跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 01:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:古智陽
研究生(外文):Chih-Yang Ku
論文名稱:以熱浸鍍鋁微弧氧化法製備電化學加工電極絕緣層
論文名稱(外文):Fabrication of an Electrode Insulation Layer of Electrochemical Machining by Using Hot Dip Aluminizing and Micro-Arc Oxidation Method
指導教授:洪榮洲
口試委員:范智文許文政
口試日期:2016-07-01
學位類別:碩士
校院名稱:逢甲大學
系所名稱:機械與電腦輔助工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:77
中文關鍵詞:熱浸鍍鋁氧化鋁絕緣層微弧氧化電化學加工絕緣層
相關次數:
  • 被引用被引用:1
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
本論文採用以熱浸鍍鋁微弧氧化法製備電化學加工電極絕緣層技術,使用碳化鎢鑽頭為基材進行熱浸鍍鋁製程,形成富鋁層,再以微弧氧化法促使富鋁層轉化為氧化鋁絕緣層,有效防止通電而達到絕緣效果藉以提高電化學加工精度。利用電解法測試其於氯化鈉溶液中的可耐電壓值,透過表面與截面觀察以了解其特性變化,最後進行電化學鑽孔於不銹鋼試片上,探討加工性能與加工後結果觀察之研究。期望能製作出一精密且絕緣性佳的電化學加工電極絕緣層,使雜散電解加工效應降低,達到改善模穴形狀加工精度之效果。
藉由電解實驗測試電極之絕緣層耐電壓值,實驗結果顯示最佳參數為浸鍍時間4分鐘,微弧電壓450 V,微弧時間20分鐘,沸水封孔40分鐘,耐電壓值可承受10.2V。並進一步進行電化學鑽孔,探討有絕緣層之電極與未具絕緣層之電極,其微孔入口差異結果表明,具有絕緣層電極其鑽孔入出口孔徑差值為17m,未具有絕緣層電極其鑽孔入出口孔徑差值為98m。電化學鑽孔入口孔徑差值降低81m,代表此電化學絕緣層成功降低大量的雜散電流,並提高微孔之精度。
In this research, electrode insulation of the electrochemical machining tool has been produced by hot dip aluminized micro arc oxidation techniques. In order to form an effective insolation layer on the tungsten carbide tool and achieve higher precision, the tool will then be micro-arc oxidizing, convert the aluminum-rich into aluminum oxide insolating layer. Withstanding Voltage of the tool is being tested afterward by sodium chloride electrolysis method, and the surface and the cross section is being observed. Eventually the tools were examined and discussed for their machining performance by ECM drilling through stainless steel plate. We were expecting to produce a precise and better insulation. By reducing ECM stray effect, the precision can be achieved.
The experimental result shows the optimum parameters are aluminum dipping for 4 minutes, 450 V of micro-arc voltage for 20 minutes and 40 minutes of boiling water sealing, reaching 10.2V of withstanding voltage. A further electrochemical drilling has been done to explore the effect of insolation. Two electrodes, with and without insolation had been compared. The difference between the entrance and the exit diameter of the hole of insolated tool reaches 17um, compare to the one without insolation, we have successfully reduce 81um. The result shows that the insolation has massively reduce the stray effect, and achieve high precision machining.
