跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/16 11:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂京錞
研究生(外文):Lu Ching-Chun
論文名稱:廚餘和污泥厭氧共消化產氫與產甲烷之研究
論文名稱(外文):Anaerobic co-digestion of food waste and sewage sludge for hydrogen and methane production
指導教授:林秋裕林秋裕引用關係
口試委員:賴奇厚胡慶祥
口試日期:2016-07-22
學位類別:碩士
校院名稱:逢甲大學
系所名稱:綠色能源科技碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:86
中文關鍵詞:廚餘污泥厭氧共消化產氫產甲烷
外文關鍵詞:Food wastesewage sludgeanaerobic co-digestionhydrogenmethane
相關次數:
  • 被引用被引用:8
  • 點閱點閱:945
  • 評分評分:
  • 下載下載:267
  • 收藏至我的研究室書目清單書目收藏:0
厭氧產氫技術具有產生潔淨能源之能力且能有效處理廚餘與污泥,達到廢棄物減量與能源回收之效益。全台104年廚餘回收量約為80萬噸;依環保署統計,每年約產生40萬噸污泥。氫氣與甲烷都是生質氣體。本研究以家庭廚餘與污泥進行厭氧共消化,把有機物換轉換成氫氣與甲烷。
先以批次試驗探討最佳化操作產氫與產甲烷之培養條件,菌種分為台中福田污水處理廠污泥濃縮池之污泥、台榮果糖污水處理廠甲烷醱酵槽Upflow anaerobic sludge blanket (UASB)之厭氧顆粒污泥、台中潭子養豬場之豬糞、中興污水處理廠活性污泥、逢甲大學學思樓污水廠污泥濃縮池厭氧污泥;溫度為35、55oC與緩衝鹽濃度0.2 N、1 N以及基質混合體積比(1:1、1:1.5、1:2、1:2.5、1:3)四項條件。批次產氫結果為使用台中福田污水處理廠污泥濃縮池之污泥作為菌種、溫度55。C、緩衝鹽1N、基質混合體積比1:2時有最大產氫率為1.26 mL⁄g CODadded。批次產甲烷結果為使用台榮果糖污水處理廠甲烷醱酵槽UASB之厭氧顆粒污泥作為菌種、溫度55oC、基質混合比1:2時有最大產甲烷量為20 mL。
依據批次結果,以連續式攪拌反應器培養,連續流產氫與產甲烷水力停留時間(HRT)12 h、72 h,探討共發酵產氫與產甲烷之影響。連續流產氫進料基質濃度變化20~120 g COD/L,基質濃度為90 g COD/L時有最大產氣速率、產氫速率、產氫率分別為15.0 L⁄L-d、7.3 L⁄(L-d)、518.9 mL⁄g CODremoved ,液態代謝產物產量以正丁酸最多(10.2 g COD/L),其次是乙醇(4.3 g COD/L)、乙酸(4.3 g COD/L) 。連續流產甲烷進料基質濃度變化為29~40 g COD/L,基質濃度為29.7 g COD/L時有最大產氣速率、甲烷濃度、產甲烷速率1.73 L⁄L-d、35.5%、0.31 L⁄(L-d),液態代謝產物產量以乙酸最多(11.3 g COD/L),其次是正丁酸(8.1 g COD/L)。
產氫率在培養溫度55~60。C(平均產氫率為500 mL⁄(g CODremoved))較溫度35~37。C(平均產氫率為187 mL⁄(g CODremoved))高,與其他文獻相比,本研究產氫率518.9 mL⁄(g CODremoved) 為最高。產甲烷比較結果,其他文獻之產甲烷速率0.13~6.1 (L/L-d)幾乎較本研究0.31 (L/L-d)高。
Using anaerobic digestion technology to produce renewable energy is a good way to effectively manage food waste and sludge for achieving waste reduction and energy recovery. Food waste recycling was about 800,000 tons/y and sludge recycling was about 400,000 tons/y in Taiwan. Hydrogen and methane gas are bioenergy. The main purpose of this study is to test hydrogen and methane production with co-digestion of food waste and sludge using anaerobic bacteria.
To obtain the best batch conditions to produce hydrogen and methane, four operation conditions and five seed sludges were tested: school wastewater treatment plants sludge, pig dung, granule sludge from fructose factory, anaerobic sludge from a municipal wastewater treatment plant, activated sludge wastewater from a municipal wastewater treatment plant, and the food waste. Seed