry, vol. 240, pp. 49-54, 2016 [19]X. Mei, H. Zheng, J. Ouyang, “Ultrafast reduction of graphene oxide with Zn powder in neutral and alkaline solutions at room temperature promoted by the formation of metal complexes,” Journal of Materials Chemistry, vol. 22, pp. 9109-9116, 2012 [20]R. S. Dey, S. Hajra, R. K. Sahu, C. R. Raj, M. K. Panigrahi, “A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide,” Chemical Communications, vol. 48, pp. 1787-1789, 2012 [21]S. H. Huh, “Thermal Reduction of Graphene Oxide,” INTECH Open Access Publisher, 2011 [22]S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, “Graphene-aluminum nanocomposites,” Materials Science and Engineering A, vol. 528, pp. 7933-7937, 2011 [23]Z. Hussain , L. C. Kit, “Properties and spot welding behaviour of copper-alumina composites through ball milling and mechanical alloying,” Materials and Design, vol. 29, pp. 1311-1315, 2008 [24]J. S. Benjamin, T. E. Volin, “The Mechanism of Mechanical Alloying,” Metallurgical and Materials Transactions B, vol. 5, pp.1929-1934, 1974 [25]C. Suryanarayana, “Mechanical alloying and milling,” Progress in Materials Science, vol. 46, pp. 1-184, 2001 [26]S. M. Hong, J. J. Park, E. K. Park, K. Y. Kim, J. G. Lee, M. K. Lee, C. K. Rhee, J. K. Lee, “Fabrication of titanium carbide nano-powders by a very high speed planetary ball milling with a help of process control agents,” Powder Technology, vol. 274, pp. 393-401, 2015 [27]F. Hosseini-Gourajoubi, M. Pourabdoli, D. Uner, S. Raygan, “Effect of process control agents on synthesizing nano-structured 2Mg–9Ni–Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2,” Advanced Powder Technology, vol. 26, pp. 448-453, 2015 [28]X. Liu, H. Li, C. Lu, L. Xue, Y. Yan, “Optimization of ball milling process for fabrication of α-Al2O3 based coatings via laser-assisted combustion synthesis,” Journal of the European Ceramic Society, vol. 35, pp. 577-3586, 2015 [29]J. Lee, M. Zhang, D. Bhattacharyya, Y. C. Yuan, K. Jayaraman, Y. W. Mai, “Micromechanical behavior of self-healing epoxy and hardener-loaded microcapsules by nanoindentation,” Materials Letters, vol. 76, pp. 62-65, 2012 [30]G. Leyi, Z. Wei, Z. Jing, H. Songling, “Mechanics analysis and simulation of material Brinell hardness measurement,” Measurement, vol. 44, pp. 2129-2137, 2011 [31]J.F. Song, S. Low, D. Pitchure, A. Germak, S. DeSogus, T. Polzin, H. Q. Yang, H. Ishida, “Establishing a worldwide unified Rockwell hardness scale using standard diamond indenters,” Measurement, vol. 24, pp. 197-205, 1998
[32]F. D. Lima Moreira, M. N. Kleinberg, H. F. Arruda, F. N. Costa Freitas, M. M. Valente Parente, V. H. Costa de Albuquerque, P. P. Rebouças Filho, “A novel Vickers hardness measurement technique based on Adaptive Balloon Active Contour Method,” Expert Systems With Applications, vol. 45, pp. 294-306, 2016 [33]A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, M. Nganbe, “Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened Al2O3 and SiC Armor,” Journal of Materials Science &; Technology, vol. 31, pp. 773-783, 2015 [34]D. Du, R. Fu, Y. Li, L. Jing, J. Wang, Y. Ren, K. Yang, “Modification of the Hall-Petch equation for friction-stir-processing microstructures of high-nitrogen steel,” Materials Science &; Engineering A, vol. 640, pp. 190-194, 2015 [35]N. Hansen, “Hall-Petch relation and boundary