跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘文傑
研究生(外文):PAN,WUN-JIE
論文名稱:我國天然氣公司經營績效評估之研究-資料包絡分析法與平衡計分卡整合之應用
論文名稱(外文):A Study on the Performance of Natural Gas Distribution Companies in Taiwan:An Integration of Data Envelopment Analysis and Balanced Scorecard Approaches
指導教授:孫遜孫遜引用關係
指導教授(外文):SUN,SHINN
口試委員:王金利陳心田孫遜
口試委員(外文):WANG,CHIN-LIHCHEN,SHIN-TIENSUN,SHINN
口試日期:2015-12-26
學位類別:碩士
校院名稱:佛光大學
系所名稱:管理學系
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:170
中文關鍵詞:資料包絡分析法平衡計分卡績效評估天然氣公司
外文關鍵詞:data envelopment analysisbalance scorecardperformance measurementnatural gas distribution company
相關次數:
  • 被引用被引用:3
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討民國 93-102 年我國 14 家 (上市 4 家、上櫃 2 家、公開發行未上市股票 8 家) 天然氣公司的經營績效、跨期生產力變動趨勢及環境變數對整體經營績效之影響。本研究整合確定區域模式資料包絡分析法與平衡計分卡,採用投入導向評估模式評估樣本公司經營績效與個別績效 (學習與成長構面、內部流程構面、顧客滿意構面、財務構面),使用交叉效率模式找出最佳整體經營績效與個別績效之樣本公司,使用對比模式比較上市上櫃與公開發行未上市樣本公司整體與個別績效之差異,並運用麥氏指數來分析樣本公司跨期生產力變動趨勢,利用迴歸分析來檢視外在環境變數對樣本公司整體經營績效的影響。
研究發現:(i) 樣本公司學習與成長、內部流程、顧客、財務等個別績效與整體績效表現尚可,仍有改善空間;(ii) 截至民國 102年底,6 家天然氣公司規模報酬呈現遞增,5家規模報酬呈現遞減,僅陽明山瓦斯及欣隆天然氣呈現固定規模報酬;(iii) 欣雲天然氣具有最佳學習與成長績效、顧客績效與整體績效;欣高石油氣具有最佳內部流程績效;欣嘉石油氣具有最佳財務績效;(iv) 高度整體經營績效天然氣公司具有高學習與成長績效,但卻有中高顧客績效及財務構面績效;(v) 公開發行未上市天然氣公司在顧客構面績效、財務構面績效及整體績效優於上市上櫃天然氣公司,上市上櫃天然氣公司在內部流程構面優於公開發行未上市天然氣公司;(vi) 樣本天然氣公司平均總要素生產力呈現成長,係由技術效率變動成長所致;(vii) 天然氣進口總量及用戶數對天然氣公司有正向影響且有統計顯著性,進口匯率及國際油價對樣本天然氣公司整體經營績效有負向影響且具顯著性。
The purpose of this study is to assess performance, productivity change of 14 natural gas distribution companies in Taiwan over 2003-2013 and examine the effects of environmental factors on overall performance of the exampled companies. The sampled companies include 4 listed companies at stock exchange market, 2 listed companies at over-the-counter market and 8 non-listed companies. Business performances are measured in terms of overall performance (OP) and individual perforamances: learning and growth perspective (LGP), internal process perspective (IPP), customer perspective (CP), financial perspective (FP). This study applied assurance region (AR) data envelopment analysis combined with the balanced scorecard (BSC) to assess overall performance and four individual performances of the sampled companies. The study employed cross efficiency measure to identify the best practice, used bilateral model to evaluate the overall performance and individual performances of the sampled companies, and utilized Malmquist productivity index (MPI) to estimate productivity change over a ten-year period. In addition, the study adopted Tobit regression analysis to examine the effects of environmental factors on the overall performance of the sampled companies.
