跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方聰然
研究生(外文):Tsung-Jan Fang
論文名稱:量測系統分析的評估研究-TS 16949
論文名稱(外文):On Evaluation of Measurement Systems Analysis – TS 16949
指導教授:陳文魁陳文魁引用關係曹以明曹以明引用關係
指導教授(外文):Wen-Kuei ChenI-Ming Chao
學位類別:博士
校院名稱:義守大學
系所名稱:工業管理學系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:112
中文關鍵詞:量測系統分析蒙地卡羅模擬量測雙現變異組內相關係係數再現變異同現變異
外文關鍵詞:Measurement System Analysis(MSA)Monte Carlo SimulationGauge Repeatability and Reproducibility(GRR)Intraclass Correlation Coefficient(ICC)Equipment Variation(EV)Appraiser Variation(AV)
相關次數:
  • 被引用被引用:4
  • 點閱點閱:498
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
工業界的量測系統分析(Measurement Systems Analysis, MSA),習於採用表格化的方式來評價量測系統分析,通常由TS 16949國際品質系統五大核心工具之一,MSA指導手冊(2010)的評估準則,進行量測系統的評估,而量測過程的其真正統計模型尚未得知,經常使用由實驗獲得數據,透過變異數分析(Analysis of Variance, ANOVA),來分析量測系統的誤差及探討量測數據之變異數的變化。而古典儀錶的一致性分析時,其使用變異數分析之組內相關係數(Intraclass Correlation Coefficient , ICC)的理論來分析,與現代量測系統分析之量測雙現變異(Gauge Repeatability and Reproducibility,GRR)有所不同,本研究就其關聯性予以探討及推導彼此之間關係。
在產業界的量測行為前提,依MSA指導手冊(2010)的評估準則假設,本文提出量測雙現變異(GRR)模擬流程,並建構其對應的統計模擬程序,透過蒙地卡羅模擬方法(Monte Carlo Simulation Method)的意涵,創新的結合統計概念及Excel的函數表示為 f(x)=ROUND (NORM.INV (RAND () ,Mean ,Standard_dev ) ,2 ),其 Excel 的 RAND 隨機亂數函數的運用,可產生隨機亂數,隨機亂數為0~1之間數值,其值可視為累加累積機率函數的機率值,再使用 NORMINV 反函數,得到其累加累積機率函數的機率值與常態分配位置對應之數值,所得位置對應之數值,再利用轉換為標準常態分配的方法 z=((x-μ))⁄σ,與設定量測系統參數之平均數與標準差,可求得其模擬量測系統的量測實驗值。
由上述之 GRR統計模擬程序,設定九種不同的量測行為情境,其九種情境各模擬1000次,所產生的量測系統之 GRR量測實驗值,使用MSA指導手冊(2010)提供長表格法(Long Form Table)的評估準則與雙因子巢狀式設計模式之變異數分析(Nested Design Model ANOVA)方法,評估量測系統之精度的再現變異(Equipment Variation, EV)及同現變異(Appraiser Variation, AV),即為量測雙現變異(GRR),其兩者方法之間差異和敘述性統計量分析,並藉由%GRR量測能力指標評估,進而衡量該量測系統的整體表現,確保量測系統之良窳。

The industry accustomed to form-based approach to evaluate the MSA, usually one of the five core tools TS 16949 international quality system, MSA Guidebook (2010) of the Long Form Table method assessment criteria, to assess the measurement system, however its true statistical model of the measurement process is not yet known. Data obtained from the experiment, is to analysis error measurement system and discuss changes in the number of variations of the measured data by Analysis of Variance (ANOVA). While the reliability measurement of classical instruments, the group apply ANOVA of the correlation coefficient (Intraclass Correlation Coefficient, ICC) theory to analyze with precision variation (EV, Equipment Variation and AV, Appraiser variation) of the measurement system analysis. It differs from Gauge Repeatability and Reproducibility (GRR). This study is to explore and derive the relations between each other on their relevance.
