跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/20 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江子祐
研究生(外文):Tzu-yu Chiang
論文名稱:重質非水相液體滲漏至未飽和層的研究
論文名稱(外文):Study on infiltration of dense nonaqueous phase liquid into unsaturated soils
指導教授:馮秋霞
指導教授(外文):Chiu-shia Fen
口試委員:馮秋霞葉弘德溫志超
口試委員(外文):Chiu-shia Fen
口試日期:2016-07-27
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:76
中文關鍵詞:重質非水相液體三維數值模式未飽和層
外文關鍵詞:dense nonaqueous phase liquidthree-dimensional numerical modelunsaturated zone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
數值模式常應用於土壤地下水污染預防與整治的評估,然而三維模式的模擬應用相對稀少,三維模式可以完整的描述土壤質地特性,對於液態污染物入滲與相際的傳輸分佈與較小維度模式的分析結果可能有極大的差異。
本研究參考一個實際污染案例,使用三維模式UTCHEM(University of Texas Chemical Compositional Simulator)模擬重質非水相液體(DNAPL)入滲未飽和且具異質性土壤層的分佈情形,根據UTCHEM不同的版本UTCHEM1999及UTCHEM2000與STOMP2000(Subsurface Transport Over Multiple Phases)中描述三相(空氣、水及NAPL)之飽和度與相際壓差不同的表示方式,分別進行300天至500天的模擬。
研究結果顯示,根據STOMP與兩種UTCHEM版本所描述不同之三相飽和度與相際壓差關係,所模擬DNAPL分佈之結果有明顯的差異,兩種UTCHEM方式模擬DNAPL入滲僅達地表下約0.4公尺,水相飽和度分佈位置幾乎與NAPL相飽和度一致;而STOMP方式DNAPL入滲深度可達2.9公尺,其水相飽和度則可到達10公尺深度(即模擬範圍底層)。以STOMP方式不論是DNAPL及水相往水平方向或水相往深層之移動性均較UTCHEM的方法為大,顯示描述相際壓力不同的方式對於DNAPL入滲結果有很大的影響,故後續應針對較正確的STOMP方法進行DNAPL入滲及傳輸的分析與討論。
Numerical models are generally applied to the assessments of soil and groundwater pollution prevention and remediation. However, Application of three-dimensional (3-D) simulation model is relatively rare. 3-D models may completely describe the geological characteristics; as a result that the model prediction for the infiltration of nonaqueous phase liquids (NAPL) and the corresponding interphase mass transfer and transport may be different from the results from a one or two-dimensional model simulation.
Referring to a real dense NAPL (DNAPL) contaminated case, this study used a 3-D model, UTCHEM (University of Texas Chemical Compositional Simulator), to simulate DNAPL penetrating into a heterogeneous, unsaturated soil zone. Different versions of the relationships of gas-water-NAPL saturation and interphase pressure difference: two from UTCHEM (UTCHEM1999 and UTCHEM2000) and one from STOMP(Subsurface Transport Over Multiple Phases, STOMP2000) were incorporated into UTCHEM for 300~500 day simulation of DNAPL infiltration.
Results show that the model with using different relationships of 3 phase saturations and interphase pressure difference predicts different distribution of DNAPL and water phase. The results of two UTCHEM versions are similar in spreading patterns and infiltration depth of DNAPL and water which is about 0.4 m below the ground surface. For the STOMP version, DNAPL infiltrates to a depth of 2.9 m, water infiltrates into the base of the simulation domain; and both phases spread laterally. It reveals that different ways to describe the interphase pressure difference may have great impact on DNAPL distribution in unsaturated zone. Therefore, the follow-up study should use the STOMP version on analyzing and discussing the infiltration and transport of DNAPL.
目錄
摘要 iii
Abstract iv
目錄 vi
圖表目錄 vii
第一章、緒論 9
1.1 前言 9
1.2研究背景 9
1.3文獻回顧 10
1.4研究目的 13
第二章、研究方法 14
2.1研究案例 14
2.2三維NAPL入滲模式 17
1. 控制方程式 17
2. 相際壓差 21
3. 相對滲透係數 24
4. 地表下多相流傳輸模式STOMP 25
5. UTCHEM各未知數的運算程序 28
2.3參數設定 29
2.4地質統計模式 Groundwater Data Utilities 32
第三章、結果與討論 34
3.1相際壓差與飽和度的關係 34
3.2垂直向NAPL相飽和度分佈 38
3.3水平相NAPL相飽和度分佈 45
3.4垂直向水相飽和度分佈 49
第四章、結論與建議 53
第五章、參考文獻 55
附錄一、地質統計模式說明 58
附錄二、UTCHEM的子程式修改對照說明 72
蔡長杰, 2009. 重質非水相液體入滲土壤地下水分佈之研究。
Agaoglu, B., Scheytt, T., & Copty, N. K. (2012). Laboratory-scale experiments and numerical modeling of cosolvent flushing of multi-component NAPLs in saturated porous media. J Contam Hydrol, 140-141, 80-94. doi: 10.1016/j.jconhyd.2012.07.005
Brooks, R.H., Corey A.T., (1964). Hydraulic properties of porous media, Hydrology Papers.
