跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 09:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施易呈
研究生(外文):Yi-Cheng Shih
論文名稱:超(次)臨界水熱法合成奈米銥/還原態氧化石墨烯奈米複合材料應用於NADH之感測
論文名稱(外文):Hydrothermal Synthesized Iridium/ Reduced Graphene Oxide Nanocomposite for NADH Sensing
指導教授:王詩涵王詩涵引用關係
指導教授(外文):Shih-Han Wang
學位類別:碩士
校院名稱:義守大學
系所名稱:化學工程學系暨生物技術與化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:77
中文關鍵詞:電化學式生物感測器還原態氧化石墨烯奈米銥
外文關鍵詞:Electrochemical biosensorNADHReduced Graphene OxideIridium nanoparticle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:36
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係藉水熱技術製備金屬奈米粒子修飾之還原態氧化石墨烯(Ir/rGO),透過結合石墨烯具備高比表面積與高導電度等優勢,以及超臨界流體無表面張力特性,促使奈米銥金屬均勻沉積於rGO,粒徑細緻,介於1.2 nm至1.4 nm之間,並透過EDS與ESCA交互驗證確認奈米銥金屬粒子確實和rGO結合為奈米複合材料,與電流式訊號換能器整合,製備一電化學式NADH感測器。
以奈米銥/還原態氧化石墨烯複合材料(Ir/rGO)作為電化學觸媒,修飾於感測器之工作電極,以感測煙醯胺腺嘌呤二核苷酸(β-nicotinamide adenine dinncleotide﹐reduced form﹐NADH)之濃度變化,藉此提高NADH於電化學反應中之靈敏度,感感測極限落在femto-molar等級,成功地建立高靈敏度之NADH感測平台。

A facile, rapid and sensitive electrochemical sensing platform for β-nicotinamide adenine dinncleotide (NADH) based on Iridium/reduced graphene oxide(Ir/rGO) was investigated. The Ir/rGO nanocomposite was synthesized by hydrothermal technique. TEM, ESCA and FT-IR result indicated that iridium nanoparticles were decorated on the rGO successfully. The electrochemical sensing result illustrated that Ir/rGO provided a large electrochemical active area as well as suitable environment for electron transfer from NADH to the electrode. The detection limit of this sensor showed extremely low detection limit at femto-molar level with sensitivity of 5.99 μA/Log(fM) mm2.

摘要 I
Abstract II
誌謝 III
目錄 VI
圖目錄 VIII
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 理論基礎與文獻回顧 3
2.1 NADH簡介 3
2.2 奈米材料特性 8
2.3 石墨烯之特性及應用 9
2.4 奈米觸媒於生醫感測器之應用 17
2.5 超臨界水熱法 19
2.6 感測器簡介 21
第三章 實驗部分 23
3.1 實驗藥品 23
3.2 實驗架構 24
3.3 超(次)臨界反應操作條件 26
3.4 奈米複合材料修飾電極之製備 27
3.5 研究設備 28
3.5.1 穿透式電子顯微鏡 28
3.5.2 化學分析電子能譜儀 28
3.5.3 傅立葉轉換紅外光光譜儀 29
第四章 結果與討論 30
4.1 rGO與Ir/rGO材料分析 30
4.1.1 TEM表面分析 30
4.1.2 ESCA化學結構分析 34
4.1.3 FT-IR表面官能基分析 38
4.2 rGO與Ir/rGO修飾電極的電化學分析 40
4.2.1 循環伏安法分析 40
4.2.2 超(次)臨界水熱法合成溫度效應分析 41
4-3 電化學反應機制探討 46
4-4 結論與未來展望 52
參考文獻 54

[1] 尤建欽, 超臨界水熱法製備奈米電觸媒於電化學式谷氨酸轉胺基酵素感測之應用, 生物技術與化學工程研究所, 義守大學, 2010.
[2] N. Ullah, I. Ali, S. Omanovic, Direct electrocatalytic reduction of coenzyme NAD+ to enzymatically-active 1,4-NADH employing an iridium/ruthenium-oxide electrode, Materials Chemistry and Physics, 149–150 (2015) 413-417.