In the measuring behavior of industry, according to MSA Guidebook (2010) assessment criteria assumption, this study proposed the GRR simulation process and the corresponding statistical model simulation program was constructed, through the Monte Carlo simulation method innovative combined with statistical probability concepts and Excel''s function expressed as f(x)=ROUND(NORM.INV(RAND(),Mean ,Standard_dev),2). It used Excel''s RAND random number function and NORMINV inverse function. It can generate random number by RAND function, the value be 0 to 1. The value can be as the cumulative probability of the cumulative probability function value, and then use the NORMINV inverse function to obtain the value of their cumulative probability function of probability values and normal distribution corresponding to the position of the value. It obtained corresponding to the position of values; then to convert the standard normal distribution z=((x-μ))⁄σ, with setting the mean and standard deviation of the measurement system parameters, GRR simulation of experiments measured value can be obtained.
This study used the GRR statistical model simulation program, set nine different measurement situations. In each situation, 1000 times simulations are executed to obtain GRR experimental measured values. These values were analyzed with a Long Form Table method assessment criteria provided by MSA Guidebook (2010) and two-way nested design model ANOVA method, to estimate of the evaluation precision of measurement system of equipment of variation (EV) and appraiser variation (AV), is now called gauge repeatability and reproducibility (GRR). To describe basic statistics, and difference between its two methods, and then evaluate performance in the precision performance indicators of the measurement system is to ensure the measurement systems analysis.

第一章 緒論 1
第一節 研究動機 1
第二節 研究目的與範圍 3
第三節 量測科技統計名詞 5
第四節 研究流程 10
第二章、文獻回顧 11
第一節 古典儀錶一致性分析 11
第二節 IsoPlot理論簡介 13
第三節 量測系統分析 15
第四節 量測系統之GRR 評估方法 22
第五節 蒙地卡羅方法模擬 GRR 35
第三章 雙因子變異數分析 39
第一節 重複量測 39
第二節 交叉式設計 40
第三節 巢狀式設計 48
第四章 模型研究 54
第一節 GRR 量測程序 54
第二節 量測系統評估 69
第三節 精度評估 71
第五章 模擬與分析 77
第一節 GRR 模擬程序 77
第二節 情境假設 80
第三節 GRR 評估指標基準 83
第四節 GRR模擬流程設計 84
第五節 成果分析 87
第六章 結論與建議 96
第一節 結論 96
第二節 建議與未來研究 98
參考文獻 99

中文部分
李協親(2009),量測系統準度分析,義守大學工業工程與管理學系碩士論文
李熙苑(2009),多實驗室量測管理之研究,義守大學工業工程與管理學系碩士論文
林松茂(2008),ISO/TS 16949(2002年版)品質管理系統稽核常見問題研討會心得分享,品質月刊,44(2),32-38
林君姵(2008),等力管圖與同現度之研究,義守大學工業工程與管理學系碩士論文
張值輝(2003),量測系統評價–量測能力指標 %P/T 與 %GRR 之探討,中華民國品質學會第 39屆年會暨第 9屆全國品質管理研討會
楊麗伶(2009),讓MSA發揮最大功效,品質月刊,45(11),54-58
陳文輝(2002a),ISO/TS 16949(2002年版)技術標準淺介,品質月刊,38(3),75-76
陳文輝(2002b),從ISO/TS 16949 談全球佈局,品質月刊,38(4),91-92
陳文進(2010),企業的經營武器–總經理深入運用 ISO 9001 品質管理體系,品質月刊,46(1),43-46
陳文魁、方聰然(2011),MSA漫談序列 IV,品質月刊,47(2), 25-28
陳超塵(1991),統計學(更新版),台灣商務印書館
黃灯耀(2010),量測系統分析,品質月刊,46(2), 49-52
劉漢容、陳文魁(2005),品質管理-六標準差式(初版),台中:滄海書局
鄭希龍(2001),量測系統 ( MSA )之作法與解析,量測資訊,77,54-60

英文部分
Andrea, Z., Bianca S., Marcantonio C. and Lorenzo C.(2016), Repeatability and Reproducibility Techniques for the Analysis of Measurement Systems, Measuremen, 86, 125-132.
Arnaud Douce Nando de Freitas Neil Gordon(2001), Sequential Monte Carlo Methods in Practice , Springer Science Business Media, Inc.
Automotive Industry Action Group (2010), Measurement System Analysis Manual, 4th ed., United States of America.
Barraentine, L. B.(2003), Concepts for R&R Studies, 2th ed., Milwaukee: ASQC Quality Press.
