跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 17:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅登耀
研究生(外文):Deng-Yao Lou
論文名稱:鋁/銅基複合材料添加熱還原氧化石墨烯之機械性質與材料特性研究
論文名稱(外文):Investigation of Mechanical and Material Properties on the Al/Cu Matrix for Thermally Reduced Graphene Oxide
指導教授:何青原
指導教授(外文):Ching-Yuan Ho
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:84
中文關鍵詞:氧化石墨烯熱還原氧化石墨烯金屬基複合材料
外文關鍵詞:Graphene oxideThermally reduced graphene oxidepH valuesMetal matrix composites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩大部分,首先是進行氧化石墨烯(Graphene Oxide, GO)與熱還原氧化石墨烯(Thermal Reduced Graphene Oxide, RGO)的材料特性分析,主要是利用哈默法(Hummer)以化學氧化合成的方式將石墨氧化成為GO,並以透析膜將酸鹼值為2的GO透析至pH 6,再在空氣環境下進行高溫還原,使得GO還原成RGO,將哈默法所得的pH 2與pH 6的GO與RGO進行SEM、XRD、FT-IR、Raman量測,藉以分析在不同酸鹼值下的GO與RGO的材料特性差異。第二部分為研究鋁/銅添加不同比例的RGO的機械性質分析,RGO所添加的比例為0%、0.25wt%、0.5wt%、1wt%四種條件,透過SEM觀察表面形態、XRD觀察晶體結構與晶粒尺寸、維克氏硬度(HV)分析材料硬度、熱傳導係數分析熱導率、I-V曲線分析導電率,探討添加RGO對鋁/銅的機械性質之影響。
本研究之實驗分析結果,可以觀察到由於部分官能團與酸性物質的影響,pH 2的GO材料特性相較於pH 6的GO來的差,而在RGO的部分則是因為經過高溫還原的步驟後,大部分官能團與酸性雜質受到去除,使得RGO不會受到酸鹼值之影響。而在鋁/銅添加不同比例之RGO的分析結果得知,當RGO添加的比例逐漸上升,金屬基複合材料之硬度、熱傳導與導電率都能夠有效的上升。


Graphene can be considered as a prospective material due to its excellent electrical, thermal, and mechanical properties. In this research, Graphene oxide (GO) and Reduced graphene oxide (RGO) were prepared by different pH values to investigate material properties. A modified Hummer’s method used to synthesized GO from flake-type graphite, which was then reduced by thermal reduction method. As the results, the spectrum of SEM, XRD, FT-IR, Raman showed the properties of GO in pH-6 had relatively improvement compared to pH-2. RGO didn’t affected by various pH values due to the functional group/remnant ion were removed while in high temperature thermal reduction.
Various ratio of Al/Cu-RGO composites were prepared by sintered of mechanical ball milled of metal and RGO powders. Energy-dispersive X-ray spectroscopy performed that RGO and metal powder were well-proportion mixed. SEM, XRD showed the surface structure and crystallization of composites. With increasing proportion of RGO, the composites had promotion of hardness, thermal conductivity and resistivity. The result analysis showed that RGO adjunction contributed mechanical properties of composites and proved RGO was a prominent reinforcement candidate material.


目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 石墨烯簡介 2
1.3 金屬基複合材料簡介 4
1.4 研究目的 4
第二章 文獻回顧 6
2.1 石墨烯 6
2.1.1 氧化石墨烯 6
2.1.2 還原氧化石墨烯 7
2.1.3 使用金屬之還原法 8
2.1.4 高溫還原法 9
2.2 金屬基複合材料 12
2.2.1 機械合金法(Mechanical Alloying) 12
2.2.2 進程控制劑(PCA) 14
2.3 硬度試驗 15
2.3.1 維克氏硬度試驗 16
2.3.2 晶界(Grain boundary) 16
2.4 熱傳導率 18
2.5 電阻率 19
第三章 實驗方法與步驟 20
3.1 實驗架構 20
3.2 實驗儀器設備 22
3.3 實驗藥品 23
3.4 氧化石墨烯製備 24
3.5 熱還原氧化石墨烯製備 25
3.6 鋁/銅添加不同比例RGO製備 26
3.6.1 手套箱 26
3.6.2 行星式球磨 27
3.6.3 粉末燒結 28
3.6.4 燒結樣品表面處理 30
3.7 材料特性分析 31
3.7.1 場發射掃描式電子顯微鏡 (FE-SEM) 31
3.7.2 X-ray繞射儀 (XRD) 32
3.7.3 傅立葉紅外線光譜儀 (FT-IR) 33
3.7.4 拉曼光譜儀 34
3.7.5 半導體參數分析儀(I-V Curve) 35
3.7.6 熱傳導係數量測儀 36
3.7.7 維克氏硬度試驗儀 36
第四章 結果與討論 38
4.1 石墨烯特性分析 38
4.1.1 SEM 38
4.1.2 XRD 39
4.1.3 傅立葉紅外線光譜分析 (FT-IR) 41
4.1.4 拉曼光譜分析 (Raman) 43
4.2 金屬添加還原氧化石墨烯分析 45
4.2.1 SEM 45
4.2.2 EDS 47
4.2.3 XRD 48
4.2.4 維克氏硬度分析 51
4.2.5 熱傳導係數分析 54
4.2.6 電阻值分析 57
第五章 結論 60
第六章 未來展望 61
參考文獻 62