[3] S.-j. Kim, Y.L. Kim, A. Yu, J. Lee, S.C. Lee, C. Lee, M.H. Kim, Y. Lee, Electrospun iridium oxide nanofibers for direct selective electrochemical detection of ascorbic acid, Sensors and Actuators B: Chemical, 196 (2014) 480-488.
[4] B.A. Deore, M.S. Freund, Reactivity of Poly(anilineboronic acid) with NAD+ and NADH, Chemistry of Materials, 17 (2005) 2918-2923.
[5] B. Limoges, D. Marchal, F. Mavré, J.-M. Savéant, Electrochemistry of Immobilized Redox Enzymes:  Kinetic Characteristics of NADH Oxidation Catalysis at Diaphorase Monolayers Affinity Immobilized on Electrodes, Journal of the American Chemical Society, 128 (2006) 2084-2092.
[6] F.S. Omar, N. Duraisamy, K. Ramesh, S. Ramesh, Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH), Biosensors and Bioelectronics, 79 (2016) 763-775.
[7] H. Jaegfeldt, Adsorption and electrochemical oxidation behaviour of NADH at a clean platinum electrode, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 110 (1980) 295-302.
[8] W. Ma, D.-W. Li, T.C. Sutherland, Y. Li, Y.-T. Long, H.-Y. Chen, Reversible Redox of NADH and NAD+ at a Hybrid Lipid Bilayer Membrane Using Ubiquinone, Journal of the American Chemical Society, 133 (2011) 12366-12369.
[9] P.N. Bartlett, E. Simon, C.S. Toh, Modified electrodes for NADH oxidation and dehydrogenase-based biosensors, Bioelectrochemistry, 56 (2002) 117-122.
[10] Y.H. Kim, T. Kim, J.H. Ryu, Y.J. Yoo, Iron oxide/carbon black (Fe2O3/CB) composite electrode for the detection of reduced nicotinamide cofactors using an amperometric method under a low overpotential, Biosensors and Bioelectronics, 25 (2010) 1160-1165.
[11] G.T.R. Palmore, H. Bertschy, S.H. Bergens, G.M. Whitesides, A methanol/dioxygen biofuel cell that uses NAD(+)-dependent dehydrogenases as catalysts : application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials, J. Electroanal. Chem., 443 (1998) 155-161.
[12] H. Li, H. Wen, S. Calabrese Barton, NADH Oxidation Catalyzed by Electropolymerized Azines on Carbon Nanotube Modified Electrodes, Electroanalysis, 24 (2012) 398-406.
[13] L. Wu, X. Zhang, H. Ju, Detection of NADH and Ethanol Based on Catalytic Activity of Soluble Carbon Nanofiber with Low Overpotential, Analytical Chemistry, 79 (2007) 453-458.
[14] Z. Lei, L. Yang, Z. Li, L. Da-Wei, D. Karpuzov, L. Yi-Tao, Electrocatalytic Oxidation of NADH on Graphene Oxide and Reduced Graphene Oxide Modified Screen-Printed Electrode, International Journal of Electrochemical Science, 6 (2011) 819-829.
[15] M. Pumera, R. Scipioni, H. Iwai, T. Ohno, Y. Miyahara, M. Boero, A Mechanism of Adsorption of β-Nicotinamide Adenine Dinucleotide on Graphene Sheets: Experiment and Theory, Chemistry – A European Journal, 15 (2009) 10851-10856.
[16] Y. Dilgin, B. Kızılkaya, D.G. Dilgin, H.İ. Gökçel, L. Gorton, Electrocatalytic oxidation of NADH using a pencil graphite electrode modified with quercetin, Colloids and Surfaces B: Biointerfaces, 102 (2013) 816-821.
[17] H. Dai, H. Xu, Y. Lin, X. Wu, G. Chen, A highly performing electrochemical sensor for NADH based on graphite/poly(methylmethacrylate) composite electrode, Electrochemistry Communications, 11 (2009) 343-346.
[18] J. Zhu, X. Chen, W. Yang, A high performance electrochemical sensor for NADH based on graphite nanosheet modified electrode, Sensors and Actuators B: Chemical, 150 (2010) 564-568.