strengthening,” Scripta Materialia, vol. 51, pp. 801-806, 2004 [36]Y. Wang, H. Choo, “Influence of texture on Hall-Petch relationships in an Mg alloy,” Acta Materialia, vol. 81, pp. 83-97, 2014 [37]H. Conrad, J. Narayan, “ON THE GRAIN SIZE SOFTENING IN NANOCRYSTALLINE MATERIALS,” Scripta mater., vol. 42, pp. 1025-1030, 2000 [38]K. Srinivasulu Reddy, D. Sreedhar, K. Deepak Kumar, G. Praveen Kumar, “Role of reduced graphene oxide on mechanical-thermal properties of aluminum metal matrix nano composites,” Materials Today: Proceedings, vol. 2, pp. 1270-1275, 2015 [39]W. F. Smith and J. Hashemi, “Foundations of materials science and engineering,” Mcgraw Hill Higher Education, 5th ed, 2009 [40]X. J. Liu, Z. Z. Xu, H. Xiao, D. K. Park, K. W. Kim, Y. C. Kim, S. H. Yeon, I. S. Ahn, “The effect of process control agents and ball to powder rations on the electrochemical characteristics of mechanically alloyed SnS2 anode materials,” Powder Technology, vol. 259, pp. 117-124, 2014 [41]R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, R. Martínez-Sánchez, “Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying,” Journal of Alloys and Compounds, vol. 615, pp. 5578-5582, 2014 [42]A. Canakci, S. Ozsahin, T. Varol, “Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks,” Powder Technology, vol. 228, pp. 26-35, 2012 [43]J. Dutkiewicz, P. Ozga, W. Maziarz, J. Pstrus, B. Kania, P. Bobrowski, J. Stolarska, “Microstructure and properties of bulk copper matrix composites Strengthened with various kinds of grapheme nanoplatelets,” Materials Science &; Engineering A, vol. 628, pp. 124-134, 2015 [44]S. Sheibani, A. Ataie, S. Heshmati-Manesh, “Role of process control agent on synthesis and consolidation behavior of nano-crystalline copper produced by mechano-chemical route,” Journal of Alloys and Compounds, vol. 465, pp.78.82, 2008 [45]L.A. Yolshina, R.V. Muradymov, I.V. Korsun, G.A. Yakovlev, S.V. Smirnov, “Novel aluminum-graphene and aluminum-graphite metallic composite materials: Synthesis and properties,” Journal of Alloys and Compounds, vol. 663, pp. 449-459, 2016 [46]A. W. Burton, K. Ong, T. Rea, I. Y. Chen, “On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems ,” Microporous and Mesoporous Materials, Vol. 117, pp. 75-90, 2009 [47]D. Wang, J. Zhao, C. Xue, Y. Cao, “Finite element simulation of Vickers micro-indentation test of micro-nano-composite ceramic tool materials based on microstructure model,” Int. Journal of Refractory Metals and Hard Materials, vol. 58, pp. 34-41, 2016 [48]A. Kainiyoor, S. Ramaprabhu, “A Raman spectroscopic investigation of graphite oxide derived graphene,” AIP Advances, vol. 2, pp. 032183, 2012
[49]R. S. Rajaura, S. Srivastava, V. Sharma, P. K. Sharma, C. Lal, M. Singh, H. S. Pasania, Y. K. Vijay, “Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide,” International Journal of Hydrogen Energy, vol. 41, pp. 9454-9461, 2016 [50]M. Simsikova, “Interaction of graphene oxide with albumins: Effect of size, pH, and temperature,” Archives of Biochemistry and Biophysics, vol. 593, pp. 69-79, 2016 [51]E. C. Vermisoglou, T. Giannakopoulou, G. Romanos, M. Giannouri, N. Boukos, C. Lei, C. Lekakou, C. Trapalis, “Effect of hydrothermal reaction time and alkaline conditions on the electrochemical properties of reduced graphene oxide,” Applied Surface Science, vol. 358, pp. 