Results of this study show:(i) the sampled companies perform pretty good in terms of LGP, IPP, CP, FP and OP;(ii) by the end of 2013, 6 companies were experienced increasing returns, 5 companies were experienced decreasing returns, only Yang Ming Shan Gas Co., Ltd and Shin Lung Natural Gas Co., Ltd were experienced constant returns to scale;(iii) Shin Yun Natural Gas Co., Ltd was the best performer in LGP , Hsin Kao Co., Ltd was the best practice in IPP, Shin Yun Natural Gas Co., Ltd is the best performer in CP, Shin Chia Natural Gas Co., Ltd was the best practice in FP, and Shin Yun Natural Gas Co., Ltd was the best practice in OP;(iv) a company with a high level of OP tends to have high level og LGP and intermediate-high levels of CP and FP;(v) non-listed companies outperformed listed companies in terms of CP, FP and OP; listed companies outperformed non-listed companies in terms of IPP; (vi) on average, the companies had a positive productivity growth that might be caused by progresses of technical efficiency change;and (vii) import amount of natural gas and number of users have significantly positive impacts on OP of sampled companies, import exchange rate and international crude oil prices have significantly negative impacts on the OP of sampled companies.
摘 要...................i
Abstract.................ii
誌謝辭....................iii
目錄......................iv
圖目......................v
表目......................vi
第壹章 緒論................1
第一節 研究背景.............1
第二節 研究動機與目的........5
第三節 研究問題.............7
第四節 研究方法與結構........9
第五節 研究範圍與限制........12
第六節 研究內容.............13
第貳章 文獻探討.............15
第一節 BSC文獻.............15
第二節 非DEA應用文獻........21
第三節 DEA應用文獻..........23
第四節 DEA理論文獻..........33
第五節 文獻小結.............46
第参章 研究方法.............48
第一節 研究流程.............48
第二節 研究設計.............50
第肆章 實證分析.............69
第一節 績效分析.............69
第二節 生產力變動趨勢分析....89
第三節 環境變數影響分析......92
第四節 管理意涵.............93
第伍章 結論與建議............101
第一節 結論................101
第二節 建議................102
參考文獻....................107
附錄.......................115

圖目
圖1-1 我國農業、工業及服務業國內生產毛額趨勢圖............1
圖1-2 工業五大分類產業國內生產毛額趨勢圖.................2
圖1-3 電力供應業及氣體燃料供應業國內生產毛額趨勢圖.........3
圖1-4 我國天然氣公司歷年家數成長統計圖...................4
圖1-5 我國天然氣公司93-102年營業成本統計圖...............5
圖1-6 研究結構圖.....................................11
圖2-1 平衡計分卡四構面關係圖...........................16
圖2-2 平衡計分卡策略架構圖.............................17
圖2-3 BSC因果關係圖.................................20
圖3-1 研究流程圖.....................................49
圖3-2 整體與個別績效觀念模式圖..........................54
圖4-1 整體績效與學習與成長績效關係圖....................76
圖4-2 整體績效與內部流程關係圖.........................79
圖4-3 整體績效與顧客績效關係圖.........................83
圖4-4 整體績效與財務績效關係圖.........................86

表目
表1-1 文獻彙整表.....................................6
表2-1 BSC 四構面衡量指標表............................21
表2-2 DEA應用文獻摘要表...............................27
表2-3 交叉效率矩陣表..................................39
表3-1 投入與產出項摘要表...............................50
表3-2 研究對象表.....................................55
表3-3 變數定義表.....................................58
表3-4 學習與成長績效投入項與產出項敘述統計表..............59