[19] B. Ge, Y. Tan, Q. Xie, M. Ma, S. Yao, Preparation of chitosan–dopamine-multiwalled carbon nanotubes nanocomposite for electrocatalytic oxidation and sensitive electroanalysis of NADH, Sensors and Actuators B: Chemical, 137 (2009) 547-554.
[20] L. Bai, D. Wen, J. Yin, L. Deng, C. Zhu, S. Dong, Carbon nanotubes-ionic liquid nanocomposites sensing platform for NADH oxidation and oxygen, glucose detection in blood, Talanta, 91 (2012) 110-115.
[21] J.-M. You, S. Jeon, Electrocatalytic oxidation of NADH on a glassy carbon electrode modified with MWCNT-Pd nanoparticles and poly 3,4-ethylenedioxypyrrole, Electrochimica Acta, 56 (2011) 10077-10082.
[22] K. Guo, K. Qian, S. Zhang, J. Kong, C. Yu, B. Liu, Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes, Talanta, 85 (2011) 1174-1179.
[23] H. Wang, X. Bo, L. Guo, Electrochemical biosensing platform based on a novel porous graphene nanosheet, Sensors and Actuators B: Chemical, 192 (2014) 181-187.
[24] M. Govindhan, M. Amiri, A. Chen, Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine, Biosensors and Bioelectronics, 66 (2015) 474-480.
[25] 馬振基, 奈米材料科技原理與應用, 全華科技圖書股份有限公司2005.
[26] M. Zhou, Y. Zhai, S. Dong, Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide, Analytical Chemistry, 81 (2009) 5603-5613.
[27] M. Zhiani, I. Mohammadi, Performance study of passive and active direct borohydride fuel cell employing a commercial Pd decorated Ni–Co/C anode catalyst, Fuel, 166 (2016) 517-525.
[28] C.-T. Hsieh, Y.-C. Chen, Y.-F. Chen, M.M. Huq, P.-Y. Chen, B.-S. Jang, Microwave synthesis of titania-coated carbon nanotube composites for electrochemical capacitors, Journal of Power Sources, 269 (2014) 526-533.
[29] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666-669.
[30] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat Mater, 6 (2007) 183-191.
[31] J. Liu, X. Bo, Z. Zhao, L. Guo, Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells, Biosensors and Bioelectronics, 74 (2015) 71-77.
[32] J.V. Rojas, M.C. Molina Higgins, M. Toro Gonzalez, C.E. Castano, Single step radiolytic synthesis of iridium nanoparticles onto graphene oxide, Applied Surface Science, 357, Part B (2015) 2087-2093.
[33] J. Zhong, D. Bin, F. Ren, C. Wang, C. Zhai, P. Yang, Y. Du, Graphene nanosheet-supported Pd nano-leaves with highly efficient electrocatalytic performance for formic acid oxidation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 488 (2016) 1-6.
[34] W. Ren, S. Mura, J.M.K. Irudayaraj, Modified graphene oxide sensors for ultra-sensitive detection of nitrate ions in water, Talanta, 143 (2015) 234-239.
[35] B. Pant, P. Pokharel, A.P. Tiwari, P.S. Saud, M. Park, Z.K. Ghouri, S. Choi, S.-J. Park, H.-Y. Kim, Characterization and antibacterial properties of aminophenol grafted and Ag NPs decorated graphene nanocomposites, Ceramics International, 41 (2015) 5656-5662.
[36] Y. Meng, F. Su, Y. Chen, Synthesis of nano-Cu/graphene oxide composites by supercritical CO2-assisted deposition as a novel material for reducing friction and wear, Chemical Engineering Journal, 281 (2015) 11-19.
[37] G. Chen, F. Wang, F. Liu, X. Zhang, One-pot preparation of Ni-graphene hybrids with enhanced catalytic performance, Applied Surface Science, 316 (2014) 568-574.
[38] S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Carbocatalysis by Graphene-Based Materials, Chemical Reviews, 114 (2014) 6179-6212.
