跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫浩倫
研究生(外文):HAO-LUN SUN
論文名稱:河川底泥中壬基酚在不同pH值與黃酸及腐植酸之相互反應
論文名稱(外文):Reactions of Fulvic Acid and Humic Acid with Nonyphenol in River Sediment at Different pH
指導教授:張簡水紋張簡水紋引用關係
指導教授(外文):SHUI-WEN CHANG CHIEN
口試委員:陳守泓莊順興
口試委員(外文):SHOU-HUNG CHENSHUN-HSING CHUANG
口試日期:2016-07-04
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:114
中文關鍵詞:壬基酚腐植化物質腐植酸黃酸動力學熱力學
外文關鍵詞:NonylphenolHumic SubstanceHumic AcidFulvic AcidDynamicsThermodynamics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:455
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:1
壬基酚 (nonylphenol, NP)在環境中無所不在,因結構式與雌性激素類似,進入人體後會導致人體雌激素被取代,進而影響人體健康,則壬基酚 (NP)具有高潛勢力之生物內分泌干擾物質,被稱之為環境荷爾蒙。壬基酚 (NP)屬於疏水性 (hydrophobicity)有機污染物 (log Kow=4.48),易與底泥中腐植化物質 (humic substance, HS)產生鍵結,尤其是水溶性腐植酸 (humic acid, HA)及黃酸 (fulvic acid, FA)。本研究添加壬基酚 (NP) 於底泥中,在利用0.1 M HCL及0.1 M NaOH調節其pH值為4.00、7.00、9.00,再分別添加0.5%之腐植酸 (HA) 及黃酸 (FA)。於室溫下測定反應系統中壬基酚 (NP) 腐植酸 (HA) 與黃酸 (FA)及的吸附鍵結反應。以動力學在不同pH值下,探討水體中pH值不同是否會導致底泥中有機質吸附效果及釋出率是否會受到影響。

  由研究指出,底泥對壬基酚 (NP)的吸附效果在0-10天為最快,15-20天時趨近於平緩,則有添加腐植化物質 (HS)的處理組,吸附效果比未添加腐植化物質來的好,則又以添加黃酸 (FA)時吸附效果為最佳;調整pH值部分,以pH值為9.00時,能助於吸附壬基酚 (NP),顯示出底泥在鹼性條件下能有助於吸附較多的壬基酚 (NP)。整體吸附曲線,偏向於二階的動力學反應,表示反應速率與壬基酚 (NP)濃度的平方成正比。則熱力學較符合Freundlich及Dubinin-Radushkevich兩條等溫吸附模式,說明此吸附模式屬多層吸附及物理性之吸附。因此,河川環境中在鹼性條件下且含較高的腐植化物質 (HS),能使壬基酚 (NP)的釋出率較低。

Nonylphenol (NP) is ubiquitous in environment. In human body, it substitutes female estrogen with easy for the structural similarity and damage human health. NP is a potent biological endocrine disrupting chemical, an environmental hormone. Being a hydrophobic organic compound (log Kow =4.48), it bonds easily with sediment humic substances, especially water-soluble humic acid and fulvic acid. This study mixes in NP in the stream sediment, which is adjusted with 0.1 M HCL and 0.1 M NaOH for pH to 4.00, 7.00 and 9.00, then, adds in 0.5% humic acid and fulvic acid respectively for each test sample of pH level. Under room temperature, the experiment is to determine the bonding forms and adsorption between NP and two acids. The experiment aims to explore the pH as a possible master variable affecting the reaction kinetics and the equilibrium in adsorption and releasing of NP.

Experiment shows sediment adsorbs NP rapidly in period 0-10 days then taps off to flat in 15-20 days. Addition of humic substance, especially fluvic acis, enhances the adsorption ability. For the pH adjustment, the data at pH 9 is in the lead, implying basic condition is preferred in the entire system. Overall adsorption curve is biased in favor of second-order kinetics, exhibiting the reaction rate is proportional to the square of the NP concentration. This study concludes that a river environment under basic condition and high level of humic substance is capable to retain NP and release little of it.