摘 要 i
Abstract ii
目 錄 iv
圖 目 錄 viii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與目的 8
論文架構 9
第二章 基礎理論 10
2.1 電化學加工 10
2.1.1 電化學加工原理 11
2.1.2法拉第定律 13
2.1.3電化學加工電解液功能與分類 14
2.1.4電化學電解液的影響 15
2.1.5 雜散電流對精微電化學加工的影響 16
2.2 熱浸鍍披覆技術 19
2.2.1 熱浸鍍鋁機制 21
2.2.2 熱浸鍍鋁變數之影響 21
2.3表面絕緣層生成技術 23
2.3.1微弧氧化技術 23
第三章 實驗方法與設備 25
3.1 實驗方法 25
3.2 熱浸鍍及微弧氧化 25
3.2.1試片製備 25
3.2.2熱浸鍍製備 25
3.2.3微弧氧化製備 27
3.3耐電壓測試 28
3.4電化學鑽孔 29
3.5 實驗設備 30
3.5.1直流電源供應器 30
3.5.2脈衝直流電源控制器 31
3.5.3超音波清洗裝置 32
3.5.4精密電子天平 33
3.6檢測儀器 34
3.6.1光學影像量測儀 34
3.6.2掃描式電子顯微鏡 35
3.7論文架構 36
第四章 結果與討論 37
4.1 熱浸鍍鋁參數研究與鍍層狀態觀察 37
4.1.1熱浸鍍鋁時間之參數分析 37
4.1.2熱浸鍍鋁形貌與結構分析 38
4.1.3熱浸鍍鋁參數與電極直徑之關係 38
4.2 微弧氧化參數研究與鍍層狀態觀察 44
4.2.1微弧氧化形貌與結構分析 44
4.2.2微弧氧化參數研究與氧化層狀態觀察 46
4.3 電極絕緣層之耐電壓測試 48
4.3.1不同微弧氧化參數之耐電壓測試 48
4.3.2不同微弧氧化參數進行封孔處理之耐電壓測試 49
4.4 電化學鑽孔分析 50
4.4.1電極進給速率與鑽孔之影響 50
4.4.2 加工電壓與鑽孔之影響 51
4.4.3 電解液濃度與鑽孔之影響 53
4.5 加工結果觀察 55
4.5.1 微孔表面觀測及入出口差量測 55
4.5.2 加工後電極表面觀測及成分分析 55
第五章 結論 58
參考文獻 60
[1]洪榮洲,推動精密電化學加工技術與設備國產化,工具機與零組件雜誌,2012。
[2]黃增耀、郭佳儱,雷射誘發大氣度膜應用於微電解加工之研究,第一屆台灣塑性加工研討會2013。
[3]Li Y., Zheng Y., Yang G., Peng L. 2003 “Localized electrochemical micromachining with gap control”,Sensors and Actuators A 108, 144-148.
[4]Park B.J., Kim B.H., Chu C.N. 2006 “The effect of tool electrode size on characteristics of microelectrochemical machining”, CIRP Annals - Manufacturing Technology 55, 197-200.
[5]Liu Z., Liu Y., Qiu Z., Qu N. 2009 “Effect of tool electrode insulation on electrochemical micro drillingaccuracy”, Nanotechnology and Precision Engineering 7, 355-360.
[6]Brand J., Van Gils S., Beentjes P.C.J., Terryn H., Sivel V., Wde Wit J.H. 2004 “Improving the adhesion between epoxy coatings and aluminium substrates”, Progress in Organic Coatings 51, 339–350.
[7]許芷寧,碳鋼中顯為組織對熱浸鍍鋁之作用,國立台灣科技大學碩士論文,2011。
[8]B Lemmens.,Y Gonzalez Garcia.,B. Corlu .,J.De Strycker ., I. De Graeve ., K. Verbeken 2014 “Study of the electrochemical behavior of aluminized steel ”, Surdace and Coatings Technology 260, 34-38.
[9]Sundararajan G., Rama Krishna L. 2003 “Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology ”, Surface and Coatings Technology, 167, 269-277.
[10]Tian J., Luo Z. G., Qi S. K., Sun X. J. 2002 “Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy”, Surface and Coatings Technology, 154, 1-7.
[11]Xue W., Wang C., Deng Z., Chen R., Li Y., Zhang T. 2002 “Evaluation of the mechanical properties of microarc oxidation coatings and 2024 aluminium alloy substrate”, Physics Condensed, 14, 109, 47-52.
