1.M.S. Cheri, H. Latifi, J. Sadeghi, M.S.Moghaddam, H, Shahraki, and H.Hajghassem, “Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor,” Analyst, vol. 139, pp. 431-438, 2014.
2.N. Noeth, S.S. Keller and A. Boisen,“Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems,” Sensors, vol.14, pp. 229-244, 2014.
3.S. Maruo, “Optically Driven Micromachines for Biochip Application,” Advances in Materials Research, vol. 9, pp. 291-309, 2008.
4.Lab-on-a-chip.gene(http://www.gene-quantification.de/lab-on-chip.html).
5.T.H. Park, and M.L. Shuler, “Integration of cell culture and microfabrication technology,” Biotechnol. Prog., vol. 19, pp. 243-253, 2003.
6.K.S. Yun, and E. Yoon, “Micro/Nanofluidic Device for Single-Cell-Based Assay,” Biomedical Microdevices, vol. 7, no. 1, pp. 35-40, 2005.
7.G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrétaz, P. Renaud, and R.P. Salathé, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Review of Scientific Instruments, vol. 78, pp. 116101, 2007.
8.C.C. Lin, C. Angela, and C.H. Lin, “Microfluidic Cell Counter/Sorter Utilizing Laser Tweezers and Multiple Particle Tracing Technique,” Biomedical Microdevices, vol. 10, pp. 55-63, 2008.
9.C.A. Stan, S.K. Tang, G.M. Whitesides, “Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate,” Anal Chem, vol. 81, pp. 2399–2402, 2009.
10.A. Manz, N. Graber, and H.M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sensors and Actuators B: Chemical, vol. 1, pp. 244–248, 1990.
11.G.V. Casquillas, M.Le. Berre, M. Piel, P.T. Tran , “Microfluidic tools for cell biological research,” Nano Today, vol. 5, pp. 28–47, 2010.
12.M. Ashauer, H. Glosch, F. Hedrich, N. Hey, H. Sandmaier, and W. Lang, “Thermal flow sensor for liquids and gases based on combinations of two principles,” Sensors and Actuators A: Physical, vol. 73, pp. 7–13, 1999.
13.A. Glaninger, A. Jachimowicz, F. Kohl, R. Chabicovsky, and G. Urban, “Wide range semiconductor flow sensors,” Sensors and Actuators A: Physical, vol. 85, pp. 139–146, 2000.
14.J. Chen, Z. Fan, J. Zou, J. Engel, and C. Liu, “Two-dimensional micromachined flow sensor array for fluid mechanics studies,” Journal of Aerospace Engineerin, vol. 16, pp. 139–146, 2003.
15.R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, and A. Berg, “A micromachined pressure/flow-sensor,” Sensors and Actuators A: Physical, vol. 77, pp. 167–177, 1999.
16.J. Collins and A. P. Lee, “Microfluidic flow transducer based on the measurement of electrical admittance,” Lab on a Chip, vol. 4, pp. 7–10, 2004.
17.M. Dijkstra, J. J. Baar, R. J. Wiegerink, T. S. J. Lammerink, J. H. Boer, and G. J. M. Krijnen, “Artificial sensory hairs based on the flow sensitive receptor hairs of crickets,” Journal of Micromechanics and Microengineering, vol. 15, pp. 132–138, 2005.
18.G.J.M. Krijnen, M. Dijkstra, J.J. Baar, S.S. Shankar, W.J. Kuipers, R. J. H. Boer, D. Altpeter, T.S.J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology, vol. 17, pp. 84–89, 2006.
19.A. Quist, A. Chand, S. Ramachandran, D. Cohen, and R. Lal, “Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels,” Lab on a Chip, vol. 6, pp. 1450–1454, 2006.
20.G.M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, pp. 368–373, 2006.
21.Y. Gong , M. Zhang, C. Gong, Y. Wu, Y. Rao, X. Fan, “Sensitive optofluidic flow rate sensor based on laser heating and microring resonator,” Microfluidics and Nanofluidics, vol. 19, pp. 1497–1505, 2015.
