跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/21 14:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱得倫
研究生(外文):Chiu, Te-Lun
論文名稱:基於6LoWPAN架構實作智慧建築感測網路互連系統
論文名稱(外文):Based on 6LoWPAN Architecture-Implementing Sensor Networking Interconnection Systems for Intelligent Buildings
指導教授:莊岳儒
指導教授(外文):Chuang, Yue-Ru
口試委員:劉惠英陳仁暉莊岳儒
口試委員(外文):Liu, Huey-IngChen, Jen-HuiChuang, Yue-Ru
口試日期:2016-06-30
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:56
中文關鍵詞:無線感測網路主動式RPL自我組織演算法樹狀架構智慧建築
外文關鍵詞:Wireless Sensor NetworkActive RPLSelf-Organization AlgorithmTree-BasedIntelligent Buildings
相關次數:
  • 被引用被引用:2
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文基於IEEE 802.15.4 ZigBee無線感測網路技術以及RPL (IPv6 Routing Protocol for Low-Power and Lossy Networks)路由機制提出一套主動式RPL (Active RPL)路由機制。此提出的路由機制是一種自我組織演算法,藉由此路由機制可以針對任何建築自主性的建構出一個樹狀架構的感測網路互連系統。利用此互連系統可以為任何建築物形成一個「基礎建設」,進而輕易的實現智慧建築的目的。

本論文所提出的主動式RPL路由機制是根據原本RPL機制的缺點進行改良而產生的版本。原本RPL機制在產生樹狀路由拓樸時,節點通常只能被動地等待接收由樹根節點(Root Node)廣播出來的DIO訊息,而此DIO訊息也會在整個樹狀路由拓樸中進行轉送。如此,各節點將會消耗較多的電力與浪費較多的網路頻寬,且樹狀路由拓樸建置的時間也需要較久。相反的,主動式RPL路由機制允許所有在網路中尚未建立連線的節點主動地向鄰近已完成連線建立之節點發送DIS訊息以尋求DIO訊息,如此可大量節省電力消耗與網路頻寬,同時也可加速完成自我組織之目的。

此外,本論文針對主動式RPL路由機制中的樹幹節點(Trunk Node)的Prf (Prefer)欄位以及LB (Load Balance)係數的值做了特殊的設定,再配合主動式RPL的PSR (Parent Selection Rules)規則,其將可大幅減少一般子節點(Child Node)在選擇樹幹節點作為父節點(Parent Node)的可能性,如此也可達到網路流量負載平衡的目的。

Based on IEEE 802.15.4 ZigBee wireless sensor network technique and RPL (IPv6 Routing Protocol for Low-Power and Lossy Networks) routing mechanism, this paper proposed an active RPL routing mechanism, which is a self-organization algorithm. It can be used to autonomously construct a tree-based sensor network interconnection system for buildings. By using this interconnection system, an “infrastructure” can be formed for buildings to easily achieve the goal of intelligent buildings.

The proposed active RPL routing mechanism is an improved version according to the drawbacks of the original RPL mechanism. When the original RPL mechanism is performed to generate a tree-based topology, nodes usually passively wait for receiving DIO messages broadcasted from root node, and the DIO messages are forwarded in the whole tree-based topology. Thus, each node will consume more power (energy) and network bandwidth. Moreover, it also takes much time to construct a tree-based topology. Contrarily, active RPL routing mechanism allows each node without network connection to actively send DIS messages to its neighbor nodes with network connection to get DIO messages. Thus, power consumption and network bandwidth will be reduced, and the topology self-organization can also be accelerated to complete.

In addition, the Prf (prefer) field and LB (load balance) coefficient in the trunk nodes in the active RPL mechanism also have special design. The design accompanying with PSR (Parent Selection Rules) will be able to significantly reduce the possibility for child node choosing trunk node as its parent node. Thus, the goal of traffic load balance can also be achieved.