[12]趙豪民,江俊靈,戴新江,鋁材微弧氧化功率與表面粗糙度的關係,材料保護,38卷,5期,66-67頁,2005。
[13]Sun X. T., Jiang Z. H., Xin S. G., Yao Z. G. 2005 “Composition and mechanical properties of hard c eramic coating containing α-Al2O3 produced by microarc oxidation on Ti–6Al–4V alloy” , Thin Solid
Films,471, 194-199.
[14]Wang Y. M., Jiang B. L., Lei T. Q., Guo L. X. 2006 “Microarc oxidation coatings formed on Ti6Al4V in Na2SiO3 system solution: Microstructure, mechanical and tribological properties”, Surface and
Coatings Technology, 201, 82-89.
[15]Yerokhin A.L., Shatrov A., Samsonov V., Shashkov P., Pilkington A., Leyland A., Matthews A. 2005” Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process”, Surface and Coatings Technology ,199, 150-157.
[16]Butyagin P.I., Khokhryakov Y. V., Mamaev A.I. 2003” Microplasma systems for creating coatings on aluminium alloys”, Materials Letters ,57, 1748-1751
[17]Monfort F., Matykina E., Berkani A., Skeldon P., Thompson G.E., Habazaki H., Shimizu K. 2006”Species separation during coating growth on aluminium by spark anodizing”, Surface and Coatings Technology, 201, 21, 8671-8676.
[18]Cui S., Han J., Du Y., Li W. 2007 ” Corrosion resistance and wear resistance of plasma electrolytic oxidation coatings on metal matrix composites“, Surface and Coatings Technology, 201, 9-11, 5306-5309.
[19]Mohannad M.S Al Bosta.,Kung-Jeng Ma 2014” Influence of electrolyte temperature on properties and infrared emissivity of MAO ceramic coating on 6061 aluminum alloy “, Infrared physics and Technology, 67, 63-72.
[20]王光浩,鋼鐵表面熱浸鍍鋁後微弧氧化陶瓷膜之研究,隆華科技大學碩士論文,2012。
[21]田福助,電化學原理與運用,高力圖書有限公司,台北,505-520頁,2004。
[22]Magnani, G., Antolini, F., Beaulardi, L., Brentari, A., and Burresi, E., 2011 “Oxidation Resistance of SIC-AlN Ceramics Coated by Oxidation- Assisted- Pack Cementation Process,” Journal of the European Ceramic Society, 31, 369-376.
[23]Wang, Y. Q., Zhang, Y., and Wilsn, D. A., 2010“Formation of Aluminide Coatings on Ferritic-Martensitic Steels by a Low-Temperature Pack Cementation Process,” Surface and Coatings Technology, 204, 2737-2744.
[24]鄭維仁、王朝正,以EBSD觀察低碳鋼熱浸鍍鋁矽層於高溫相變化之行為,防蝕工程,22卷,4期,287-294頁,2008。
[25]Jordan, C. E. and Marder, A. R.,1997 “Fe-Zn Phase Formation in Interstitial-Free Steels Hot-Dip Galvanized at 450°C: Part I 0.00 wt% Al-Zn Baths” Journal of materials science, 32, 5593-5602.
[26]Smith, W. F.,1990 “Principles of Materials Science and Engineering”, 2Ed, McGraw-Hill Publishing Company, American, pp. 843-844.
[27]Yerokhin, A. L., Leyland, A., and Matthews, A., 2002“Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation,” Applied Surface Science, 200, 172-184.
[28]Wirtz, G. P., Brown, S. D., and Kriven, W. M., 1991 “Ceramic Coatings by Anodic Spark Deposition,” Material and Manufacturing Process, 6, 87-115.
[29]Lv, G., 2006 “Characteristic of Ceramic Coatings on Aluminum by Plasma Electrolytic Oxidation in Silicate and Phosphate Electrolyte,” Applied Surface Science, 253, 2947-2952.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top