[39] N.M. Julkapli, S. Bagheri, Graphene supported heterogeneous catalysts: An overview, International Journal of Hydrogen Energy, 40 (2015) 948-979.
[40] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: Past, present and future, Progress in Materials Science, 56 (2011) 1178-1271.
[41] C. Xu, L. Zhang, L. Liu, Y. Shi, H. Wang, X. Wang, F. Wang, B. Yuan, D. Zhang, A novel enzyme-free hydrogen peroxide sensor based on polyethylenimine-grafted graphene oxide-Pd particles modified electrode, Journal of Electroanalytical Chemistry, 731 (2014) 67-71.
[42] Y. Chen, Y. Li, D. Sun, D. Tian, J. Zhang, J.-J. Zhu, Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing, Journal of Materials Chemistry, 21 (2011) 7604-7611.
[43] H. Xiong, B. Jin, The electrochemical behavior of AA and DA on graphene oxide modified electrodes containing various content of oxygen functional groups, Journal of Electroanalytical Chemistry, 661 (2011) 77-83.
[44] J.-L. Chang, K.-H. Chang, C.-C. Hu, W.-L. Cheng, J.-M. Zen, Improved voltammetric peak separation and sensitivity of uric acid and ascorbic acid at nanoplatelets of graphitic oxide, Electrochemistry Communications, 12 (2010) 596-599.
[45] S. Uhm, N.H. Tuyen, J. Lee, Controlling oxygen functional species of graphene oxide for an electro-oxidation of L-ascorbic acid, Electrochemistry Communications, 13 (2011) 677-680.
[46] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558-1565.
[47] H.-J. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park, I.-S. Jung, M.H. Jin, H.-K. Jeong, J.M. Kim, J.-Y. Choi, Y.H. Lee, Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance, Advanced Functional Materials, 19 (2009) 1987-1992.
[48] A. Martín, A. Escarpa, Graphene: The cutting–edge interaction between chemistry and electrochemistry, TrAC Trends in Analytical Chemistry, 56 (2014) 13-26.
[49] E. Lam, J.H.T. Luong, Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals, ACS Catalysis, 4 (2014) 3393-3410.
[50] H. Liu, X. Wu, B. Yang, Z. Li, L. Lei, X. Zhang, Three-Dimensional Porous NiO Nanosheets Vertically Grown on Graphite Disks for Enhanced Performance Non-enzymatic Glucose Sensor, Electrochimica Acta, 174 (2015) 745-752.
[51] W. Liu, H. Zhang, B. Yang, Z. Li, L. Lei, X. Zhang, A non-enzymatic hydrogen peroxide sensor based on vertical NiO nanosheets supported on the graphite sheet, Journal of Electroanalytical Chemistry, 749 (2015) 62-67.
[52] W. Cai, T. Lai, H. Du, J. Ye, Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: A high performance flexible sensor, Sensors and Actuators B: Chemical, 193 (2014) 492-500.
[53] J.-H. Yang, H. Yang, S. Liu, L. Mao, Microwave-assisted synthesis graphite-supported Pd nanoparticles for detection of nitrite, Sensors and Actuators B: Chemical, 220 (2015) 652-658.
[54] N.W. Khun, E. Liu, Stripping voltammetric behavior of nitrogen-doped tetrahedral amorphous carbon thin film electrodes in NaCl solutions, Thin Solid Films, 518 (2010) 4003-4009.
[55] A. Liu, W. Dong, E. Liu, W. Tang, J. Zhu, J. Han, Non-enzymatic hydrogen peroxide detection using gold nanoclusters-modified phosphorus incorporated tetrahedral amorphous carbon electrodes, Electrochimica Acta, 55 (2010) 1971-1977.
[56] R. Madhu, V. Veeramani, S.-M. Chen, Fabrication of a novel gold nanospheres/activated carbon nanocomposite for enhanced electrocatalytic activity toward the detection of toxic hydrazine in various water samples, Sensors and Actuators B: Chemical, 204 (2014) 382-387.
[57] J.-H. Kim, S. Cho, T.-S. Bae, Y.-S. Lee, Enzyme biosensor based on an N-doped activated carbon fiber electrode prepared by a thermal solid-state reaction, Sensors and Actuators B: Chemical, 197 (2014) 20-27.