sludge was from storage tank sludge. Two cultivation temperature 35 oC and 55 oC were tested. Substrate and seed sludge was mixed in mixing ratios of 1: 1, 1: 1.5,1: 2,1: 2.5 and1: 3.The results show that using anaerobic sludge from a municipal wastewater treatment plant at 55 oC, buffer concentration 1 N and substrate mixing ratio 1:2 had higher hydrogen production yield of 1.26 mL⁄g CODadded. Using the granule sludge from fructose factory at 55 oC and substrate mixing ratio 1:2 had higher methane production (20mL).
Based on the batch test results, the effect of co-digestion for hydrogen and methane production was conducted using a continuously-stirred tank reactor at hydraulic retention time (HRT) 12 and 24 h. The hydrogen fermenter at substrate concentration 90 g COD/L gave peak biogas production rate 15.0 L⁄L-d, hydrogen production rate 7.3 L⁄L-d, hydrogen production yield 518.9 mL⁄g CODremoved with the
main volatile fatty acids of n-butyrate 10.2 g COD/L. The methane fermenter at substrate concentration 29.7 g COD/L had peak biogas production rate 1.73 L⁄L-d, methane concentration 35.5 %, and methane production rate 0.31 L⁄L-d with main volatile fatty acid of acetate 11.3 g COD/L.
Compared with other reports, cultivation at 55~60。C had higher average hydrogen production yield 500 mL⁄g CODremoved than that of at 35~37。C with average hydrogen production 187 mL⁄g CODremoved. This study had the highest hydrogen production 518.9 mL⁄g CODremoved and methane production rate 0.13~6.1 L/L-d comparing with other reported values of 0.31 L/L-d.
第一章 緒論 1
1-1研究背景 1
1-2研究目的 4
1-3研究架構 4
第二章 文獻回顧 6
2-1能源的現況 6
2-1-1全球面臨危機 9
2-1-2全球能源的消耗概況 11
2-2廢棄物的問題 11
2-3廚餘處理現況 16
2-3-1國內 16
2-3-2國外 17
2-4污泥處理現況 21
2-4-1國內 21
2-4-2國外 22
2-5 生質能源再利用方式……………………………………………………...21
2-5-1生質能源種類 24
2-5-2厭氧醱酵的優點 26
2-6環境因子對厭氧醱酵的影響 27
第三章 實驗材料與方法 29
3-1實驗架構 29
3-2 產氫與產甲烷潛能批次試驗 30
3-2-1基質(料源)來源與性質 30
3-2-2菌種來源、馴化與營養鹽(配方) 31
3-2-3反應槽裝置 33
3-3兩相式CSTR連續流產氫與產甲烷試驗 36
3-3-1基質(料源)來源與性質 36
3-3-2菌種來源、馴化與營養鹽(配方) 36
3-3-3反應槽裝置 37
3-3-4操作條件、變因與步驟 41
3-4分析儀器與方法 41
3-5數據分析方法 42
第四章 結果與討論 44
4-1批次產氫產甲烷潛能試驗 44
4-1-1批次產氫潛能試驗 44
4-1-2產甲烷最佳化條件 57
4-2 CSTR 操作運轉結果 62
4-2-1產氫最佳化條件 62
4-2-2 甲烷最佳化條件 69
4-2-3 兩相式操作最佳化條件 71
第五章 結論與建議 76
5-1結論 76
5-2建議 77
英文文獻
Cavinato C, Giuliano A, Bolzonella, Pavan P and Cecchi F, (2012). Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process:A long-term pilot scale experience, International Journal of Hydrogen Energy 37: 11549-11555

