跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/17 13:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳伯隆
論文名稱:複合式雙懸壁樑微流速計研究
論文名稱(外文):Study of Combined-type Cantilever-flow-Meter
指導教授:劉益瑞
口試委員:劉益瑞林志郎單秋成
口試日期:2016-07-26
學位類別:碩士
校院名稱:逢甲大學
系所名稱:生醫資訊暨生醫工程碩士學程
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:40
中文關鍵詞:生醫微流道晶片計算流體力學懸壁樑微流速計
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
近年來生醫微流道晶片(Bio-microfluidic chip)的發展帶來許多生醫研究與臨床醫學的突破,流速對生醫微流道的應用常有關鍵性的影響,然而目前對於微流道的流速測量大多都是透過額外的測量分析裝置,提高了操作的複雜度,如果能夠設計簡單且直觀的即時流速測量的流速計,將可解決此問題。本研究設計一雙懸壁樑結構微流速計,此流速計由兩個粗懸壁樑(Cantilever) 加上一個相對應的擋板指針(Indicator),及兩個細懸壁樑(Cantilever) 加上一個相對應的擋板指針(Indicator)組合而成的綜合懸壁樑式微流速計。希望藉由粗懸壁樑可以適應高流速範圍,細懸壁樑可以適應低流速的高靈敏度,來優化流速計。
首先以計算流體力學方法模擬此流速計在微流道中與流速的關係,此研究結果有助於在微流道內嵌製一懸壁樑式流速計前的參考,然後利用雙光子聚合(Two-photon polymerization, TPP)技術在微流道中製造微結構,接著進行微流道流速測量實驗,最後分析實驗和模擬數據。
第一章 緒論 1
1.1研究背景 1
1.2研究目的 1
1.3研究步驟簡介 2
第二章 理論與研究背景 3
2.1實驗室晶片 3
2.2微流速計 3
2.2.1微粒子影像流速計(Microparticle Image Velocimetry) 5
2.2.2熱式流量感測器 6
2.2.3光流體流量感測器 7
2.2.4 MEMS流量感測器 8
2.2.5微流速計比較 9
2.3雙光子吸收光致聚合(TPP) 9
2.3.1雙光子吸收(two-photon absorption) 9
2.3.2光致聚合(photo-polymerization) 10
2.3.3 TPP 雙光子吸收光致聚合之優點 11
2.3.4 TPP製造技術與傳統蝕刻技術之比較 12
第三章 材料與方法 14
3.1設備介紹 14
3.2 流速計 22
3.2.1單一懸壁樑微流速計 22
3.2.2複合式雙懸壁樑微流速計 23
3.2.3 複合式雙懸壁樑微流速計特色 24
3.3 模擬 25
第四章 結果與討論 28
4.1 模擬分析 28
4.1.1單一懸壁樑微流速 28
4.1.2複合式雙懸壁樑壁樑微流速計 29
4.2 TPP 實驗結果 30
4.2.1單一懸壁樑微流速 30
4.2.2複合式雙懸樑壁樑微流速計 34
第五章 結論 37
參考文獻 38
1.M.S. Cheri, H. Latifi, J. Sadeghi, M.S.Moghaddam, H, Shahraki, and H.Hajghassem, “Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor,” Analyst, vol. 139, pp. 431-438, 2014.
2.N. Noeth, S.S. Keller and A. Boisen,“Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems,” Sensors, vol.14, pp. 229-244, 2014.
3.S. Maruo, “Optically Driven Micromachines for Biochip Application,” Advances in Materials Research, vol. 9, pp. 291-309, 2008.
4.Lab-on-a-chip.gene(http://www.gene-quantification.de/lab-on-chip.html).
5.T.H. Park, and M.L. Shuler, “Integration of cell culture and microfabrication technology,” Biotechnol. Prog., vol. 19, pp. 243-253, 2003.
6.K.S. Yun, and E. Yoon, “Micro/Nanofluidic Device for Single-Cell-Based Assay,” Biomedical Microdevices, vol. 7, no. 1, pp. 35-40, 2005.
7.G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrétaz, P. Renaud, and R.P. Salathé, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Review of Scientific Instruments, vol. 78, pp. 116101, 2007.
8.C.C. Lin, C. Angela, and C.H. Lin, “Microfluidic Cell Counter/Sorter Utilizing Laser Tweezers and Multiple Particle Tracing Technique,” Biomedical Microdevices, vol. 10, pp. 55-63, 2008.
9.C.A. Stan, S.K. Tang, G.M. Whitesides, “Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate,” Anal Chem, vol. 81, pp. 2399–2402, 2009.
10.A. Manz, N. Graber, and H.M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sensors and Actuators B: Chemical, vol. 1, pp. 244–248, 1990.
11.G.V. Casquillas, M.Le. Berre, M. Piel, P.T. Tran , “Microfluidic tools for cell biological research,” Nano Today, vol. 5, pp. 28–47, 2010.
12.M. Ashauer, H. Glosch, F. Hedrich, N. Hey, H. Sandmaier, and W. Lang, “Thermal flow sensor for liquids and gases based on combinations of two principles,” Sensors and Actuators A: Physical, vol. 73, pp. 7–13, 1999.
13.A. Glaninger, A. Jachimowicz, F. Kohl, R. Chabicovsky, and G. Urban, “Wide range semiconductor flow sensors,” Sensors and Actuators A: Physical, vol. 85, pp. 139–146, 2000.