[58] J. Muñoz, F. Céspedes, M. Baeza, Modified multiwalled carbon nanotube/epoxy amperometric nanocomposite sensors with CuO nanoparticles for electrocatalytic detection of free chlorine, Microchemical Journal, 122 (2015) 189-196.
[59] A. Mao, H. Li, D. Jin, L. Yu, X. Hu, Fabrication of electrochemical sensor for paracetamol based on multi-walled carbon nanotubes and chitosan–copper complex by self-assembly technique, Talanta, 144 (2015) 252-257.
[60] G. Xu, Y. Chi, L. Li, S. Liu, X. Kan, Imprinted propyl gallate electrochemical sensor based on graphene/single walled carbon nanotubes/sol–gel film, Food Chemistry, 177 (2015) 37-42.
[61] K.-C. Lin, T.-H. Tsai, S.-M. Chen, Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT–PEDOT film, Biosensors and Bioelectronics, 26 (2010) 608-614.
[62] H. Mao, J. Liang, H. Zhang, Q. Pei, D. Liu, S. Wu, Y. Zhang, X.-M. Song, Poly(ionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemical sensor to detect dopamine in the presence of ascorbic acid, Biosensors and Bioelectronics, 70 (2015) 289-298.
[63] N. Tujunen, E. Kaivosoja, V. Protopopova, J.J. Valle-Delgado, M. Österberg, J. Koskinen, T. Laurila, Electrochemical detection of hydrogen peroxide on platinum-containing tetrahedral amorphous carbon sensors and evaluation of their biofouling properties, Materials Science and Engineering: C, 55 (2015) 70-78.
[64] L.C. Clark, C. Lyons, ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY, Annals of the New York Academy of Sciences, 102 (1962) 29-45.
[65] D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Electrochemical Biosensors - Sensor Principles and Architectures, Sensors, 8 (2008).
[66] M. Mehrvar, M. Abdi, Recent Developments, Characteristics, and Potential Applications of Electrochemical Biosensors, Analytical Sciences, 20 (2004) 1113-1126.
[67] J. Wang, Electrochemical biosensors: Towards point-of-care cancer diagnostics, Biosensors and Bioelectronics, 21 (2006) 1887-1892.
[68] X. Luo, A. Morrin, A.J. Killard, M.R. Smyth, Application of Nanoparticles in Electrochemical Sensors and Biosensors, Electroanalysis, 18 (2006) 319-326.
[69] S. Wu, Q. He, C. Tan, Y. Wang, H. Zhang, Graphene-Based Electrochemical Sensors, Small, 9 (2013) 1160-1172.
[70] A. Merkoçi, Electrochemical biosensing with nanoparticles, FEBS Journal, 274 (2007) 310-316.
[71] S. Serban, N. El Murr, Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes: New approach for dehydrogenase based biosensors, Biosensors and Bioelectronics, 20 (2004) 161-166.
[72] L. Yang, X. Ren, F. Tang, L. Zhang, A practical glucose biosensor based on Fe3O4 nanoparticles and chitosan/nafion composite film, Biosensors and Bioelectronics, 25 (2009) 889-895.
[73] C.-H. Chen, Y.-C. Chen, M.-S. Lin, Amperometric determination of NADH with Co3O4 nanosheet modifiedelectrode, Biosensors and Bioelectronics, 42 (2013) 379-384.
[74] K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology Second Edition ed., William Andrew2013.
[75] T. Nishinga, P. Rudolph, Hydrothermal Growth of Crystals—Design and Processing, Second Edition ed., Elsevier2015.
[76] K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Progress in Crystal Growth and Characterization of Materials, 53 (2007) 117-166.
[77] D.A. Palmer, R. Fernández-Prini, A.H. Harvey, Aqueous Systems at Elevated Temperatures and Pressures Elsevier2004.
[78] 陳維杻, 超臨界流體萃取的原理與應用, 化學工業出版社2000.