圖目錄
圖1.1 石墨烯合成形態 3
圖2.1 氧化石墨烯結構[16] 7
圖2.2 鋅粉還原氧化石墨烯的機制[19] 8
圖2.3 不同溫度下的還原氧化石墨烯XRD[20] 10
圖2.4 不同溫度下之Raman的ID/IG比值[20] 11
圖2.5 不同溫度下的FT-IR[20] 11
圖2.6 高能量球磨示意圖[24] 13
圖2.7 研磨時間與粉末平均尺寸示意圖 14
圖2.8 粉末研磨凝聚現象 15
圖2.9 材料晶界的SEM [35] 17
圖2.10 硬度與晶粒尺寸關係圖[37] 18
圖3.1 石墨烯分析架構 20
圖3.2 鋁/銅基複合材料分析架構 21
圖3.3 氧化石墨烯製程流程圖 25
圖3.4 熱還原氧化石墨烯之製程示意圖 26
圖3.5 手套箱 27
圖3.6 行星式球磨機 28
圖3.7 不銹鋼模具 29
圖3.8 場發射掃描式電子顯微鏡(FE-SEM) 31
圖3.9 X光繞射儀(D2 PHASER) 33
圖3.10 傅立葉紅外線光譜儀(JASCO 4200) 34
圖3.11 拉曼光譜儀(HORIBA IHR550) 34
圖3.12 半導體參數分析儀(HP 4145B) 35
圖3.13 熱傳導係數量測儀(LFA-447) 36
圖3.14 維克氏硬度試驗儀 37
圖3.15 維氏硬度計算示意圖 37
圖4.1 GO (a)pH 2 (b)pH 6與RGO (c)pH 2 (d)pH 6之SEM 39
圖4.2 不同pH值的石墨烯XRD 41
圖4.3 FT-IR 42
圖4.4 Raman光譜分析 44
圖4.5 Al添加(a)0% (b)0.25% (c)0.5% (d)1%的RGO之SEM 46
圖4.6 Cu添加(a)0% (b)0.25% (c)0.5% (d)1%的RGO之SEM 46
圖4.7 Cu添加1% RGO之EDS (a)Cu (b)C 成分分佈圖 47
圖4.8 Al添加不同比例之RGO的XRD 49
圖4.9 Al添加不同比例之RGO的晶粒尺寸 50
圖4.10 Cu添加不同比例之RGO的XRD 50
圖4.11 Cu添加不同比例之RGO的晶粒尺寸 51
圖4.13 Cu添加不同比例之RGO的硬度分析 53
圖4.14 Al添加不同比例之RGO的熱傳導分析 55
圖4.15 Cu添加不同比例之RGO的熱傳導分析 56
圖4.16 Al添加不同比例之RGO的I-V曲線 58
圖4.17 Cu添加不同比例之RGO的I-V曲線 59

表目錄
表1 實驗儀器 22
表2 實驗藥品 23
表3 Al添加不同比例之RGO的密度分析 55
表 4 Cu添加不同比例之RGO的密度分析 56
表5 Al添加不同比例之RGO的電阻率 59
表6 Cu添加不同比例之RGO的電阻率 59



