(3.238.96.184) 您好!臺灣時間:2021/05/15 07:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鐘明宏
研究生(外文):Ming-Hung Chung
論文名稱:常壓電漿及旋鍍種晶層對水熱沉積二氧化鈦膜層於染料敏化太陽能電池之應用研究
論文名稱(外文):Study of TiO2 Films with Plasma and Spin-coating Seed Layer for Dye Sensitized Solar Cell Application of Synthesis by Hydrothermal Process
指導教授:劉文仁劉文仁引用關係
指導教授(外文):Wen-Jen Liu
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:114
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗目的為使用水熱法在15mm x 15mm FTO透明導電玻璃上成長二氧化鈦(TiO2)奈米棒(TNRs)用於染料敏化太陽能電池的光電陽極。FTO透明導電玻璃使用旋鍍法在上面塗上一層銳鈦礦結構的二氧化鈦(TiO2)薄膜作為種晶層。1.75g 草酸鈦鉀(K2TiO(C2O4)2)加入含有去離子水(de-ionized (DI) water)和二甘醇(diethylene glycol, DEG)的混合溶液中,並劇烈攪拌30分鐘。在180℃下9小時進行水熱成長二氧化鈦(TiO2)奈米棒(TNRs)。搭配N719染料及含碘離子的電解液組裝成染料敏化太陽能電池元件,再用I-V量測儀測量光電轉換效率。目前實驗最佳TNRs膜層的最佳光電轉換效率為5.96%。在這項研究中,膜層使用最佳參數具有高比表面積和良好對齊的TNRs形態因此可顯著提高光轉換效率。

The purpose of this work is to use a hydrothermal process to synthesize titanium dioxide (TiO2) nano-rods (TNRs) film on 15 mmx15 mm size of fluorine doped tin oxide (FTO) conductive glass as the photo-anodes of dye-sensitized solar cells (DSSCs). A TiO2 seed layer with anatase structure was deposited on a fluorine doped tin oxide (FTO) coated glass substrate by spin coating. 1.75g potassium titanium oxalate (K2TiO(C2O4)2)was added to the mixture solvent of 100mL containing de-ionized (DI) water and diethylene glycol (DEG), and vigorously stirred for 30 min. The hydrothermal synthesis was conducted at 180 °C for 9 h for the growth of the TiO2 nanowire arrays. N719 dyes as well as the iodine ions electrolyte were served as the dye-sensitized solar cell (DSSC) components, and the DSSC devices were analyzed by I-V meters to determine the photo-conversion efficiency. Up to date, the optimal TNRs films revealed the best photo-conversion efficiency of 5.96% under illumination of simulated AM1.5 solar light (100 mWcm−2). In this study, the films synthesized using optimum process parameters with a high specific surface area and well-aligned TNRs morphology can significantly improve the photo-conversion efficiency.

中文摘要 I
英文摘要 II
致謝 III
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 實驗動機與目的 2
第二章 理論基礎 3
2-1 太陽能電池之定義 3
2-2 染料敏化太陽能電池 5
2-3 二氧化鈦光觸媒與光催化 19
2-4 電漿 25
2-5 水熱法 31
第三章 文獻回顧 35
3-1 常壓電漿[66] 35
3-2 元素摻雜水熱法[67,68] 38
3-3 種晶層水熱法[69] 43
3-4 草酸鈦鉀水熱法[70] 45
第四章 實驗方法 48
4-1 實驗藥品及設備 48
4-2 實驗流程 57
第五章 結果與討論 62
5-1 核心綱目 63
第六章 結論 89
第七章 未來改善及工作項目 90
第八章 參考文獻 91

