(3.239.56.184) 您好!臺灣時間:2021/05/13 11:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘永宏
研究生(外文):Yong-Hong Pan
論文名稱:以阻塞後反應充血試驗來評估血管內皮細胞功能及其電腦模擬
論文名稱(外文):Evaluation of vascular endothelial function using the post-occlusion reactive hyperemia and its computer modeling
指導教授:王家鍾王家鍾引用關係
指導教授(外文):Jia-Jung Wang
學位類別:碩士
校院名稱:義守大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:69
中文關鍵詞:內皮細胞功能氣囊振盪技術電腦模擬動脈硬化
外文關鍵詞:Endothelial functionAir cuff oscillometryComputer modelingArterial hardness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:510
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
內皮細胞功能失調已被證實是動脈硬化的早期指標,也是心血管疾病
的危險因子。本研究在義大醫院臨床試驗中,利用所研製的測量系統來對52位受測者(Control組: N=38,及患有心血管疾病的Patient組: N=13)進行5分鐘的上臂阻塞,並分別以氣囊振盪技術、光體積技術及超音波技術,來測量內皮細胞舒張功能指標。再者,本論文對手臂血液循環系統(分成三區段)進行電腦模擬,並利用實驗所獲得的數據作為模擬依據,以觀察反應充血期對血液循環網路之各區段間血壓變化趨勢。
由數據分析得知,以都普勒超音波(FMDU)、氣囊振盪技術(FMDC)、及左手食指指尖端光學式血管體積描記術(FMDPPG-L) 評估正常受測者血管內皮細胞的功能,測量結果分別為8.1±4.3 %、121.6±34.4%、及93.3±48.6%。氣囊震盪技術在反應充血期間,Control組的氣囊振盪技術所推得內皮細胞功能指標FMDC顯著大於Patient組(121.6±34.4 vs 58.3±21.8%, p<0.001);針對反應充血期最大反應時間而言, Control組顯著大於Patient組(51.6±9.7 vs 24.3±6.1秒, p<0.001);另外,Control組氣囊振盪技術基態期及反應充血期的振盪幅度均顯著小於Patient組(1.44±0.75 vs 2.30±1.83 volts, p=0.002;3.0±1.48 vs 3.58±2.73 volts, p=0.036)。在模擬手臂血液循環系統方面,當臂動脈平均血流量由基態值38 ml/sec 線性增加到最大反應充血期的76 ml/sec時,模擬結果顯示臂動脈血流量及血壓在最大反應期時分別為189 ml/sec及172 mmHg;於阻塞後至最大反應充血期,線性增加臂動脈平均血流量由基態值至其兩倍值,同時也線性減少臂動脈血管阻力由基態值至其一半值,模擬結果顯示臂動脈血流量及血壓在最大反應期時分別為189 ml/sec及147 mmHg。
總之,相較於都普勒超音波技術,本論文所提出的氣囊振盪技術對測量臂動脈內皮細胞功能,具有較高的敏感度與穩定度。再者,根據實驗數據進行電腦模擬分析時,可觀察到個別血液動力參數在反應性充血期間所扮演的角色及其對血流與血壓的影響程度。

Vascular endothelial dysfunction has been shown to be an early indicator of atherosclerosis as well as a risk factor of cardiovascular disease. In the clinical trials, 52 subjects (Control group: N=38, Patient group: N=13) were recruited and asked to undergo a 5-minute occlusion of the brachial artery. The flow-mediated dilatation (FMD) was assessed by the air cuff oscillometry, the photo-plethysmography and the ultrasound technique, respectively. Furthermore, a three-segment circulatory network of arms was mathematically modeled on the basis of experimental data, and the proposed hemodynamic model was used to observe the change in pressure and blood flow in each segment during the reactive hyperemia period after 5-minute occlusion.
The values of FMD induced by the 5-minute occlusion in Control group were found to be 8.1 ± 4.3%, 121.6 ± 34.4%, and 93.3 ± 48.6% using the Doppler ultrasound technique, cuff oscillometry and photo-plethysmography, respectively. With the cuff oscillometry, the mean FMD value was significantly greater in Control group than Patient group (121.5±34.4 vs 58.3±21.8%, p<0.001). Also, Control group had significantly larger maximum reaction time than that in Patient group (51.6±9.7 vs 24.3±6.1s, p<0.001). In applying the cuff oscillometry, Control group was found to have smaller oscillation amplitudes during the baseline and the reactive hyperemia than those in Patient group (1.44±0.75 vs 2.30±1.83 volts, p=0.002; 3.0±1.48 vs 3.58±2.73 volts, p=0.036). In the modeling, the time for the declining period was set to be twice that of the rising period. In the reactive hyperemia, the mean brachial arterial blood flow was modeled to be linearly increased from 38 ml/sec at the baseline to 76 ml/sec at the maximum response. Modeling results showed that the brachial arterial blood flow and blood pressure at the maximum hyperemia were 189 ml/sec and 172 mmHg, respectively. Furthermore, in combination of the change in the brachial arterial resistance from its baseline value to a half of, the brachial arterial blood flow and pressure at the maximum hyperemia were found to be 189 ml/sec and 147 mmHg, respectively.