100-109, 2015 [52]W. D. Yang, Y. R. Li, Y. C. Lee, “Synthesis of r-GO/TiO2composites via the UV-assisted photocatalytic reduction of graphene oxide,” Applied Surface Science, vol. 380, pp. 249-256, 2016 [53]F. F. Liu, J. Zhao, S. Wang, B. Xing, “Adsorption of sulfonamides on reduced graphene oxides as affected by pH and dissolved organic matter,” Environmental Pollution, vol. 210, pp. 85-93, 2016 [54]W. Zhang, J. Ma, D. Gao, Y. Zhou, C. Li, J. Zha, J. Zhang, “Preparation of amino-functionalized graphene oxide by Hoffman rearrangement and its performances on polyacrylate coating latex,” Progress in Organic Coatings, vol. 94, pp.9-17, 2016 [55]M. M. Lounasvuori, M. Rosillo-Lopez, C. G. Salzmann, D. J. Caruana, K. B. Holt, “The influence of acidic edge groups on the electrochemical performance of graphene nanoflakes,” Journal of Electroanalytical Chemistry, vol. 753, pp. 28-34, 2015 [56]H. Wu, W. Lu, J. J. Shao, C. Zhang, M. B. Wu, B. H. Li, Q. H. Yang, “pH-dependent size, surface chemistry and electrochemical properties of graphene oxide,” New Carbon Materials, vol. 28, pp. 327-335, 2013 [57]R. Benavente, A. Pruna, A. Borrell, M. D. Salvador, D. Pullini, F. Peñaranda-Foix, D. Busquets, “Fast route to obtain Al2O3-based nanocomposites employing grapheme oxide: Synthesis and sintering,” Materials Research Bulletin, vol. 64, pp. 245-251, 2015 [58]M. Rashad, F. Pan, Z. Yu, M. Asif, H. Lin, R. Pan, “Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with grapheme nanoplatelets,” Progress in Natural Science: Materials International, vol. 25, pp. 460-470, 2015 [59]X. Dong, K. Wang, C. Zhao, X. Qian, S. Chen, Z. Li, H. Liu, S. Dou, “Direct synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors,” Journal of Alloys and Compounds, vol. 586, pp. 745-753, 2014
[60]J. Liu, U. Khan, J. Coleman, B. Fernandez, P. Rodriguez, S. Naher, D. Brabazon, “Graphene oxide and graphene nanosheet reinforced aluminium matrix composites:Powder synthesis and prepared composite characteristics,” Materials and Design, vol. 94, pp. 87-94, 2016 [61]C. P. Samal, J. S. Parihar, D. Chaira, “The effect of milling and sintering techniques on mechanical properties of Cu–graphite metal matrix composite prepared by powder metallurgy route,” Journal of Alloys and Compounds, vol. 569, pp. 95-101, 2013 [62]S. N. Alam, L. Kumar, “Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets,” Materials Science &; Engineering A, vol. 667, pp. 16-32, 2016 [63]I. Dinaharan, R. Sathiskumar, N. Murugan, “Effect of ceramic particulate type on microstructure and properties of copper matrix composites synthesized by friction stir processing,” Journal of Materials Research and Technology, 2016 [64]A. M. Abyzov, F. M. Shakhov, A. I. Averkin, V. I. Nikolaev, “Mechanical properties of a diamond-copper composite with high thermal conductivity,” Materials and Design, vol. 87, pp. 527-539, 2015 [65]J. W. Lee, M.G. Kang, B. S. Kim, B. H. Hong, D. Whang, S. W. Hwang, “Single crystalline aluminum nanowires with ideal resistivity,” Scripta Materialia, vol. 63, pp. 1009-1012, 2010 [66]S. K. Cho, M. J. Kim, H. C. Koo, O. J. Kwon, J. J. Kim, “Low-resistivity Cu film electrodeposited with 3-N, N-dimethylaminodithiocarbamoyl-1-propanesulfonate for the application to the interconnection of electronic devices,” Thin Solid Films, vol. 520, pp. 2136-2141, 2012
|