目錄
摘要 I
Abstract III
致謝 IV
目錄 V
表目錄 VII
圖目錄 IX
第一章 前言 1
1.1研究緣起 1
1.2研究目的 3
1.3研究架構圖 4
第二章 文獻回顧 5
2.1壬基酚來源 5
2.2壬基酚之特性 6
2.3環境中壬基酚之分布途徑及影響 7
2.4腐植化物質對壬基酚之影響 12
2.5壬基酚在水體中生物降解 18
2.6壬基酚對生物之影響 20
第三章 材料與方法 22
3.1 試驗底泥及石英砂 22
3.1.1 樣品採集及處理 22
3.1.2供試污染底泥及石英砂配製 24
3.1.3腐植化物質之萃取與純化 25
3.1.4 儀器與藥品 28
3.2實驗方法 31
3.2.1底泥及石英砂基本性質分析 31
3.2.2配製污染底泥及石英砂之回收率 34
3.2.3腐植化物質之組成特性分析 35
3.2.4壬基酚與腐植化物質相互反應 37
3.2.5 HPLC定量分析 40
3.2.6壬基酚標準品檢量線之建立 41
第四章 結果與討論 43
4.1底泥基本性質 43
4.2底泥及石英砂中壬基酚回收率 44
4.3腐植質分析組成特性 45
4.3.1腐植化物質的C/N比 45
4.3.2黃酸與腐植酸之官能基差異 46
4.4腐植化物質與壬基酚於底泥鍵結之官能基 48
4.5不同濃度之壬基酚污染物吸附降解效果 52
4.5.1配製壬基酚污染濃度50 mg kg-1 52
4.5.2配製壬基酚污染濃度100 mg kg-1 58
4.5.3配製壬基酚污染濃度150 mg kg-1 64
4.5.4配製壬基酚污染濃度200 mg kg-1 70
4.5.5配製壬基酚污染濃度250 mg kg-1 76
4.5.6配製壬基酚污染濃度300 mg kg-1 82
4.6等溫吸附平衡 88
第五章 結論與建議 100
參考文獻 102
附錄 109

表目錄
表2-1壬基酚物化特性 7
表2-2台灣環保署列管之疑似環境荷爾蒙物質 11
表2-3土壤中有機質 (SOM)及腐植物質定義 13
表2-4底泥及土壤腐植化物質之元素組成 15
表3-1所使用之材料與藥品 29
表3-2所使用之儀器廠牌與型號 30
表3-3 HPLC分析條件 40
表4-1底泥基本性質分析表 43
表4-2大里溪底泥河川壬基酚含量 44
表4-3石英砂中壬基酚回收率 44
表4-4底泥中壬基酚之回收率 45
表4-5 FT-IR 光譜主要吸收峰之鑑識 51
表4-6壬基酚污染濃度為50 MG KG-1之動力學 53
表4-7壬基酚污染濃度為100 MG KG-1之動力學 59
表4-8壬基酚污染濃度150 MG KG-1之動力學 65
表4-9壬基酚污染濃度200 MG KG-1之動力學 71
表4-10壬基酚污染濃度250 MG KG-1之動力學 77
表4-11壬基酚污染濃度300 MG KG-1之動力學 83
表4-12污染底泥對壬基酚在PH 4.00、PH 7.00、PH 9.00之等溫吸附模式推導 97
表4-13污染底泥添加腐植酸於污染底泥對壬基酚在PH 4.00、PH 7.00、PH 9.00之等溫吸附模式推導 98
表4-14污染底泥添加黃酸於污染底泥對壬基酚在PH 4.00、PH 7.00、PH 9.00之等溫吸附模式推導 99

圖目錄
圖2-1 NPNEO 於環境分布示意圖 9
圖2-2壬基酚與雌性激素化學結構 10
圖2-2腐植酸結構圖 16
圖3-1腐植酸 (HA)及黃酸 (FA)之萃取及純化之詳細流程 27
圖 3-3 土壤質地分類三角圖 34
圖3-4配製污染底泥之示意圖 35
圖3-5三角燒瓶相互反應組。 38
圖3-6壬基酚滯留時間 42
圖3-7壬基酚之檢量線 42
圖4-1腐植酸之官能基 47
圖4-2黃酸之官能基 48
圖4-3 (A)腐植酸、(B) 底泥添加腐植酸1小時、(C)底泥添加腐植酸30天 50
圖4-4 (A)黃酸、(B) 底泥添加黃酸1小時、(C)底泥添加黃酸30天 50
圖4-7配置壬基酚污染濃度50 MG KG-1整體趨勢圖 52
圖4-8壬基酚於底泥之0-30天於 (A) PH 4.00、 (B) PH 7.00、 (C) PH 9.00二階動力學反應 55
圖4-9壬基酚與腐植酸 (HA)添加於底泥之0-30天於 (A) PH 4.00、 (B) PH 7.00、 (C) PH 9.00二階動力學反應 56
圖4-10壬基酚與黃酸 (FA)添加於底泥之0-30天於 (A) PH 4.00、 (B) PH 7.00、 (C) PH 9.00二階動力學反應 57
圖4-11配製壬基酚污染濃度100 MG KG-1整體趨勢圖 58