[1]X. Mei, J. Ouyang, “Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature,” Carbon, vol. 49, pp. 5389-5397, 2011
[2]C. Melios, A. Centeno, A. Zurutuza, V. Panchal, C. E. Giusca, S. Spencer, S. P. Silva, O. Kazakova, “Effects of humidity on the electronic properties of graphene prepared by chemical vapour deposition,” Carbon, vol. 103, pp. 273-280, 2016
[3]A.K. Geim, “GRAPHENE: STATUS AND PROSPECTS,” Science, vol. 324, pp. 1530-1534, 2009
[4]K. S. Novoselov, V. I. Fal´ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, “A roadmap for graphene,” Nature, vol. 490, pp. 192-200, 2012
[5]Y. H. Zhao, Y. F. Zhang, S. L. Bai, “High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam,” Composites: Part A, vol. 85, pp. 148-155, 2016
[6]W. S. Hummers, R. E. Offeman, “Preparation of Graphitic Oxide,” Journal of the American Chemical Society, vol. 80, pp. 1139-1147, 1958
[7]L. Staudenmaier, “Verfahren zur Darstellung der Graphitsäure,” Berichte der deutschen chemischen Gesellschaft, vol. 31, pp. 1481-1487, 1898
[8]B. C. Brodie, “On the Atomic Weight of Graphite,” Philosophical Transactions of the Royal Society of London, vol. 149, pp. 249-259, 1859
[9]Hofmann U, Frenzel A, “The reduction of graphite oxide by hydrogen sulfide,” Kolloid-Z, vol. 68, pp. 149-151, 1934
[10]Y. Qiu, F. Guo, R. Hurt, I. Kulaots, “Explosive thermal reduction of graphene oxide-based materials: Mechanism and safety implications,” Carbon, vol. 72, pp. 215-223, 2014
[11]S. Stankovich, D. A. Dikin, R. D. Piner, K, A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, pp. 1558-1565, 2007
[12]X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, B. Wang, “Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites,” Materials and Design, vol. 94, pp. 50-60, 2016
[13]C. Y. Ho, C. C. Liang, H. W. Wang, “Investigation of low thermal reduction of graphene oxide for dye-sensitized solar cell counter electrode,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 481, pp. 222-228, 2015

[14]D.W. Lee, L. De Los Santos V., J. W. Seo, L. Leon Felix, A. BustamanteD., J. M. Cole, C. H. W.Barnes, “The structure of graphite oxide: Investigation of its surface chemical groups,” The Journal of Physical Chemistry B, vol. 114, pp. 5723-5728, 2010
[15]S. Shamaila, A. K. Leghari Sajjad, A. Iqbal, “Modifications in development of graphene oxide synthetic routes,” Chemical Engineering Journal, vol. 294, pp. 458-477, 2016
[16]R. Dong, L. Liu, “Preparation and properties of acrylic resin coating modified by functional graphene oxide,” Applied Surface Science, vol. 368, pp. 378-387, 2016
[17]C. Go´ mez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, “Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets,” Nano Letters, vol. 7, pp. 3499-3503, 2007
[18]M. M. Storm, R. E. Johnsen, P. Norby, “In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxide,” Journal of Solid State Chemistry, vol. 240, pp. 49-54, 2016
[19]X. Mei, H. Zheng, J. Ouyang, “Ultrafast reduction of graphene oxide with Zn powder in neutral and alkaline solutions at room temperature promoted by the formation of metal complexes,” Journal of Materials Chemistry, vol. 22, pp. 9109-9116, 2012
[20]R. S. Dey, S. Hajra, R. K. Sahu, C. R. Raj, M. K. Panigrahi, “A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide,” Chemical Communications, vol. 48, pp. 1787-1789, 2012
[21]S. H. Huh, “Thermal Reduction of Graphene Oxide,” INTECH Open Access Publisher, 2011
[22]S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, “Graphene-aluminum nanocomposites,” Materials Science and Engineering A, vol. 528, pp. 7933-7937, 2011
[23]Z. Hussain , L. C. Kit, “Properties and spot welding behaviour of copper-alumina composites through ball milling and mechanical alloying,” Materials and Design, vol. 29, pp. 1311-1315, 2008
[24]J. S. Benjamin, T. E. Volin, “The Mechanism of Mechanical Alloying,” Metallurgical and Materials Transactions B, vol. 5, pp.1929-1934, 1974
[25]C. Suryanarayana, “Mechanical alloying and milling,” Progress in Materials Science, vol. 46, pp. 1-184, 2001
[26]S. M. Hong, J. J. Park, E. K. Park, K. Y. Kim, J. G. Lee, M. K. Lee, C. K. Rhee, J. K. Lee, “Fabrication of titanium carbide nano-powders by a very high speed planetary ball milling with a help of process control agents,” Powder Technology, vol. 274, pp. 393-401, 2015
[27]F. Hosseini-Gourajoubi, M. Pourabdoli, D. Uner, S. Raygan, “Effect of process control agents on synthesizing nano-structured 2Mg–9Ni–Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2,” Advanced Powder Technology, vol. 26, pp. 448-453, 2015
[28]X. Liu, H. Li, C. Lu, L. Xue, Y. Yan, “Optimization of ball milling process for fabrication of α-Al2O3 based coatings via laser-assisted combustion synthesis,” Journal of the European Ceramic Society, vol. 35, pp. 577-3586, 2015
[29]J. Lee, M. Zhang, D. Bhattacharyya, Y. C. Yuan, K. Jayaraman, Y. W. Mai, “Micromechanical behavior of self-healing epoxy and hardener-loaded microcapsules by nanoindentation,” Materials Letters, vol. 76, pp. 62-65, 2012
[30]G. Leyi, Z. Wei, Z. Jing, H. Songling, “Mechanics analysis and simulation of material Brinell hardness measurement,” Measurement, vol. 44, pp. 2129-2137, 2011
[31]J.F. Song, S. Low, D. Pitchure, A. Germak, S. DeSogus, T. Polzin, H. Q. Yang, H. Ishida, “Establishing a worldwide unified Rockwell hardness scale using standard diamond indenters,” Measurement, vol. 24, pp. 197-205, 1998