Chang JS, Lee KS and Lin PJ, (2002). Biohydrogen production with fixed-bed
bioreactors, International Journal of Hydrogen Energy 27: 1167-1174

Chen CC and Lin CY, (2003). Using sucrose as a substrate in an anaerobic
Hydrogen producing reactor, Advances in Environmental Research 7: 695-699

Chang FY and Lin CY, (2004). Biohydrogen production using an up-flow anaerobic
sludge blanket reactor, International Journal of Hydrogen Energy 29: 33-39

Chua CF, Lib YY , Xu KQ, Ebie Y, Inamori Y, Kon HN, (2008). A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste, e. International Journal of Hydrogen Energy, 33(18): 4739-4746

Ciria Berenice CN, Julian CR, Gust DV and Elias RF, (2011). Continuous hydrogen and methane production in a two-stage cheese whey fermentation system,  Water Science & Technology 64(2): 367-74

Cooney M, Maynard N, Cannizzaro C and Benemann J, (2007). Two-phase anaerobic
digestion for production of hydrogen– methane mixtures. Bioresource Technology 98(14): 2641-2651

German B, Gopa K, Andres MA and Gloria M, (2014). Hydrogen and methane
production via a two-stage processes (H2-SBR + CH4-UASB) using tequila vinasse, International Journal of Hydrogen Energy 39(33):19249-19255

Fang HHP, Liu H, (2002). Effect of pH on hydrogen production from glucose by a mixed culture, Bioresource Technology 82: 87-93


Fang HHP, Li CL and Zhang T, (2006). Acidophilic biohydrogen production from rice slurry, International Journal of Hydrogen Energy 31: 683-692

Han SK, Kim HS, Kim H W and Shin HS, (2005). Pilot-scale two-stage process: A combination of acidogenic hydrogenesis and methanogenesis, Water Science Technology 52(1-2): 131-8

Han SK and Shin HS, (2004). Performance of an innovative two-stage process converting food waste to hydrogen and methane, Journal of the Air and Waste
Management Association 54: 242-249

Hussy I, Hawkes FR, Dinsdale R and Hawkes DL, (2003). Continuous fermentative
hydrogen production from a wheat starch co-product by mixed microflora,
Biotechnology and Bioengineering 84: 619-626

Hussy I, Hawkes FR, Dinsdale R and Hawkes DL, (2005). Continuous fermentative
hydrogen production from sucrose and sugarbeet, International Journal of Hydrogen Energy 30: 471-483

Idania VV, Elvira RL, Fernando EG, Franco C, Héctor M and PV, (2005).
Semi-continuous solid substrate anaerobic reactors for H2 productionfrom organic waste: Mesophilic versus thermophilic regime, InternationalJournal of Hydrogen Energy 30: 1383-1391

Intanoo P, Chaimongkol P and Chavadej S, (2016). Hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactors (UASB) with an emphasis on maximum hydrogen production, International Journal of Hydrogen Energy, 41(14): 6107-6114

Kongjan P, and Angelidaki I, (2013). Hydrogen and methane production from
desugared molasses using a two ‐ stage thermophilic anaerobic process. Engineering in Life Sciences, 13(2): 118-125

Krishnan S, Singh L, Sakinah M, Thakur S, Wahid ZA and Alkasrawi M, (2016). Process enhancement of hydrogen and methane production from palm oil mill effluent using two-stage thermophilic and mesophilic fermentation. International Journal of Hydrogen Energy, 41(30): 12888-12898


Largus TA, Khursheed K, Muthanna HA, Brian, AW,and Rosa D, (2004). Production of bioenergy and biochemical from industrial and agricultural wasterwater. Trends in Biotechnology, 22(9): 477-485

Lay JJ, (2000). Modeling and optimization of anaerobic digested sludge
converting starch to hydrogen. View issue TOC 68(3): 269-278

Lay JJ, Lee YJ, and Noike T, (1999). Feasibility of biological hydrogen production from organic fraction of municipal solid waste, Water Research 11: 2579-2586

Lee KS, Wu JF, Lo YS, Lo YC, Lin PJ and Chang JS, (2004). Anaerobic hydrogen
production with an efficient carrier-induced granular sludge bed bioreactor,
Biotechnology and Bioengineering 87:648-657

Lee DY, Ebie Y, Xu KQ, Li YY and Inamori Y, (2010). Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge, Bioresource Technology, 101: S42–S47

Lin CY, Liang CY, Lay CH, Chen CC, Chang FY, (2008). A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste. international journal of hydrogen energy 33(18): 4739-4746

Lin CY, Liang YC, Lay CH, Chen CC, Chang FY, Stolten D and Grube T. (2010).
Hydrogen and Methane Production from Condensed Molasses Fermentation Soluble by a Two-stage Anaerobic Process. Report Nr: Schriften des Forschungszentrums Jülich/Energy and Environment.