圖4-12壬基酚於底泥之0-30天於 (A) PH 4.00、(B) PH 7.00、(C) PH 9.00二階動力學反應 61
圖4-13壬基酚與腐植酸 (HA)添加於底泥之0-30天於 (A) PH 4.00、(B) PH 7.00、(C) PH 9.00二階動力學反應 62
圖4-14壬基酚與黃酸 (FA)添加於底泥之0-30天於 (A) PH 4.00、(B) PH 7.00、(C) PH 9.00二階動力學反應 63
圖4-15配製壬基酚污染濃度150 MG KG-1整體趨勢圖 64
圖4-16壬基酚於底泥之0-30天於 (A) PH 4.00、(B) PH 9.00二階動力學反應 67
圖4-17壬基酚與腐植酸 (HA)底泥之0-30天於 (A) PH 4.00、(B) PH 9.00二階動力學反應 68
圖4-18壬基酚與黃酸 (FA)底泥之0-30天於 (A) PH 4.00、(B) PH 9.00二階動力學反應 69
圖4-19配製壬基酚污染濃度200 MG KG-1整體趨勢圖 70
圖4-20壬基酚於底泥之0-30天於 (A) PH 4.00、 (B) PH 7.00、 (C) PH 9.00二階動力學反應 73
圖4-21壬基酚與腐植酸 (HA)添加於底泥之0-30天於 (A) PH 4.00、 (B) PH 7.00、(C) PH 9.00二階動力學反應 74
圖4-22壬基酚與黃酸 (FA)添加於底泥之0-30天於 (A) PH 4.00、(B) PH 7.00、(C) PH 9.00二階動力學反應 75
圖4-23配製壬基酚污染濃度250 MG KG-1整體趨勢圖 76
圖4-24壬基酚於底泥之0-30天於 (A) PH 4.00、 (B) PH 7.00、 (C) PH 9.00二階動力學反應 79
圖4-25壬基酚與腐植酸 (HA)添加於底泥之0-30天於 (A) PH 4.00、 (B) PH 7.00、(C) PH 9.00二階動力學反應 80
圖4-26壬基酚與黃酸 (FA)添加於底泥之0-30天於 (A) PH 4.00、(B) PH 7.00、(C) PH 9.00二階動力學反應 81
圖4-27配製壬基酚污染濃度300 MG KG-1整體趨勢圖 82
圖4-28壬基酚於底泥之0-30天於 (A) PH 4.00、 (B) PH 7.00、 (C) PH 9.00二階動力學反應 85
圖4-29壬基酚與腐植酸 (HA)添加於底泥之0-30天於 (A) PH 4.00、 (B) PH 7.00、 (C) PH 9.00二階動力學反應 86
圖4-30壬基酚與黃酸 (FA)添加於底泥之0-30天於 (A) PH 4.00、(B) PH 7.00、(C) PH 9.00二階動力學反應 87
圖4-31有無添加腐植化物質 (A)無添加 (B)腐植酸 (C)黃酸於底泥中PH 4.00之等溫吸附模式 94
圖4-32有無添加腐植化物質 (A)無添加 (B)腐植酸 (C)黃酸於底泥中PH 7.00之等溫吸附模式 95
圖4-33有無添加腐植化物質 (A)無添加 (B)腐植酸 (C)黃酸於底泥中PH 9.00之等溫吸附模式 96


參考文獻
1.吳建誼、丁望賢,「環境荷爾蒙-壬基苯酚與雙酚A在台灣水環境中之分析與流佈調查」,環境檢驗雙月刊第三十三期,第6-12頁 (2004)。
2.許美方,「環境荷爾蒙調查研究」,行政院環境保護署 ,研究計劃 (2003)。
3.楊喜男、王漢泉、劉鎮山、王世冠、彭瑞華、郭季華、楊禮源、李俊宏、徐美榕,「台灣河川水體、底泥及生物監測分析研究」 (2002)。
4.Aiken, G. R., D. M. McKnight, R. L. Wershaw, and P. MacCarthy (Editor), “Humic Substances in Soil, Sediment, and Water” John Wiley & Sons, New York. 561-582, 329-362, 409-429, 387-408 (1985)
5.Ahel M, Giger W., “Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents” Chemophere., 26: 1471–1478 (1993).
6.Ahel, M., Giger, W., Koch, M., “Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment. ” I. Occurrence and transformation in sewage treatment Wat. Res., 28:1131−1142 (1993a).