摘要.................................................i
英文摘要............................................ii
誌謝...............................................iii
目錄................................................iv
表目錄..............................................vi
圖目錄.............................................vii
第一章 緒論.........................................1
1.1 引言............................................1
1.2 研究動機........................................2
1.3 主要貢獻........................................3
第二章 相關背景知識與研究 ............................4
2.1 6LoWPAN架構介紹.................................4
2.1.1 6LoWPAN的協定堆疊架構.........................4
2.1.2 在協定堆疊架構中的IEEE 802.15.4協定............5
2.1.3 6LoWPAN Adaptation Layer.....................6
2.2 IP Header與RPL.................................8
2.2.1 IP Header與RPL控制訊息........................8
2.2.2 RPL控制訊息 – DIS訊息.........................9
2.2.3 RPL控制訊息 – DIO訊息.........................9
2.2.4 RPL控制訊息 – DAO訊息........................11
2.2.5 RPL控制訊息 – DAO-ACK訊息....................11
2.2.6 掛載在控制訊息後方的欄位 – Option欄位..........12
2.3 RPL動作機制介紹................................13
第三章 主動式RPL機制與位址分配演算法.................14
3.1 主動式RPL路由演算法............................14
3.1.1 主動式RPL機制的動作介紹.......................14
3.1.2 主動式RPL的Child Node狀態圖..................16
3.1.3 主動式RPL的Parent Node狀態圖.................17
3.1.4 主動式RPL的Child Node與Parent Node通訊時間軸..19
3.2 HiLow位址分配演算法............................23
3.3 負載平衡的考量.................................26
3.4 主動式RPL的Option標頭格式......................28
第四章 主動式RPL機制的範例與討論....................30
4.1 Trunk Node在自我組織中所扮演的角色與功能........30
4.2 RPL路徑選擇 – PSR的討論........................31
4.2.1 原始RPL機制的................................32
4.2.2 解決方法 – 套用主動式RPL機制..................33
4.2.3 PSR的延伸討論................................34
4.2.4 歷史訊息的應用...............................35
4.3 主動式RPL – 位於非伺服器所在樓層的群組...........36
4.4 主動式RPL – 位於伺服器所在樓層的群組.............37
4.5 主動式RPL特殊案例討論 – 孤立節點.................40
4.5.1 Trunk Node的討論.............................40
4.5.2 其他節點的討論................................41
第五章 實測結果與參考程式碼..........................43
5.1 網路拓樸平面架構................................43
5.1.1 架構簡介.....................................43
5.1.2 ZigBee無線感測器平台..........................44
5.1.3 實際架構.....................................44
5.2 資料庫系統.....................................47
5.3 傳送溫度資料之封包格式..........................49
5.4 參考程式碼.....................................50
第六章 結論與未來展望...............................54
參考文獻............................................55


[1]“Libelium World,” http://www.libelium.com/libeliumworld, 2016.
[2]“LoRa Alliance,” https://www.lora-alliance.org/, 2016.
[3]許家聲,「具有自我組織與最小封閉區域機制的智慧型居家空調控制網路之研究與實作」,碩士論文,天主教輔仁大學,新莊,2012。
[4]鄭立,「ZigBee開發手冊」,全華圖書股份有限公司,2008。
[5]IEEE Std. 802.15.4-2011, “Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs),” 2011.
[6]“ZigBee Alliance,” http://www.ZigBee.org/, 2016.
[7]Gabriel Montenegro, Nandakishore Kushalnagar, Jonathan W. Hui and David E. Culler, “IPv6 over IEEE 802.15.4,” RFC 4944.
[8]Tim Winter and Pascal Thubert, “RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks,” RFC 6550.
[9]Hong Yu and Jingsha He, “Improved Hierarchical Routing over 6LoWPAN,” in Proc. IEEE International Conference on Communication Software and Networks (ICCSN), pp. 377-380, May 2011.
[10]M. Ali Lodhi, Abdul Rehman, Meer M. Khan and Faisal Bashir Hussain, “Multiple Path RPL for Low Power Lossy Networks,” in Proc. IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), pp. 279-284, August 2015.
[11]X. Liu, J. Guo, G. Bhatti, P. Orlik and K. Parsons, “Load Balanced Routing for Low Power and Lossy Networks,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), pp. 2238-2243, April 2013.
[12]Ming Zhao, Hnin Yu Shwe and Peter Han Joo Chong, “Cluster-parent Based RPL for Low-Power and Lossy Networks in Building Environment,” in Proc. 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), pp. 779-784, January 2015.
[13]Philip Levis, Thomas Heide Clausen, Jonathan Hui, Omprakash Gnawali and JeongGil Ko, “The Trickle Algorithm,” RFC 6206.
[14]Debashis Saha and Varadharajan Sridhar, Next Generation Data Communication Technologies: Emerging Trends, Igi Global, India, pp. 275, December 2011.
[15]Shahid Raza, Simon Duquennoy, Tony Chung, Dogan Yazar, Thiemo Voigt and Utz Roedig, “Securing Communication in 6LoWPAN with Compressed IPsec,” in Proc. International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS), pp.1-8, June 2011.