表3-5 學習與成長績效投入項與產出項相關係數表..............59
表3-6 內部流程績效投入項與產出項敘述統計表................60
表3-7 內部流程績效投入項與產出項相關係數表................60
表3-8 顧客績效投入項與產出項敘述統計表...................61
表3-9 顧客績效投入項與產出項相關係數表...................61
表3-10 財務績效投入項與產出項敘述統計表..................62
表3-11 財務績效投入項與產出項相關係數表..................63
表3-12 整體績效投入項與產出項敘述統計表..................64
表3-13 整體績效投入項與產出項相關係數表..................64
表3-14 環境變數定義表.................................66
表3-15 環境變數敘述統計表..............................66
表4-1 學習與成長績效投入/產出項權數比值表.................69
表4-2 內部流程績效投入/產出項權數比值表..................70
表4-3 顧客績效績效投入/產出項權數比值表..................70
表4-4 財務績效投入/產出項權數比值表.....................70
表4-5 學習與成長績效權數界限表.........................71
表4-6 內部流程績效權數界限表...........................71
表4-7 顧客績效權數界限表..............................71
表4-8 財務績效權數界限表..............................71
表4-9 天然氣公司平均個別構面績效表......................72
表4-10 整體績效投入/產出項權數比值表....................73
表4-11 整體績效權數界限表.............................73
表4-12 天然氣公司平均整體績效表........................74
表4-13 對比分析表....................................89
表4-14 跨期生產力變動趨勢表............................90
表4-15 環境變數相關係數表.............................92
表4-16 迴歸分析表....................................92
ㄧ、中文文獻
中華民國公用瓦斯事業協會 (2014) 。83期2008年4月-1台灣地區天然氣市場需求與展望【資料檔】線上檢索日期:2014 年 11 月 1 日。網址:http://www.rocga.org.tw/
中華民國公用瓦斯事業協會 (2014) 。95期2011年4月號【資料檔】線上檢索日期:2014 年 11 月 1 日。網址:http://www.rocga.org.tw/
行政院主計處 (2014)。歷年各季國內生產毛額依行業分【資料檔】。上檢索日期:2014 年 11 月 1 日。網址:http://www.stat.gov.tw/ct.asp?xItem=14616&CtNode=3564&mp=4
何建達 (民 92)。台灣上市電子業營運效率及股票市場性之研究,產業論壇,5 (3),30-55。
孫遜 (民 93)。資料包絡分析法-理論與應用。台北市:揚智文化。
張世其、李宗耀與虞孝成 (民 92)。我國IC設計上市公司經營效率之分析,產業論壇,5 (1),169-194。
陳正平、朱道凱、張淑芳、劉麗真與高子梅譯 (民 93)。策略地圖:串聯組織策略從形成到徹底實施的動態管理工具,台北市:臉譜文化出版城邦文化發行。原著:Kaplan, R., & Norton, D. P. ( 1994 )。
財團法人國家實驗研究院科技政策研究與資訊中心 (2014)。93年國內能源供需概況【資料檔】。線上檢索日期:2014 年 11 月 1 日。網址:http://cdnet.stpi.narl.org.tw/techroom/market/macro/macro023.htm
能源知識庫 (2014) 。台灣液化天然氣價格與北美管線天然氣價格差異之分析【資料檔】線上檢索日期:2014 年 11 月 1 日。網址:http://km.twenergy.org.tw/
經濟部統計處 (2014)。歷年國內各業生產與平減指數【資料檔】。線上檢索日期:2014 年 11 月 1 日。網址:http://www.stat.gov.tw/ct.asp?xItem=14616&CtNode=3564&mp=4
經濟部能源局 (2014)。2014年能源產業技術白皮書【資料檔】。線上檢索日期:2014 年11月1日。網址:http://web3.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=2324
經濟部能源局 (2014)。能源法規【資料檔】。線上檢索日期:2014 年 11 月 1 日。網址:http://web3.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=220

二、英文文獻
Adler, N., Friedman, L., & Sinuany-Stern, Z. (2002). Review of ranking methods in the data envelopment analysis context. European Journal of Operational Research, 140, 249-265.
Aivazian, V.A., Callen, J.L., Chan, M.W.L., & Mountain, D.C. (1987). Economies of scale versus technological change in the natural gas transmission industry. The Review of Economics and Statistics, 69, 55-561.
Ali, L. A., & Nakosteen, R. (2005). Ranking industry performance in the US. Socio-Economic Planning Sciences, 39, 11-24.
Al-Shammari, M. (1999). Optimization modeling for estimating and enhancing relative effciency with application to industrial companiesey. European Journal of Operational Research, 115, 488-496.