[79] T. Adschiri, Y. Hakuta, K. Arai, Hydrothermal Synthesis of Metal Oxide Fine Particles at Supercritical Conditions, Industrial & Engineering Chemistry Research, 39 (2000) 4901-4907.
[80] S.-M. Alatalo, K. Qiu, K. Preuss, A. Marinovic, M. Sevilla, M. Sillanpää, X. Guo, M.-M. Titirici, Soy protein directed hydrothermal synthesis of porous carbon aerogels for electrocatalytic oxygen reduction, Carbon, 96 (2016) 622-630.
[81] M. Kim, W.-S. Son, K.H. Ahn, D.S. Kim, H.-s. Lee, Y.-W. Lee, Hydrothermal synthesis of metal nanoparticles using glycerol as a reducing agent, The Journal of Supercritical Fluids, 90 (2014) 53-59.
[82] L. Liu, H. Zhou, X. He, X. Zhang, X. Wang, F. Lu, C. Zhang, W. Zhou, C. Chen, Hydrothermal growth and optical properties of RbBe2BO3F2 crystals, Journal of Crystal Growth, 348 (2012) 60-64.
[83] Z. Mohd Shafie, Y. Yu, H. Wu, Effect of initial pH on hydrothermal decomposition of cellobiose under weakly acidic conditions, Fuel, 158 (2015) 315-321.
[84] Q. Zheng, M. Morimoto, H. Sato, T. Takanohashi, Molecular composition of extracts obtained by hydrothermal extraction of brown coal, Fuel, 159 (2015) 751-758.
[85] C.R. Lowe, Biosensors, Trends in Biotechnology, 2 (1984) 59-65.
[86] 陳詩喆, 電流式葡萄糖生物感測器之研發與測試, 化學工程研究所, 國立台灣科技大學, 2009.
[87] C. Ziegler, W. Göpel, Biosensor development, Current Opinion in Chemical Biology, 2 (1998) 585-591.
[88] H. Bluhm, 4 - X-ray photoelectron spectroscopy (XPS) for in situ characterization of thin film growth, in: G. Koster, G. Rijnders (Eds.) In Situ Characterization of Thin Film Growth, Woodhead Publishing2011, pp. 75-98.
[89] F. Ozel, H. Kockar, Growth and characterizations of magnetic nanoparticles under hydrothermal conditions: Reaction time and temperature, Journal of Magnetism and Magnetic Materials, 373 (2015) 213-216.
[90] R.S. Chen, H.M. Chang, Y.S. Huang, D.S. Tsai, S. Chattopadhyay, K.H. Chen, Growth and characterization of vertically aligned self-assembled IrO2 nanotubes on oxide substrates, Journal of Crystal Growth, 271 (2004) 105-112.
[91] N.M. Carretero, M.P. Lichtenstein, E. Pérez, S. Sandoval, G. Tobias, C. Suñol, N. Casan-Pastor, Enhanced Charge Capacity in Iridium Oxide-Graphene Oxide Hybrids, Electrochimica Acta, 157 (2015) 369-377.
[92] D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide, Journal of Colloid and Interface Science, 430 (2014) 108-112.
[93] Y. Zhao, C. Li, X. Fan, J. Wang, G. Yuan, X. Song, J. Chen, Z. Li, Study on the separation performance of the multi-channel reduced graphene oxide membranes, Applied Surface Science, 384 (2016) 279-286.
[94] S. Krehula, G. Štefanić, K. Zadro, L. Kratofil Krehula, M. Marciuš, S. Musić, Synthesis and properties of iridium-doped hematite (α-Fe2O3), Journal of Alloys and Compounds, 545 (2012) 200-209.
[95] S. Krehula, S. Musić, The effect of iridium(III) ions on the formation of iron oxides in a highly alkaline medium, Journal of Alloys and Compounds, 516 (2012) 207-216.
[96] S.-H. Kim, G.-Y. Chung, S.-H. Kim, G. Vinothkumar, S.-H. Yoon, K.-D. Jung, Electrochemical NADH regeneration and electroenzymatic CO2 reduction on Cu nanorods/glassy carbon electrode prepared by cyclic deposition, Electrochimica Acta, 210 (2016) 837-845.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top