Brooks, R.H., Corey, A.T., (1966). Corey, Properties of porous media affecting fluid flow, J. Irrig. Drain. Div, 6, 61.
Christ, J.A., Lemke, L.D., Abriola, L.M., (2005). Comparison of two-dimensional and three-dimensional simulations of dense nonaqueous phase liquids (DNAPLs): Migration and entrapment in a nonuniform permeability field, Water Resour. Res. 41, W01007.
de Dreuzy, J.R., Beaudoin, A., Erhel, J., (2007). Asymptotic dispersion in 2-D heterogeneous porous media determined by parallel numerical simulations. Water Resour. Res. 43, W10439. http://dx.doi.org/10.1029/ 2006WR005394.
Essaid, H.I., Hess, K.M., (1993). Monte Carlo simulations of multiphase flow incorporating spatial variability of hydraulic properties, Ground Water, 31, 123– 134.
Gotovac, H., Cvetkovic, V., Andricevic, R., (2008). Flow and travel time statistics in highly heterogeneous porous media. Water Resour. Res. 45, W07402.
Gotovac, H., Cvetkovic, V., Andricevic, R., (2010). Significance of higher moments for complete characterization of the travel time probability density function in heterogeneous porous media using the maximum entropy principle. Water Resour. Res. 46, W05502. http://dx.doi.org/10.1029/2009WR008220.
Kueper, B.H., Frind, E.O., (1991a). Two-phase flow in heterogeneous porous media: 1. Model development, Water Resour. Res. 27, 1049–1057.
Kueper, B.H., Frind, E.O., (1991b). Two-phase flow in heterogeneous porous media: 2. Model application, Water Resour. Res. 27, 1059–1070.
Kueper, B.H., Gerhard, J.I., (1995). Variability of point source infiltrationrates for two-phase flow in heterogeneous porous media, Water Resour. Res. 31, 2971–2980.
Leverett, M.C., (1941). Capillary behavior in porous solids, Trans. AIME, 142, 152.
Lemke, L.D., Abriola, L.M., Goovaerts P., (2004). Dense nonaqueous phase liquid (DNAPL) source zone characterization: Influence of hydraulic property correlation on predictions of DNAPL infiltration and entrapment, Water Resour. Res. 40, W01511.
Liang, H., & Falta, R. W. (2008). Modeling field-scale cosolvent flooding for DNAPL source zone remediation. J Contam Hydrol, 96(1-4), 1-16. doi: 10.1016/j.jconhyd.2007.09.005
Liu, Y., Kuang, X., Jiao, J. J., & Li, J. (2015). Numerical study of variable-density flow and transport in unsaturated-saturated porous media. J Contam Hydrol, 182, 117-130. doi: 10.1016/j.jconhyd.2015.09.001
Parker, J.C., Lenhard, R.J., (1987). A model for hysteretic constitutive relations governing multiphase flow: 1. Saturation-pressure relations, Water Resour. Res. 23, 2187– 2196.
Petri, B. G., Fučík, R., Illangasekare, T. H., Smits, K. M., Christ, J. A., Sakaki, T., & Sauck, C. C. (2015). Effect of NAPL Source Morphology on Mass Transfer in the Vadose Zone. Groundwater, 53(5), 685-698. doi: 10.1111/gwat.12284
Pope, G.A., Sepehrnoori, K., Sharma, M.M., McKinney, D.C., Speitel, G.E., and Jackson, R.E. (1999). Three-dimensional NAPL fate and transport model. USEPA, Cincinnati, Ohio. Rep. EPA/600/R-99/011.
Technical Documentation for UTCHEM-9.0, (2000). Reservoir Engineering Research Program, Center for Petroleum and Geosystems Engineering. University of Texas at Austin, Austin, TX.
White, M.D., Oostrom, M., (2000). STOMP, Subsurface transport over multiple phases. Version 2.0. Theory Guide. PNNL-12030. Pacific Northwest National Lab., Richland, WA.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top