7.Ahel, M., Giger, W., Schaffner, C., “Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment.” II. Occurrence and transformation in rivers. Wat. Res., 28:1143−1152 (1993b).
8.Bollag, J.M., Myers, C.J., Minard, R.D., “Biochemical and chemical interactions of pesticides with soil organic matter” Sci. Total Environ., 123/124:205–217 (1992).
9.Bonenfant, D., Niquette , P., Mimeault, M.. Furtos-Matei, A., Hausler, R. “UV-VIS and FTIR spectroscopic analyses of inclusion complexes of nonylphenol and nonylphenol ethoxylate with b-cyclodextrin” water research, 43: 3575-3581 (2009).
10.Christl, I., Knicker, H., Ko¨gel-Knabner, I., Kretzschmar, R., “Chemical heterogeneity of humic substances: characterization of size fractions obtained by hollow-fibre ultrafiltration” Eur. J. Soil Sci., 51: 617–625 (2000).
11.Cheng, C.Y. and Ding, W. H., “Determination of nonylphenol polyethoxylates in household detergents by high-performance liquid chromatography” Journal of Chromatography A, 968: 143–150 (2002).
12.Chang Chien, S.W., Chen, H.L., Wang, M.C., Seshaiah, K., “Oxidative degradation and associated mineralization of catechol, hydroquinone and resorcinol catalyzed by birnessite” Chemosphere ,74:1125–1133 (2009).
13.Giger, W., Ahel, M., Koch, M., Laubscher, H.U., Schaffner, C., Schneider, J., “Behaviour of alkylphenol polyethoxylate surfactants and of nitrilotriacetate in sewage treatment” Wat. Sci. Technol., 19:449−460 (1987).
14.Hayes, M.H.B., Clapp, C.E., “Humic substances: consid-erations of compositions, aspects of structure, and environ-mental influences” Soil Science., 166:723–737 (2001).
15.Hayes, M.H.B., Graham, C.L., “Procedures for the isolation and fractionation of humic substances” In: Davies, G., Ghabbour, E.A. (Eds.), Humic Substances – Versatile Components of Plants, Soils and Water. Royal Society of Chemistry, Cambridge, United Kingdom, 91–109 (2002).
16.Huang, S.W., Chiang, P.N., Liu, J.C., Hung, J.T., Kuan, W.H., Tzou, Y.M., Wang, S.L., Huang, J.H., Chen, C.C., Wang, M.K., Loeppert, R.H., “Chromate reduction on humic acid derived from a peat soil – Exploration of the activated sites on HAs for chromate removal” Chemosphere, 87: 587–594 (2012).
17.Igwe, J.C., Abia, A.A., “Adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob” Ecl. Quím., São Paulo, 32 (1): 33-42 (2007).
18.Itodo, A.U., and Itodo, H.U., “Sorption Energies Estimation Using Dubinin-Radushkevich and Temkin Adsorption Isotherms” Life Science Journal, Volume 7, Issue 4, (2010).
19.Kalisz, S., Svoboda, K., Robak, Z., Baxter, D., Andersen, L.K., “Application of FTIR absorption spectroscopy to characterize waste and biofuels for pyrolysis and gasification” Archives of Waste Management ,Vol. 8:51-62 (2008).
20.Lee, H.B., and Peart, T.E., “Determination of 4-nonylphenol in effluent and sludge from sewage treatment plants” Analytical Chemistry., 67: 1976-1980 (1995).
21.Lee ,PC. and Lee, W., “In vivo estrogenic action of nonylphenol in immature female rats” Bull Environ Contam Toxicol., 57:341–348 (1996).
22.Liang, C., Dang, Z., Xiao, B., Huang,W., Liu, C.,” Equilibrium sorption of phenanthrene by soil humic acids” Chemosphere., 63:1961–1968 (2006).
23.Li, Chengliang., Ji, R., Vinken, R., Hommes, G., Bertmer, M., Scha¨ffer, A., Corvini, P. F.X., “Role of dissolved humic acids in the biodegradation of a single isomer of nonylphenol by Sphingomonas sp” Chemosphere., 68:2172–2180 (2007).
24.Li, D., Dong, M., Shim, W. J., Yim ,U. H., Hong ,S. H., Kannan, N., “Distribution characteristics of nonylphenolic chemicals in Masan Bay environments, Korea” Chemosphere., 71: 1162–1172 (2008).
25.Palladino, G., Ferri, D., Manfredi, C., Vasca, E., “Potentiometric determination of the total acidity of humic acids by constant-current coulometry” Analytica Chimica Acta , 582:164–173 (2007).