Lin CY, Chang RC, (1999). Hydrogen production during the anaerobic acidogenic
conversion of glucose, Journal of Chemical Technology and Biotechnology
74: 498-500

Liu D, Zeng RJ and Angelidaki I, (2006). Hydrogen and methane production from
household solid waste in the two-stage fermentation process, Water Research
40: 2230-2236


Liu GZ and Shen JQ, (2004). Effects of culture and medium conditions on hydrogen
production from starch using anaerobic bacteria, Journal of Bioscience and
Bioengineering 98: 251-256

Mormile MR, Liu S and Suflita JM, (1994). Anaerobic biodegradation of gasoline oxygenates: extrapolation of information to multiple sites and redox conditions. Environmental Science & Technology 28(9): 1727-1732.

Noike T, Ko IB, Lee DY and Yokoyama S, (2003). Continuous hydrogen production fromorganic municipal wastes, Proc. of 1st NRL International Workshop on
Innovative Anaerobic Technology, Daejeon, Korea, pp 53-60

U.S. Energy Information Administration (2010). International Energy Outlook. U.S. Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585

Ren N, Wang, B and Ma F, (1995). Hydrogen bio-production of carbohydrate fermentation by anarebic sludge process. In: Proceeding 68th Annual Water Environmental Federal Conference Miami, pp. 145-152

Richard Smalley, (2003), Energy & Nanotechnology Conference, Rice University

Stanier RY, Adelberg EA. and Ingraham JL, (1977), General Microbiology 4th edition
Macmillan Process,London

Ueno Y, Haruta S, Ishii M and Igarashi Y, (2001). Microbial community in anaerobic
hydrogen-producing microflora enriched from sludge compost, Applied
Microbiology and Biotechnology 57:555-562

Ueno Y, Otauka, S, Morimoto M, (1996). Hydrogen production from industrialwastewater by anaerobic microflora in chemostat culture. J. Ferment. Bioeng.82: 194–197

Ueno Y, Fufui H and Goto M, (2007). Operation of a Two-Stage Fermentation Process Producing Hydrogen and Methane from Organic Waste. Environmental Science & Technology 41(4): 1413-1419


Wang B, Li Y, Wang D, Liu R, Wei Z and Ren N, (2013). Simultaneous coproduction of hydrogen and methane from sugary wastewater by an ACSTRH–UASBMet system. International Journal of Hydrogen Energy 38(19): 7774-7779

Yu HQ, Zhu ZH, Hu WR and Zhang HS, (2002). Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic
cultures, International Journal of Hydrogen Energy 27:1359-1365

Zhong J, Stevens DK and Hansen CL, (2015). Optimization of anaerobic hydrogen and methane production from dairy processing waste using a two-stage digestion in induced bed reactors (IBR), International Journal of Hydrogen Energy, 40(45): 15470-15476

Zhang T, Liu H, and Fang HHP, (2003). Biohydrogen production from starch in
wastewater under thermophilic condition, Journal of Environmental
Management 69:149-156



















中文文獻
朱敬平,李篤中,(2002),污泥處置 (IV):策略與永續利用,國立台灣大學化學工程學系,台大工程學刊

吳立全,(2012),桶裝堆肥最是條件之研究,嘉南藥理科技大學環境工程與科學學系,碩士論文

吳耿東,(2007),全球生質能源應用現況與未來展望,專題論述
李學霖,(2005),單醣與聚醣類混合蛋白腖基質於厭氧產氫程序分解機制之比較研究,成功大學環境工程學系,碩士論文
李篤中,(2004),總計劃及子計劃一:污泥前處理與資源化產氣之研究(2/3)
林建勝,(2007),以生質能源程序探討廚餘厭氧產氫醱酵之研究。國立成功大學
環境工程學系,碩士論文

林玉墩,(2007),廢棄物永續管理策略之研究-以台北市為例,國立台北科技大學環境規劃與管理研究所,碩士論文

張仕旻,(2001),利用薄膜反應器於高溫厭氧產氫生物程序之研究,成功大學環境工程學系,碩士論文

郭世強,(2006),廚餘厭氧醱酵產氫程序之功能評估,成功大學環境工程學系,
碩士論文

陳宏銘,從永續發展之理念探討污泥減量之必要性-以迪化污水處理廠污泥減量
工程為例

萬騰州、黃崇輔、鄭瓊怡、林彥臣、王柏勝、林俊男、許志聖、彭聖元、林曉汶,
(2012),擬訂資源循環實施策略及行動計畫專案工作計畫定稿本,國立雲林
科技大學

趙禹杰,(2004),澱粉及蛋白腖複合基質厭氧醱酵產氫程序之功能評估,成功大
學環境工程,碩士論文

蔡衣樺,(2015),台灣氣態清潔能源產業評估與趨勢分析-以甲烷與氫能為例,逢
甲大學環境工程與科學學系,碩士論文
鄭幸雄,(2010),兩段式高溫厭氧生物共消化程序開發應用,國立成功大學環境
工程系