22.L.D.G. Garcia, E.G. Lopez, S.C. Leon, M.R. Pizana, F.L. Pacheco, J.L. Meza, D.A. Hernandez, E.J.T. Mejia, G.T. Santiago, C.A.R. Gonzalez, M.M. Alvarez, “Continuous flow micro-bioreactorsfor the production of biopharmaceuticals: the effect ofgeometry, surface texture, and flow rate,” Lab on a Chip, vol. 14, pp. 1320–1329, 2014.
23.R. Lindken, M. Rossi, S. Große and J. Westerweel, “Micro-Particle Image Velocimetry (mPIV): Recent developments, applications, and guidelines,” Lab on a Chip, Vol. 9, pp. 2551-2567, 2009.
24.C. Hoera,M.M. Skadell,S.A. Pfeiffer,M. Pahl,Z. Shu,E. Beckert,D. Belder, “A chip-integrated highly variable thermal flow rate sensor,” Sensors and Actuators B: Chemical, Vol. 225, pp. 42-49, 2016.
25.A. Petropoulos, G. Kaltsas, D. Randjelovic, E. Gogolides, “Study of flow and pressure field in microchannels with various cross-section areas,” Microelectronic Engineering, Vol. 87, pp. 827-829, 2009.
26.V. Lien, F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab on a Chip, Vol. 7, pp. 1352–1356, 2007.
27.L. Stern, A. Bakal, M. Tzur, M. Veinguer, N. Mazurski, N. Cohen and U. Levy, “ Doppler-Based Flow Rate Sensing in Microfluidic Channels,” Sensors, Vol. 14, pp. 16799-16807, 2014.
28.M.S. Cheri, H. Latifi, J. Sadeghi, M.S.Moghaddam, H, Shahraki, and H. Hajghassem, “Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor,” Analyst, vol. 139, pp. 431-438, 2014.
29.C.Y. Lee, Y.H. Wang, T.H. Hsueh, R.H. Ma,L.M. Fu, P.C. Chou, “A Smart Flow Sensor for Flow Direction Measurement,” Advanced Materials Research, vol. 47-50, pp. 189-192, 2008.
30.Q. Zhang, W. Ruan, H. Wang, Y. Zhou, Z. Wang, L. Liu, “ A self-bended piezoresistive microcantilever flow sensor for low flow rate measurement,” Sensors and Actuators A: Physical, vol. 152, pp. 273-279, 2010.
31.Y.H. Wang, C.Y. Lee, and C.M. Chiang, “A MEMS-based Air Flow Sensor with a Free-standing Microcantilever Structure,” Sensors, vol.7, pp. 2389-2401, 2007.
32.A. Ezkerra, L. J. Fern´andez, K. Mayora and J.M. R. L´opez, “Fabrication of SU-8 free-standing structures embedded in microchannels for microfluidic control,” JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 17, pp. 2264–2271, 2007.
33.N. Noeth,S.S. Keller and A. Boisen, “Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems,” Sensors, vol. 14, pp. 229-244, 2014.
34.R. Attia, D.C. Pregibon, P.S. Doyle, J.L. Viovy and D. Bartolo, “ Soft microflow sensors”, Lab on a Chip, vol. 9, pp.1213–1218, 2009.
35.潘恩亞, 蒲念文, 董玉平, 游漢輝, “雙光子吸收光致聚合技術應用於微元件製作之研究,” 中正嶺學報, 2005.36.K. S. Lee, R. H. Kim, D. Y. yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Progress in Polymer Science, vol. 33, pp. 631-681, 2008.
37.S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Optics Latter, vol. 22, pp. 132-134, 1997.
38.Y.H. Wang, C.Y. Lee, and C.M. Chiang, “A MEMS-based Air Flow Sensor with a Free-standing Microcantilever Structure,” Sensors, vol.7, pp. 2389-2401, 2007.