[16]Abdul Samiah, Arshad Aziz and Nassar Ikram, “An Efficient Software Implementation of AES-CCM for IEEE 802.11i Wireless Standard,” in Proc. 31st Annual International Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 689-694, July 2007.
[17]Quang-Dung Ho, Yue Gao, Gowdemy Rajalingham and Tho Le-Ngoc, “Compact Dual Block AES Core on FPGA for CCM Protocol,” in Proc. International Conference on Communications (ICC), pp.1-8, September 2015.
[18]Hun-Jung Lim and Tai-Myoung Chung, “The Bias Routing Tree Avoiding Technique for Hierarchical Routing Protocol over 6LoWPAN,” in Proc. 5th International Joint Conference on INC, IMS and IDC, pp. 232-235, August 2009.
[19]Quang-Dung Ho, Yue Gao, Gowdemy Rajalingham and Tho Le-Ngoc, “Robustness of the Routing Protocol for Low-power and Lossy Networks (RPL) in Smart Grid’s Neighbor-Area Networks,” in Proc. IEEE International Conference on Communications (ICC), pp. 826-831, June 2015.
[20]Tsung-Han Lee, Xiang-Shen Xie and Lin-Huang Chang, “RSSI-Based IPv6 Routing Metrics for RPL in Low-power and Lossy Networks,” in Proc. IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1714-1719, October 2014.
[21]Alex Conta, Stephen Deering and Mukesh Gupta, “Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification,” RFC 4443.
[22]Aminul Haque Chowdhury, Muhammad Ikram, Hyon-Soo Cha, Hassen Redwan, S. M. Saif Shams, Ki-Hyung Kim and Seung-Wha Yoo, “Router-over vs Mesh-under Routing in 6LoWPAN,” in Proc. International Conference on Wireless Communications and Mobile Computing: Connecting the World Wirelessly (IWCMC), pp. 1208-1212, June 2009.
[23]Suman Sankar Bhunia, Dilip Kanti Sikder, Sarbani Roy and Nandini Mukherjee, “A Comparative Study on Routing Schemes of IP Based Wireless Sensor Network,” in Proc. 9th International Conference on Wireless and Optical Communications Networks (WOCN), pp. 1-5, September 2012.
[24]Zhang Jianwu and Zhang Lu, “Research on Distance Measurement Based on RSSI of ZigBee,” in Proc. ISECS International Colloquium on Computing, Communication, Control, and Management, pp. 210-212, August 2009.
[25]Lei Wu, Jian-lin Huang and Zheng-Hua Zhao, “ZigBee Wireless Location System Research,” in Proc. 2nd International Conference on Computer Modeling and Simulation (ICCMS ’10), vol. 3, pp. 316-320, January 2010.

[26]JP Vasseur, Navneet Agarwal, Jonathan Hui, Zach Shelby, Paul Bertrand, Founder and Cedric Chauvenet, “RPL: The IP Routing Protocol Designed for Low Power and Lossy Networks,” Internet Protocol for Smart Objects (IPSO) Alliance, April 2011.
[27]Di Wang, Zhifeng Tao, Jinyun Zhang and Alhussein A. Abouzeid, “RPL Based Routing for Advanced Metering Infrastructure in Smart Grid,” in Proc. IEEE International Conference on Communications Workshops, pp. 1-6, May 2010.
[28]Fu Cheng, Xu Chunxiu, Wu Muqing, Wen Jingrong and Tang Xiong, “A Mesh-under Routing Protocol for 6LoWPAN Based on Imote2 Platform,” in Proc. IEEE 13th International Conference on Communication Technology (ICCT), pp. 652-655, September 2011.
[29]Preetha Thulasiraman, “RPL Routing for Multigateway AMI Networks Under interference Constraints,” in Proc. IEEE International Conference on Communications (ICC), pp. 4477-4482, June 2013.
[30]Kyle Christopher L. Melchor, Christopher D. Obniala and Jhoanna Rhodette I. Pedrasa, “Implementation of a Routing Protocol for Smart Grid’s Low-Power and Lossy Network,” IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), pp. 1-7, November 2015.
[31]Meng-Shiuan Pan, Hua-Wei Fang, Yung-Chih Liu and Yu-Chee Tseng, “Address Assignment and Routing Schemes for ZigBee-Based Long-Thin Wireless Sensor Networks,” in Proc. Vehicular Technology Conference, VTC Spring, pp. 173-177, May 2008.
[32]Pascal Thubert, “Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL),” RFC 6552.
[33]Dong Han and Omprakash Gnawali, “Performance of RPL under Wireless Interference,” IEEE Communications Magazine, vol. 51, issue 12, pp. 137-143, December 2013.
[34]Arjun P. Athreya and Patrick Tague, “Network Self-organization in the Internet of Things,” in Proc. IEEE International Conference on Sensing, Communications and Networking (SECON), pp. 25-33, June 2013.
[35]Arjun P. Athreya and Patrick Tague, “Self-organization of a Mesh Hierarchy for Smart Grid Monitoring in Outage Scenarios,” in Proc. IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1-6, February 2013.
[36]Parag Kulkarni, Sedat Gormus, Zhong Fan and Benjamin Motz, “A Self-organising Mesh Networking Solution Based on Enhanced RPL for Smart Metering Communications,” in Proc. IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1-6, June 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top