[32]F. D. Lima Moreira, M. N. Kleinberg, H. F. Arruda, F. N. Costa Freitas, M. M. Valente Parente, V. H. Costa de Albuquerque, P. P. Rebouças Filho, “A novel Vickers hardness measurement technique based on Adaptive Balloon Active Contour Method,” Expert Systems With Applications, vol. 45, pp. 294-306, 2016
[33]A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, M. Nganbe, “Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened Al2O3 and SiC Armor,” Journal of Materials Science &; Technology, vol. 31, pp. 773-783, 2015
[34]D. Du, R. Fu, Y. Li, L. Jing, J. Wang, Y. Ren, K. Yang, “Modification of the Hall-Petch equation for friction-stir-processing microstructures of high-nitrogen steel,” Materials Science &; Engineering A, vol. 640, pp. 190-194, 2015
[35]N. Hansen, “Hall-Petch relation and boundary strengthening,” Scripta Materialia, vol. 51, pp. 801-806, 2004
[36]Y. Wang, H. Choo, “Influence of texture on Hall-Petch relationships in an Mg alloy,” Acta Materialia, vol. 81, pp. 83-97, 2014
[37]H. Conrad, J. Narayan, “ON THE GRAIN SIZE SOFTENING IN NANOCRYSTALLINE MATERIALS,” Scripta mater., vol. 42, pp. 1025-1030, 2000
[38]K. Srinivasulu Reddy, D. Sreedhar, K. Deepak Kumar, G. Praveen Kumar, “Role of reduced graphene oxide on mechanical-thermal properties of aluminum metal matrix nano composites,” Materials Today: Proceedings, vol. 2, pp. 1270-1275, 2015
[39]W. F. Smith and J. Hashemi, “Foundations of materials science and engineering,” Mcgraw Hill Higher Education, 5th ed, 2009
[40]X. J. Liu, Z. Z. Xu, H. Xiao, D. K. Park, K. W. Kim, Y. C. Kim, S. H. Yeon, I. S. Ahn, “The effect of process control agents and ball to powder rations on the electrochemical characteristics of mechanically alloyed SnS2 anode materials,” Powder Technology, vol. 259, pp. 117-124, 2014
[41]R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, R. Martínez-Sánchez, “Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying,” Journal of Alloys and Compounds, vol. 615, pp. 5578-5582, 2014
[42]A. Canakci, S. Ozsahin, T. Varol, “Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks,” Powder Technology, vol. 228, pp. 26-35, 2012
[43]J. Dutkiewicz, P. Ozga, W. Maziarz, J. Pstrus, B. Kania, P. Bobrowski, J. Stolarska, “Microstructure and properties of bulk copper matrix composites Strengthened with various kinds of grapheme nanoplatelets,” Materials Science &; Engineering A, vol. 628, pp. 124-134, 2015
[44]S. Sheibani, A. Ataie, S. Heshmati-Manesh, “Role of process control agent on synthesis and consolidation behavior of nano-crystalline copper produced by mechano-chemical route,” Journal of Alloys and Compounds, vol. 465, pp.78.82, 2008
[45]L.A. Yolshina, R.V. Muradymov, I.V. Korsun, G.A. Yakovlev, S.V. Smirnov, “Novel aluminum-graphene and aluminum-graphite metallic composite materials: Synthesis and properties,” Journal of Alloys and Compounds, vol. 663, pp. 449-459, 2016
[46]A. W. Burton, K. Ong, T. Rea, I. Y. Chen, “On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems ,” Microporous and Mesoporous Materials, Vol. 117, pp. 75-90, 2009
[47]D. Wang, J. Zhao, C. Xue, Y. Cao, “Finite element simulation of Vickers micro-indentation test of micro-nano-composite ceramic tool materials based on microstructure model,” Int. Journal of Refractory Metals and Hard Materials, vol. 58, pp. 34-41, 2016
[48]A. Kainiyoor, S. Ramaprabhu, “A Raman spectroscopic investigation of graphite oxide derived graphene,” AIP Advances, vol. 2, pp. 032183, 2012