In conclusion, as compared with the Doppler ultrasound, the proposed air cuff oscillometry shows greater sensitivity and stability in assessing brachial arterial flow-mediated dilatation after 5-minute occlusion. Furthermore, the proposed arm-circulation model can be used to investigate the role of individual hemodynamic parameter and its effect on the blood pressure and flow in the circulation model.

第一章、緒論 13
1-1、前言 13
1-2、血管擴張機轉 16
1-3、相關文獻探討 18
1-4、研究重點及目的 19
第二章、脈壓袋評估內皮細胞功能之基本原理 21
2-1、脈壓袋與血管之間的交互作用關係 21
2-2、脈壓袋與超音波量測內皮細胞舒張功能之關係式推導 23
第三章、量測動脈內皮細胞舒張功能系統及實驗設計 26
3-1、動脈內皮細胞舒張功能系統架構 26
3-2、系統硬體設備簡介 27
3-2-1、單脈壓袋氣囊壓量測裝置 27
3-2-2、Electrocardiography (ECG)之測量裝置 29
3-2-3、高頻超音波影像擷取裝置 30
3-2-3、光學式血管體積測量裝置 31
3-3、實驗設計 32
3-4、校準與比較 33
3-3-1、與超音波技術做比較 33
3-3-2、光學式血管體積測量裝置(Photo-Plethysmography, PPG)做為輔助性校準 34
3-3-3、以脈波傳遞速度(Pulse wave velocity, PWV) 作輔助校準 34
3-4、統計方法 35
第四章、分析與統計結果 36
4-1、受測者基本資料之分析 36
4-2、臨床測量訊號 39
4-3、臨床數據分析結果 42
4-3-1、不同技術之FMD 比較 42
4-3-2、Control 組與Patient 組t-test 比較 42
4-3-3、脈波傳遞速度(PWV)分析比較 45
4-3-4、氣囊振盪技術與其他技術之比較結果 46
第五章、手臂動脈血液循環系統之電腦模擬及結果 49
5-1、手臂循環系統模擬電路及模擬流程 49
5-2、模型之推導 55
5-2-1、建立反應充血期參數 58
5-3、臂動脈血流及血阻對血流參數影響之模擬 58
5-4、改變血流及血阻參數對各區段血壓之波形影響 59
5-4-1、改變血流及對各區段血壓之波形影響 59
5-4-2、改變平均血流和血阻及對各區段血壓之波形影響 60
第六章、討論 63
6-1、氣囊壓振盪感測裝置 63
6-2、實驗之探討 63
6-3、測量結果探討 64
6-4、手臂動脈血液循環網絡之訊號模擬 64
第七章、結論與未來展望 65
7-1 系統硬體的部份 . 65
7-2 實驗結果的部份 65
7-3 模擬臂動脈血液循環網絡的部份 65
第八章、參考文獻 66

[1]L. U. Giannotti "Endothelial dysfunction as an early sign of atherosclerosis," Herz, p. 32, 2007.
[2]T. T. Ukawa T, Morimoto H, Higashi Y, Idei N, Yoshizumi M, Tsuji T, "Novel non-invasive method of measurement of endothelial function: enclosed-zone flow-mediated dilatation (ezFMD)," Med Biol Eng Comput, vol. 50, pp. 1239-1247, 2012.
[3]T. L. Sitia S, Atzeni F, Ambrosio G, Cordiano C, Catapano A, Tramontana S, Perticone F,, C. P. Naccarato P, Picano E, Cortigiani L, Bevilacqua M, Milazzo L, Cusi D, Barlassina C, Sarzi-Puttini, and T. M. P, "From endothelial dysfunction to atherosclerosis," Autoimmun Rev, vol. 9, pp. 830-834, 2010.
[4]H. Y. Keymel S, Balzer J, Rassaf T, Kelm M, Lauer T, Heiss C, "Characterization of macro-and microvascular function and structure in patients with type 2 diabetes mellitus," Am J Cardiovasc Dis, vol. 1, pp. 68-75, 2011.
[5]T. S. Virdis A, "addei S. How to evaluate microvascular organ damage in hypertension: assessment of
endothelial function. High Blood Press Cardiovasc Prev," High Blood Press Cardiovasc Prev, vol. 18, pp. 163-167, 2011.