14.J. Chen, Z. Fan, J. Zou, J. Engel, and C. Liu, “Two-dimensional micromachined flow sensor array for fluid mechanics studies,” Journal of Aerospace Engineerin, vol. 16, pp. 139–146, 2003.
15.R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, and A. Berg, “A micromachined pressure/flow-sensor,” Sensors and Actuators A: Physical, vol. 77, pp. 167–177, 1999.
16.J. Collins and A. P. Lee, “Microfluidic flow transducer based on the measurement of electrical admittance,” Lab on a Chip, vol. 4, pp. 7–10, 2004.
17.M. Dijkstra, J. J. Baar, R. J. Wiegerink, T. S. J. Lammerink, J. H. Boer, and G. J. M. Krijnen, “Artificial sensory hairs based on the flow sensitive receptor hairs of crickets,” Journal of Micromechanics and Microengineering, vol. 15, pp. 132–138, 2005.
18.G.J.M. Krijnen, M. Dijkstra, J.J. Baar, S.S. Shankar, W.J. Kuipers, R. J. H. Boer, D. Altpeter, T.S.J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology, vol. 17, pp. 84–89, 2006.
19.A. Quist, A. Chand, S. Ramachandran, D. Cohen, and R. Lal, “Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels,” Lab on a Chip, vol. 6, pp. 1450–1454, 2006.
20.G.M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, pp. 368–373, 2006.
21.Y. Gong , M. Zhang, C. Gong, Y. Wu, Y. Rao, X. Fan, “Sensitive optofluidic flow rate sensor based on laser heating and microring resonator,” Microfluidics and Nanofluidics, vol. 19, pp. 1497–1505, 2015.
22.L.D.G. Garcia, E.G. Lopez, S.C. Leon, M.R. Pizana, F.L. Pacheco, J.L. Meza, D.A. Hernandez, E.J.T. Mejia, G.T. Santiago, C.A.R. Gonzalez, M.M. Alvarez, “Continuous flow micro-bioreactorsfor the production of biopharmaceuticals: the effect ofgeometry, surface texture, and flow rate,” Lab on a Chip, vol. 14, pp. 1320–1329, 2014.
23.R. Lindken, M. Rossi, S. Große and J. Westerweel, “Micro-Particle Image Velocimetry (mPIV): Recent developments, applications, and guidelines,” Lab on a Chip, Vol. 9, pp. 2551-2567, 2009.
24.C. Hoera,M.M. Skadell,S.A. Pfeiffer,M. Pahl,Z. Shu,E. Beckert,D. Belder, “A chip-integrated highly variable thermal flow rate sensor,” Sensors and Actuators B: Chemical, Vol. 225, pp. 42-49, 2016.
25.A. Petropoulos, G. Kaltsas, D. Randjelovic, E. Gogolides, “Study of flow and pressure field in microchannels with various cross-section areas,” Microelectronic Engineering, Vol. 87, pp. 827-829, 2009.
26.V. Lien, F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab on a Chip, Vol. 7, pp. 1352–1356, 2007.
27.L. Stern, A. Bakal, M. Tzur, M. Veinguer, N. Mazurski, N. Cohen and U. Levy, “ Doppler-Based Flow Rate Sensing in Microfluidic Channels,” Sensors, Vol. 14, pp. 16799-16807, 2014.
28.M.S. Cheri, H. Latifi, J. Sadeghi, M.S.Moghaddam, H, Shahraki, and H. Hajghassem, “Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor,” Analyst, vol. 139, pp. 431-438, 2014.
29.C.Y. Lee, Y.H. Wang, T.H. Hsueh, R.H. Ma,L.M. Fu, P.C. Chou, “A Smart Flow Sensor for Flow Direction Measurement,” Advanced Materials Research, vol. 47-50, pp. 189-192, 2008.
30.Q. Zhang, W. Ruan, H. Wang, Y. Zhou, Z. Wang, L. Liu, “ A self-bended piezoresistive microcantilever flow sensor for low flow rate measurement,” Sensors and Actuators A: Physical, vol. 152, pp. 273-279, 2010.
31.Y.H. Wang, C.Y. Lee, and C.M. Chiang, “A MEMS-based Air Flow Sensor with a Free-standing Microcantilever Structure,” Sensors, vol.7, pp. 2389-2401, 2007.
32.A. Ezkerra, L. J. Fern´andez, K. Mayora and J.M. R. L´opez, “Fabrication of SU-8 free-standing structures embedded in microchannels for microfluidic control,” JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 17, pp. 2264–2271, 2007.
33.N. Noeth,S.S. Keller and A. Boisen, “Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems,” Sensors, vol. 14, pp. 229-244, 2014.
34.R. Attia, D.C. Pregibon, P.S. Doyle, J.L. Viovy and D. Bartolo, “ Soft microflow sensors”, Lab on a Chip, vol. 9, pp.1213–1218, 2009.
35.潘恩亞, 蒲念文, 董玉平, 游漢輝, “雙光子吸收光致聚合技術應用於微元件製作之研究,” 中正嶺學報, 2005.
36.K. S. Lee, R. H. Kim, D. Y. yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Progress in Polymer Science, vol. 33, pp. 631-681, 2008.
37.S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Optics Latter, vol. 22, pp. 132-134, 1997.
38.Y.H. Wang, C.Y. Lee, and C.M. Chiang, “A MEMS-based Air Flow Sensor with a Free-standing Microcantilever Structure,” Sensors, vol.7, pp. 2389-2401, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top