Bartko, J. J.(1976), On various intraclass correlation reliability.Psychological Bulletin, 83, 762–765.
Duane, A.F. and Carl, J.L.(1995-1996), Gauging: An Underestimated Consideration in the Application of Statistical Process Control, Quality Engineering, 8(1), 13-29.
Duncan, A. J.(1986), Quality Control and Industrial Statistics, 5th ed., Homewood, Illinois.
Fisher, R. A.(1938), Statistical Methods for Research Workers, 7th ed., Edinburgh, Scotland: Oliver and Boyd.
Fruit, R.(1997), The New Approach to Gage R&R, Manufacturing Engineering, 119(1), 16.
Gentel, J. E.(2003), Random Number Generation and Monte Carlo Methods, 2th ed., Springer Science Business Media, Inc.
Haggard, E.A.(1958), Intraclass Correlation and the Analysis of Variance. New York: Dryden.
James, P. D. and Finderne A.(1991), Graphical Displays of Gage R&R Data, ASQC Quality Congress Transaction, 835-839.
John M. and Theodore W. L.(1987), The Nature of Repeatability and Reproducibility, Journal of Quality Technology, 19(1), 29-36.
Lupo, C.(2002), ISO/TS 16949 the Clear Choice for Automotive Suppliers, Quality Progress, 35(10), 45-49.
Mandel, J.(1972), Repeatability and Reproducibility, Journal of Quality Technology, 4(2), 74-85.
Montgomery, D. C. and Runger, G. C.(1993a), Gauge Capability Analysis and Designed Experiment. Part I: Basic Methods, Quality Engineering, 6(1), 115-135.
Montgomery, D. C. and Runger, G. C.(1993b), Gauge Capability Analysis and Designed Experiments. Part II : Experimental Design Models and Variance Component Estimation, Quality Engineering, 6(2), 289-305.
Montgomery, D. C.(2001), Design and Analysis of Experiments, 2th ed., John Wiley & Sons, New York, 66-69, 531-534.
Nelson, L.(1975), Use of the Range to Estimate Variability, Journal of Quality Technology,,7(1), 46-48.
Reid, R. D.(2005), TS 16949 : Where Did It Come From?, Quality Progress, 31-38.
Robert, C.P. and Casella, G.(2004), Monte Carlo Statistical Methods, 2th ed., Springer-Verlag.
Ryan P. Browne, R. Jock MacKay and Stefan H. Steine(2009), Two-Stage Leveraged Measurement System Assessment, American Society for Quality, 51(3), 239-249.
Shrout, P. Fleiss, J.L.(1979), Intraclass correlations: uses in assessing rater reliability. Psychol Bull, 86, 420-428.
Steiner, Stefan H. and R. Jock MacKay(2005), Statistical Engineering: An Algorithm for Reducing Variation in Manufacturing Processes, ASQ Store.
Tsai, P.(1988-89), Variable Gauge Repeatability and Reproducibility Study Using the Analysis Of Variance Method, Quality Engineering, 1(1), 107-115.
Tsu-Ming Yeh, Jia-Jeng Sun.(2013), Using the Monte Carlo Simulation Methods in Gauge Repeatability andReproducibility of Measurement System Analysis, Journal of Applied Research and Technology, 11(1), 780-796.
Vardeman, Stephen B., and VanValkenburg, Enid S.(1999), Two-Way Random-Effects Analyses and Gauge R&R Studies, Technometrics, 41(3), 202-211.
Wen-Kuei Chen, Cheng-Feng Hu.(2014), Is the Isoplot an Ellipse? A Study on Isoplot for the Measurement System Analysis , Quality Engineering, 26(3), 350-358.
Wen-Kuei Chen, Tsung-Jan Fang.(2015), Statistical Theory for Shainin’s IsoPlot, Journal of Quality , 22(1),47-56.
Wheeler, D. J. and Lyday, R. W.(2006), Evaluating the Measurement Process , 2th ed., Knoxville Tennessee, SPC Press.
Wheeler, D. J.(1992), "Problems with Gauge R&R Studies", ASQC Quality Congress Transactions, 179-185.
Wheeler, D. J.(2004), Advanced Topics in Statistical Process Control, 2th ed. Bedford, TN: SPC Press.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top