26.Pacco, H.C., Vigneault, C., Menegalli, F.C., de Castro, L.R., Cortez, L.A.B., “Evaluation of sorption isotherm models for figs” Can. Biosys. Eng., 50: 377–383 (2008).
27.McLeese, D.W., Sergeant, D.B., Metcalfe, C.D., Zitko, V., Burridge, L. E., “Uptake and excretion of aminocarb, nonylphenol, and pesticide diluent 585 by mussels (Mytilus edulis)” Bull Environ Contam Toxicol., 24:575–581 (1980).
28.Mengchang, H. E., Yehong, S. H. I. and Chunye, L. I. N., “Characterization of humic acids extracted from the sediments of the various rivers and lakes in China” Journal of Environmental Sciences, 20:1294–1299 (2008).
29.Neamtu, M., Frimmel, F. H., “Photodegradation of endocrine disrupting chemical nonylphenol by simulated solar UV-irradiation” Science of the Total Environment, 369:295–306 (2006).
30.Navarro, A., Endo, S., Gocht, T., Barth, J.A.C., Lacorte, S., Barcelo, D., Grathwohl, P., “Sorption of alkylphenols on Ebro River sediments: comparing isotherms with field observations in river water and sediments” Environ. Pollut., 157: 698–703 (2009).
31.Naylor, C.G., “Environmental fate and safety of nonylphenol ethoxylates” Text. Chem. Color., 27: 29−33 (1995).
32.Neamtu, M. and Frimmel, F. H., “Photodegradation of endocrine disrupting chemical nonylphenol by simulated solar UV-irradiation” Science of the Total Environment ., 369:295-306 (2006).
33.OLADOJA, N. A., ABOLUWOYE, C. O., OLADIMEJI, Y. B., “Kinetics and Isotherm Studies on Methylene Blue Adsorption onto Ground Palm Kernel Coat” Turkish J. Eng. Env., Sci. 32: 303- 312 (2008).
34.Orecchio, S. and Mannino, M. R., “Chemical speciation of polycyclic aromatic hydrocarbons in sediments: Partitioning and extraction of humic substances” Marine Pollution Bulletin, 60:1175–1181 (2010).
35.Riwandi Sihombing, Greenwood, P.F., Wilson, M. A., Hanna, J.V., “Composition of size exclusion fractions of swamp water humic and fulvic acids as measured by solid state NMR and pyrolysis-gas chromatography-mass spectrometry” Org. Geochem., 24:859-873 (1996).
36.Riefer, P., Klausmeyer, T., Adams, A., Schmidt, B., Schwarzbauer, J., Schäffer, A., “Linkage and structure elucidation of non-extractable NP and MCPA residues in organo-clay complexes” 19th World Congress of Soil Science. Soil Solutions for a Changing World, 1-6 (2010).
37.Stevenson, F.J., “Humus Chemistry – Genesis Composition Reactions” 2nd ed. Wiley & Sons, Chichester, 1994.
38.Senesi, N., Loffredo, E., “Soil humic substances. In: Hofrichter, M., Steinbu¨chel, A. (Eds.)” Lignin Humic Substances and Coal.Wiley-VCH, Weinheim, 47–299 (2001).
39.Salloum, M.J., Chefetz, B., Hatcher, P.G., “Phenanthrene sorption by aliphatic-rich natural organic matter” Environ. Sci. Technol., 36:1953–1958 (2002).
40.Samios, S., Lekkas,T., Nikolaou, A., Golfinopoulos, S., “Structural investigations of aquatic humic substances from different watersheds” Desalination, 210: 125–137 (2007).
41.Tanghe, T., Devriese, G., Verstraete, W., “Nonylphenol degradation in lab scale activated sludge units is temperature dependent” Wat. Res., 32:2889−2896 (1998).
42.Wang, M.C., and Huang, P. M., ” Catalytic polymerization of hydroquinone by nontronite” Can. J. Soil Sci., 67: 867−875 (1987).
43.Vinken, R., Scha¨ffer, A., Ji, Rong., “Abiotic association of soil-borne monomeric phenols with humic acids” Organic Geochemistry., 36:583-593 (2005).
44.Yikrazuul , “an examplified structure of humic acid” View Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Humic_acid (2009).
45.Usman Rasuid, David Johnson , I.W., Wilson, M. A. and Hanna J. V., “Changes in organic structural group composition of humic and fulvic acids with depth in sediments from similar geographical but different depositional environments” Org. Geochem., 18 (4):521-529 (1992).
46.Ussiri, D.A.N., Johnson, C.E., “Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods” Geoderma., 111:123–149 (2003).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top