[49]R. S. Rajaura, S. Srivastava, V. Sharma, P. K. Sharma, C. Lal, M. Singh, H. S. Pasania, Y. K. Vijay, “Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide,” International Journal of Hydrogen Energy, vol. 41, pp. 9454-9461, 2016
[50]M. Simsikova, “Interaction of graphene oxide with albumins: Effect of size, pH, and temperature,” Archives of Biochemistry and Biophysics, vol. 593, pp. 69-79, 2016
[51]E. C. Vermisoglou, T. Giannakopoulou, G. Romanos, M. Giannouri, N. Boukos, C. Lei, C. Lekakou, C. Trapalis, “Effect of hydrothermal reaction time and alkaline conditions on the electrochemical properties of reduced graphene oxide,” Applied Surface Science, vol. 358, pp. 100-109, 2015
[52]W. D. Yang, Y. R. Li, Y. C. Lee, “Synthesis of r-GO/TiO2composites via the UV-assisted photocatalytic reduction of graphene oxide,” Applied Surface Science, vol. 380, pp. 249-256, 2016
[53]F. F. Liu, J. Zhao, S. Wang, B. Xing, “Adsorption of sulfonamides on reduced graphene oxides as affected by pH and dissolved organic matter,” Environmental Pollution, vol. 210, pp. 85-93, 2016
[54]W. Zhang, J. Ma, D. Gao, Y. Zhou, C. Li, J. Zha, J. Zhang, “Preparation of amino-functionalized graphene oxide by Hoffman rearrangement and its performances on polyacrylate coating latex,” Progress in Organic Coatings, vol. 94, pp.9-17, 2016
[55]M. M. Lounasvuori, M. Rosillo-Lopez, C. G. Salzmann, D. J. Caruana, K. B. Holt, “The influence of acidic edge groups on the electrochemical performance of graphene nanoflakes,” Journal of Electroanalytical Chemistry, vol. 753, pp. 28-34, 2015
[56]H. Wu, W. Lu, J. J. Shao, C. Zhang, M. B. Wu, B. H. Li, Q. H. Yang, “pH-dependent size, surface chemistry and electrochemical properties of graphene oxide,” New Carbon Materials, vol. 28, pp. 327-335, 2013
[57]R. Benavente, A. Pruna, A. Borrell, M. D. Salvador, D. Pullini, F. Peñaranda-Foix, D. Busquets, “Fast route to obtain Al2O3-based nanocomposites employing grapheme oxide: Synthesis and sintering,” Materials Research Bulletin, vol. 64, pp. 245-251, 2015
[58]M. Rashad, F. Pan, Z. Yu, M. Asif, H. Lin, R. Pan, “Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with grapheme nanoplatelets,” Progress in Natural Science: Materials International, vol. 25, pp. 460-470, 2015
[59]X. Dong, K. Wang, C. Zhao, X. Qian, S. Chen, Z. Li, H. Liu, S. Dou, “Direct synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors,” Journal of Alloys and Compounds, vol. 586, pp. 745-753, 2014