鄭皆達,謝馥揚,林秋裕,(2004),緩衝劑對厭氧產氫機制之研究,水土保持學


鄭凱尹,(2000),高溫厭氧消化廚餘之研究,國立屏東科技大學環境工程與科學
學系,碩士論文

賴奇厚,(2002),營養鹽對彥樣產氫之影響,逢甲大學土木及水利工程研究所,
碩士論文

蕭奕興,(2012),常壓微波電將轉化升值廢棄物產氫之研究,國立中山大學環境
工程研究所,碩士論文

蕭嘉瑢,(2004),複合基質厭氧氫發酵生物程序操控之功能評估及分生檢測生態
之研究,成功大學環境工程學系,碩士論文


















網路文獻
BP Global: http://www.bp.com/,2016年8月12日

Crossing: http://www.cw.com.tw/blog/blogTopic.action?id=536&nid=6599,
2016年8月12日

KPMG: http://www.blog.kpmgafrica.com/the-10-sustainability-megaforces/,2016年8月12日

Night Earth: http://www.nightearth. com/?lang=zh,2016年8月12日

Survey of energy resources, World energy council: https://www.worldenergy.org/wp-
content/uploads/2013/09/Complete_WER_2013_Survey.pdf,2016年8月12

力報,(2011): http://www.exmoo.com/index.php?m=content&c=index&a=show&catid=9 &id=9955,2016年8月12日

內政部營建署,流域綜合治理計畫專屬網站-日本首都圈: http://cmp.wra.gov.tw/,
2016年8月21日

內政部營建署,2015,流域綜合治理計畫專屬網站-芝加哥地下水道暨貯水池計
畫: http://cmp.wra.gov.tw/,2016年8月21日

台中市廚餘回收網,(2012 ): http://recycle.epb.taichung.gov.tw/kitchenwaste/pr
opaganda.asp2016年8月12日

行政院環境保護署統計資料庫: http://210.69.101.110/epa/stmain.jsp?sys=100,
2016年8月12日

侯如珊,韓國廚餘收費愈重愈貴,天下雜誌: http://www.cw.com.tw/article/article.action?i
d=5048229,2016年8月12日

能源教育知識網-生質能: http://bioenergy.org.tw/,2016年8月12日

能源通識站: https://www.ls-energy.hk/,2016年8月12日

能源資訊園地-能源的原理 -Energyland機電工程署: http://www.energyla nd.emsd
.gov.hk/tc/home/,2016年8月12日
視點31,(2016) : http://www.liberalstudies.hk/video/programme.p hp?vid= thwe16-0006
-seg01,2016年8月12日

黃捷,(2016),飲食文化難改 新加坡廚餘爆增,台灣醒報:
https://www.anntw.com/articles/20160111-pkiu,2016年8月22日

張添晉,(2015),污泥源頭減量及處理現況,國立台北科技大學環境工程與管理研究所: https://www.moeaidb.gov.tw/iphw/epc/service/training/P150902.pdf,2016年8月21日

張祖恩,(2015),台灣之廢棄物與永續資源管理,國立成功大學環境工程學系特
聘教授,IEET中華工程教育學: http://www.ieet.org.tw/text/2025%E8%AB%96
%E5%A3%87/%E7%B0%A1%E5%A0%B1/4-3_%E5%8F%B0%E7%81%A3
%E4%B9%8B%E5%BB%A2%E6%A3%84%E7%89%A9%E8%88%87%E6%
B0%B8%E7%BA%8C%E8%B3%87%E6%BA%90%E7%AE%A1%E7%90%8
6_%E5%BC%B5%E7%A5%96%E6%81%A9%E6%95%99%E6%8E%88.pdf
,2016年8月21日

環境資訊中心: http://e-info.org.tw/,2016年8月12日
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