Amado, A. F. C., Santos, P. S., & Marques, M. P. (2012). Integrating the data envelopment analysis and the balanced scorecard approaches for enhanced performance assessment. Omega, 40, 390-403.
Amirteimoori, A. (2006). Data envelopment analysis in dynamic framework. Applied mathematics and computation, 181(1), 21-28.
Amirteimoori, A., & Kordrostami, S. (2012). A distance-based measure of super efficiency in data envelopment analysis: An application to gas companies. Journal of Global Optimization, 54(1), 117-128.
Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39(10) , 1261-1264.
Baker, R. C., & Talluri, S. (1997) A closer look at the use of data envelopment analysis for technology selection. Computers and Industry Engineering, 32(1), 101-108
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30, 1078-1092.
Banker, R﹒D.﹐& Thrall, R﹒C. (1992). Estimating most productive scale size using data envelopment analysis. European Journal of Operational Research, 62, 74-84.
Banxia Software Ltd. (2003). Frontier analyst professional (version 4.0)
Caves, D.W., Chrstensen, L. R., & Diewert, W. E. (1982). The economic theory for index number of the measurement of input output and productivity. Econometrica﹐50 (6), 1393-1414.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429-444.
Coelli, T. J. (1996). A guide to DEAP version 2.1: A data envelopment analysis (computer) program. Working paper, Center for efficiency and productivity analysis. University of New England.
Cooper, W. W., Deng, H., Gu, B., Li, S., & Thrall, R. M. (2001). Using dea to improve the management of congestion in Chinese industries (1981-1997). Socio-Economic Planning Sciences, 35, 227-242.
Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis – A comprehensive text with models, applications, references and DEA–solver software. Boston:Kluwer Academic Publishers.
Doyle, J., & Green, R. (1994). Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. Journal of Operational Research Society, 4(5), 567-578.
Düzakin, E., & Düzakin, H. (2007). Measuring the performance of manufacturing firms with super slacks based model of data envelopment analysis: An application of 500 major industrial enterprises in Turkey. European Journal of Operational Research, 182, 1412-1432.
Ebnerasoul, S. A., Yavarian, H., & Azodi, M. A. (2009). Performance evaluation of organizations: An integrated data envelopment analysis and balanced scorecard approach. International Journal of Business and Management, 4(4), P42.
Ellig, J., & Giberson, M. (1993). Scale, scope, and regulation in the Texas gas transmission industry. Journal of Regulatory Economics, 5, 79-90.
Erbetta, F., & Rappuoli, L. (2008). Optimal scale in the italian gas distribution industry using data envelopment analysis. Omega, 36, 325-336.
Ertürk, M., & Türüt-Aşık, S. (2011). Efficiency analysis of Turkish natural gas distribution companies by using data envelopment analysis method. Energy Policy, 39(3), 1426-1438.
Fabbri P., Fraquelli G., & Giandrone R. (2000). Costs, technology and ownership of gas distribution in Italy. Managerial and Decision Economics, 21, 71–81.
Färe, R., Grosskopf, S., Lindgren, B., & Roos, P. (1994). Productivity developments in swedish hospitals : A Malmquist output index approach. In A. Charnes, W. W. Cooper, A. Y. Lewin, & L. M. Seiford (Eds.), Data enveiopment analysis : Theory methodology and applicatins, (pp. 253-272). Boston : Kluewr Academic Publishers.
Goncharuk A.G. (2008). Performance benchmarking in gas distribution industry. Benchmarking: An International Journal, 15(5), 548-559.
Gorak, T.C., & Ray, D. J. (1995). Efficiency and equity in the transition to a new natural gas market. Land Economics, 71(3), 368-385.
Hawdon (2003). Efficiency, performance and regulation of the international gas industry—A bootstrap DEA approach. Energy Policy , 31, 1167-1178.
Hollas, D.R., & Stansell, S.R. (1988). Regulation, interfirm rivalry, and the economic efficiency of natural gas distribution facilities. Quarterly Review of Economics and Business, 28 (4), 2137.