[60]J. Liu, U. Khan, J. Coleman, B. Fernandez, P. Rodriguez, S. Naher, D. Brabazon, “Graphene oxide and graphene nanosheet reinforced aluminium matrix composites:Powder synthesis and prepared composite characteristics,” Materials and Design, vol. 94, pp. 87-94, 2016
[61]C. P. Samal, J. S. Parihar, D. Chaira, “The effect of milling and sintering techniques on mechanical properties of Cu–graphite metal matrix composite prepared by powder metallurgy route,” Journal of Alloys and Compounds, vol. 569, pp. 95-101, 2013
[62]S. N. Alam, L. Kumar, “Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets,” Materials Science &; Engineering A, vol. 667, pp. 16-32, 2016
[63]I. Dinaharan, R. Sathiskumar, N. Murugan, “Effect of ceramic particulate type on microstructure and properties of copper matrix composites synthesized by friction stir processing,” Journal of Materials Research and Technology, 2016
[64]A. M. Abyzov, F. M. Shakhov, A. I. Averkin, V. I. Nikolaev, “Mechanical properties of a diamond-copper composite with high thermal conductivity,” Materials and Design, vol. 87, pp. 527-539, 2015
[65]J. W. Lee, M.G. Kang, B. S. Kim, B. H. Hong, D. Whang, S. W. Hwang, “Single crystalline aluminum nanowires with ideal resistivity,” Scripta Materialia, vol. 63, pp. 1009-1012, 2010
[66]S. K. Cho, M. J. Kim, H. C. Koo, O. J. Kwon, J. J. Kim, “Low-resistivity Cu film electrodeposited with 3-N, N-dimethylaminodithiocarbamoyl-1-propanesulfonate for the application to the interconnection of electronic devices,” Thin Solid Films, vol. 520, pp. 2136-2141, 2012


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 以 RAFT活自由基溶液聚合法合成高分子接枝之氧化石墨烯及熱脫層氧化石墨烯及探討其對乙烯基酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響
2. 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對乙烯基酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響
3. 以 RAFT活自由基溶液聚合法合成高分子接枝之氧化石墨烯及熱脫層氧化石墨烯及探討其對環氧樹脂之聚合固化樣品微觀型態結構、体積收縮、機械性質、熱傳導及導電性質的影響。
4. 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對環氧樹脂之聚合固化反應動力、玻璃轉移溫度、X光散射特性、聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響
5. 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對不飽和聚酯樹脂之聚合固化樣品微觀型態結構、体積收縮、機械性質、熱傳導及導電性質的影響
6. 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對環氧樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響
7. 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對乙烯基酯樹脂之体積收縮、機械性質、微觀型態結構、及X光散射特性之影響
8. 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討奈米級及次微米級核殼型橡膠添加劑、無機二氧化矽核殼型顆粒、氧化石墨烯及熱脫層氧化石墨烯及反應型微膠顆粒對乙烯基酯樹脂之體積收縮、機械性質、微觀型態結構及X光散射特性之影響
9. 由元素矽水解法合成無機二氧化矽奈米顆粒及探討奈米級及次微米級核殼型橡膠添加劑、無機二氧化矽顆粒、矽烷接枝及高分子接枝之氧化石墨烯及熱脫層氧化石墨烯、及反應型微膠顆粒對乙烯基酯樹脂之聚合固化反應動力、玻璃轉移溫度、及X光散射特性之影響
10. 由元素矽水解法合成無機二氧化矽奈米顆粒及探討矽烷接 枝二氧化矽顆粒、反應性微膠顆粒、與矽烷接枝及高分子 接枝之氧化石墨烯及熱脫層氧化石墨烯對不飽和聚酯樹脂 之聚合固化反應動力、玻璃轉移溫度、及 X 光散射特性之 影響
11. 由元素矽水解法合成無機二氧化矽奈米顆粒及探討矽烷接枝二氧化矽顆粒、反應性微膠顆粒與矽烷接枝及高分子接枝之氧化石墨烯及熱脫層氧化石墨烯對乙烯基酯樹脂之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響
12. 由元素矽水解法合成無機二氧化矽奈米顆粒及探討矽烷接枝二氧化矽顆粒、核殼型橡膠、反應性微膠顆粒、與矽烷接枝及高分子接枝之氧化石墨烯及熱脫層氧化石墨烯對環氧樹脂之聚合固化反應動力、玻璃轉移溫度、及X光散射特性之影響
13. 由元素矽水解法合成無機二氧化矽奈米顆粒及探討核殼型橡膠、無機二氧化矽顆粒、矽烷接枝及高分子接枝之氧化石墨烯及熱脫層氧化石墨烯對乙烯基酯樹脂之聚合固化反應動力及玻璃轉移溫度之影響
14. 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對環氧樹脂之聚合固化反應動力、玻璃轉移溫度、X光散射特性、聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響
15. 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對環氧樹脂之聚合固化樣品微觀型態結構、体積收縮、機械性質、熱傳導及導電性質的影響
 
無相關期刊