[6]D. J. Briand M, Kadem L, Tongue AG, Rieu R, Garcia D, and Pibarot P, "Reduced systemic arterial compliance impacts significantly on left ventricular afterload and function in aortic stenosis," J Am Coll Cardiol, vol. 26, pp. 291-298, 2005.
[7]M. T. Takenaka T, Kanno Y, and Suzuki H, "Qualification of arterial stiffness as a risk factor to the progression of chronic kidney diseases," Am J Nephrol, vol. 25, pp. 417-424, 2005.
[8]A. J. Collins R, Parish S, Sleight P, and Peto R, " Heart Protection Study Collaborative Group. Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20536 people with cerebrovascular disease or other high-risk conditions. Lancet," vol. 363, pp. 757-767, 2004.
[9]R. R, "Atherosclerosis--an inflammatory disease," N Engl J Med, vol. 342, pp. 115-126, 1999.
[10]
[11]A. T. Corretti MC, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J,Drexler H, "International Brachial Artery Reactivity Task Force. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force," J Am Coll Cardiol, vol. 39, pp. 257-652, 2002.
[12]A. P. Lekakis J, Balbarini A, Blann A, Boulanger CM, Cockcroft J, Cosentino F, Deanfield J,Gallino A, Ikonomidis I, Kremastinos D, Landmesser U, Protogerou A, Stefanadis C, Tousoulis D, VassalliG, Vink H, Werner N, Wilkinson I, "Vlachopoulos C. Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation," Eur J Cardiovasc Prev Rehabil, vol. 18, pp. 775-789, 2011.
[13]L. E. Philpott AC, Title LM, Verma S, Buithieu J, Charbonneau F, Anderson TJ, "Comparison of new measures of vascular function to flow mediated dilatation as a measure of cardiovascular risk factors," Am J Cardiol, vol. 103, pp. 1610-1615, 2009.
[14]B. M. Carr JJ, "Introduction to Biomedical Equipment Technology," New Jersey:Prentice-Hall Inc, vol. 4th Edition, 2001.
[15]吳賢財(國立東華大學電機工程系暨研究所), "新式非侵入性內皮細胞功能信號分析與量測系統研發及於醫學臨床疾病之應用," 國科會專題研究計畫成果報告, 2010/08/01~2011/07/31.
[16]L. C. Wu HT, Wu TC, Liu AB, "Endothelium function assessment with radial pulse wave signals," Conf Proc IEEE Eng Med Biol Soc, pp. 3035-3038, 2009.
[17]李建德(長庚醫療財團法人腎臟科), "慢性腎臟病之血管病變 : 內皮細胞功能異常與血管鈣化," 國科會專題研究計畫成果報告, 2011/08/01~2012/07/31.
[18]劉安邦(財團法人佛教慈濟綜合醫院神經科), "以非線性分析評估正常與動脈硬化大鼠脈波訊號、心律變異與內皮細胞功能," 國科會專題研究計畫成果報告, 2010/08/01~2011/07/31.
[19]徐良育(中原大學生物醫學工程學系), "結合阻抗描記法血流量測技術與低壓連續血壓量測方式建構一輕便的血管特性評估系統," 98年度國科會專題研究計畫成果報告, 2009/08/01~2010/07/31.
[20]江惠華(陽明大學醫學工程研究所), "利超音波時域與頻域血流量測技術開發與臨床驗證研究," 90、89-1、89-2 年度國科會多年期專題研究計畫成果報告.
[21]N. J. Shin SY, Lim HE, Choi CU, Choi JI, Kim SH, Kim EJ, Park SW, Rha SW, Park CG, Seo HS, Oh DJ, Kim YH, "mproved endothelial function in patients with atrial fibrillation through maintenance of sinus rhythm by successful catheter ablation. J Cardiovasc Electrophysiol," J Cardiovasc Electrophysiol, vol. 22, pp. 376-382, 2011.
[22]J. A. Selvaraj N, Santhosh J, Anand S, Deepak KK, "Monitoring of reactive hyperemia using photoplethysmographic pulse amplitude and transit time," J Clin Monit Comput, vol. 23, pp. 315-322, 2009.
[23]W. S. McEniery CM, Mackenzie IS, McDonnell B, Yasmin, Newby DE, Cockcroft JR, Wilkinson IB, "Endothelial function is associated with pulse pressure, pulse wave velocity, and augmentation index in healthy humans," Hypertension, vol. 48, pp. 602-608, 2006.
[24]J. R. Zahedi E, Ali MA, Mohamed AL, Maskon O, "Finger photoplethysmogram pulse amplitude changes induced by flow-mediated dilation," Physiol Meas, vol. 29, pp. 625-637, 2008.
[25]E. Z. Layli S. Goldoozian1, "Electrical Analog Model of Arterial Compliance during Reactive Hyperemia," IEEE, 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