Hollas, D.R., Macleod, K.R., & Stansell, S.R. (2002). A data envelopment analysis of gas utilities' efficiency. Journal of Economics and Finance, 26(2), 123-137.
Jamasb, T., Newbery, D., Pollitt, M., & Triebs, T. (2007). International benchmarking and regulation of european gas transmission utilities. Final Report, Council of European Energy Regulators.
Jamasb, T., Pollitt, M., & Triebs, T. (2008). Productivity and efficiency of US gas transmission companies: A European regulatory perspective. Energy Policy, 36(9), 3398-3412.
Kaplan, R.S., & Norton, D.P. (1992). The balanced scorecard: Measures that drive performance. Harvard Business Review, 70, 71-79.
Kaplan, R.S., & Norton, D.P. (1996). Using the balanced scorecard as a strategic management system. Harvard Business Review, 74(1), 75-86.
Khaki, A., Najafi, S., & Rashidi, S. (2012). Improving efficiency of decision making units through BSC-DEA technique. Management Science Letters, 2(1), 245-252.
Kim, T.Y., & Lee, J.D. (1996). Cost analysis of gas distribution industry with spatial variables. The Journal of Energy and Development, 20, 247–67.
Malmquist, S. (1953). Index number and indifference surfaces. Trabajos de Estatistica, 4, 209-242.
Qazi, Q. A., & Yulin, Z. (2012). Productivity measurement of hi-tech industry of China malmquist productivity index – DEA approach. Procedia Economics and Finance, 1, 330-336.
Rossi, M.A. (2001). Technical change and efficiency measures: The post-privatisation in the gas distribution sector in Argentina. Energy Economics, 23( 2), 295-304.
Sadjadi, S.J., Omrani, H., Abdollahzadeh, S., Alinaghian, M., & Mohammadi, H. (2011). A robust super-efficiency data envelopment analysis model for ranking of provincial gas companies in Iran. Expert Systems with Applications, 38, 10875-10881.
Saitech, Inc. (2004). DEA solver professional (version 4.1)
Saranga, H. (2009). The Indian auto component industry – Estimation of operational efficiency and its determinants using dea. European Journal of Operational Research, 196, 707-718.
Satty, T. L. (1980) The analytic hierarchy process. McGrawHill:New York.
Seifert, M. L., & Zhu, J. (1998). Identifying excesses and deficits in Chinese industrial productivity (1953-1990) : A weighted data envelopment analysis approach. Omega, 26, 279-296.
Sexton, T. R., Slikman R. H., & Hogan, A. (1986). Data envelopment analysis : Critique and extensions. In R. H. Slikman (Eds.), Measuring efficiency : An assessment of data envelopment analysis, (pp.73-105). San Francisco: Jossey Bass Inc.
Shephard, R. W. (1970). Theory of cost and production function. Princeton: Princeton University Press.
Silkman, R. H. (Ed.). (1986). Measuring efficiency: An assessment of data envelopment analysis (No. 32). San Francisco: Jossey Bass Inc.
Sueyoshi, T., & Goto, M. (2010). Measurement of a linkage among environmental, operational, and financial performance in Japanese manufacturing firms: A use of data envelopment analysis with strong complementary slackness condition. European Journal of Operational Research, 207, 1742-1753.
Thanassoulis, E., Boussofiane, A., & Dyson, G. R. (1995). Exploring output quality targets in the provision of perinatal care in England using data envelopment analysisxploring output quality targets in the provision. European Journal of Operational Research, 80, 588-607.
Thompson, R. G., Singleton, F. D., Thrall, R. M., & Smith, B. A. (1986). Comparative site evaluations for locating high energy lab in texas. Interfaces, 16, 1380-1395.
Tobin, J., (1958). Estimation of relationships for limited dependent variables. Econometrica, 26 (1), 24-36.
Tseng, F. M., Chiu, Y. J., & Chen, J. S. (2009). Measuring business performance in the high-tech manufacturing industry : A case study of Taiwan’s large-sized TFT-LCD panel companies. Omega, 37, 686-697.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top