[1].F. Hurd, and R. Livingston, “Thr quantum yields of some Dye-sensitized photooxidtyions” , Journal of Physical Chemistry, vol.44, 1940, p.865.
[2].M. Grätzel, “Dye-sensitized solar cells”, Journal of Photochemistry and Photobiology, vol.4, 2003, p.145.
[3].H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature, vol.261, 1976, p.402.
[4].B. O. Regan, and M. Grätzel, “Low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, vol.353, 1991, p.737.
[5].M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-XzBis (2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, Journal of the American Chemical Society, vol.115, 1993, pp.6382-6390.
[6].http://big5.nikkeibp.com.cn/eco/news/cattechnicalsj/4920-20130807.html,日經科技。
[7].W.J. Lee, H. Okada, A. Wakahara, and A. Yoshida, “Structural and photoelectrochemical characteristics of nanocrystalline ZnO electrode with Eosin-Y”, Ceramics International, vol.32, 2006, pp.495-498.
[8].K. Kakiuchi, E. Hosono, S. Fujihara, and J. Photochem, “{1 1 1}-faceting of low-temperature processed rutile TiO2 rods”, Photobiol., Journal of Crystal Growth, vol.293, 2006, pp.541-545.
[9].M. Matsui, Y. Hashimoto, K. Funabiki, J.Y. Jin, T. Yoshida, and H. Minoura, “Application of Near-infrared Absorbing Heptamethine Cyanine Dyes as Sensitizers for Zinc Oxide Solar Cell”, Synthetic Metals, vol.148, pp.147-153.
[10].J. E. Kroeze, and T. J. Savenije, “Opto-electronic Materials; Publications 2004”, Thin Solid Films, vol.54, 2004, pp.451-452.
[11].M. A. Aegerter, “Sol-gel niobium pentoxide: A promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis”, Sol. Energy Mater. Sol. Cells, vol.68, 2001, pp.401-422.
[12].M.L. Cantu, K. Norrman, J.W. Andreasen, and F. C. Krebs, “Oxygen Release and Exchange in Niobium Oxide MEHPPV Hybrid Solar Cells”, Sol. Energy Mater. Sol. Cells, vol.90, 2006, pp.5684-5690.
[13].N.G. Park, J. Lagemaat, and A. J. Frank, “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, Journal of Photochemistry and Photobiology B, vol.104, 2000, pp.8989-8994.
[14].C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, “Self-Organization of TiO2 Nanoparticles in Thin Films”, Journal of the American Chemical Society, vol.80, 1997, pp.2419-2425.
[15].M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, Journal of the American Chemical Society, vol.123, 2001, pp.1613-1624.
[16].Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “An Improved Perylene Sensitizer for Solar Cell Applications”, Japanese Journal of Applied Physics, vol.25, 2006, p.638.
[17].S. J. Kim; S. D. Park, and Y. H. Jeong , “Homogeneous Precipitation of TiO2 Ultrafine Powders from Aqueous TiOCl2 Solution ”, Journal of the American Chemical Society, vol.82, 1999, p.927.
[18].N. Robertson, “Optimizing Dyes for Dye-Sensitized Solar Cells”, Angewandte Chemie International Edition, vol.45, 2006, pp.2338-2345.
[19].G. Schlichthorl, N. G. Park, and A. J. Frank, “Evaluation of the Charge-Collection Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells” Journal of Physical Chemistry B, vol.103, 1999, pp.782-791.
[20].B. A. Gregg, F. Pichot, S. Ferrere, and C. L. Fields, “Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces”, Journal of Physical Chemistry B, vol.105, 2001, pp.1422-1429.
[21].A. Zaban, J. Zhang, Y. Diamant, O. Melemed, and J. Bisquert, “Internal Reference Electrode in Dye Sensitized Solar Cells for Three-Electrode Electrochemical Characterizations”, Journal of Physical Chemistry B, vol.107, 2003, pp.6022-6025.
[22].M. Grätzel, “Sol-Gel Processed TiO2 Films for Photovoltaic Applications”, Journal of Sol-Gel Science and Technology, vol.22, 2001, pp.7-13.
[23].Z.S. Wang, M. Yanagida, K. Sayama, and H. Sugihara, “Structure -property relationships of organic dyes with D-π-A structure in dye- sensitized solar cells”, Chemistry of Materials, vol.18, 2006, p.2912.
[24].M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A, vol.164, 2004, pp.3-14.
[25].M. Grätzel, “Photoelectrochemical cells”, Nature, vol.414, 2001, pp.338-344.
[26].彭懷夫,中孔性二氧化鈦薄膜於染料敏化太陽能電池之應用,國立東華大學,2003年。
[27].查丁壬彙編,認識太陽能電池,中華太陽能聯誼會,2003年。
[28].D. Cahen, and G. Hodes, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, Journal of Physical Chemistry B, vol.104, 2000, pp.2053-2059.
[29].L. L. Kazmerski, “Photovoltaics: A review of cell and module technologies”, Renewable Sustainable Energy Rev, vol.1, 1997, pp.71-170.
[30].A. Zaban, S. Ferrere, and B. A. Gregg, “Relative energetics at the semiconductor / sensitizing dye / electrolyte interface”, Journal of Physical Chemistry B, vol.102, 1998, pp.452-460.
[31].A. Zaban, A. Meier, and B. A. Gregg., “Electric potential distribution and short-range screening in nanoporous TiO2 electrodes”, Journal of Physical Chemistry B, vol.101, 1997, pp.7985-7990.
[32].A. Hagfeldt, and M. Grätzel, “Light-Induced Redox Reactions in Nanocrystalline Systems”, Chemical Reviews, vol.95, 1995, pp.49-68.
[33].A. Hagfeldt, and M. Grätzel, “Light-Induced Redox Reactions in Nanocrystalline Systems”, Chemical Reviews, vol.95, 1995, pp.49-68.
[34].M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells” Current Opinion in Colloid & Interface Science, vol.4, 1999, pp.314-321.
[35].K. Kalyanasundaram, and M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coordination Chemistry Reviews, vol.77, 1998, pp.347-414.
[36].X.T. Zhanga, H.W. Liua, T. Taguchi, Q.Bo. Menga, O. Satoa,
and A. Fujishimaa, “Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films”, Sol. Energy Mater. Sol. Cells, vol.81, 2004, pp.197-203.
[37].S. A. Haque, Y. Tachibana, D. R. Klug, and J. R. Durrant, “Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias”, Journal of Physical Chemistry B, vol.102, 1998, pp.1745-1749.
[38].S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells”, Journal of Physical Chemistry B, vol.101, 1997, pp.2576-2582.
[39].J. Rabani, K. Ushida, K. Yamashita, J. Stark, S. Gershuni, and A. Kira, “Electron injection, charge recombination, and energy migration in surface-modified TiO2 nanocrystallite layers. A laser photolysis study”, Journal of Physical Chemistry B, vol.101, 1997, pp.3136-3146.
[40].K. Murakoshi, G. Kano, Y. Wada, S. Yanagida, H. Miyazaki, M. Matsumoto, and S. Murasawa, “Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell”, Journal of Electroanalytical Chemistry, vol.396, 1995, pp.27-34.
[41].F. Pichot, and B.A. Gregg, “The photovoltage-determining in dye-sensitized solar cells”, Journal of Physical Chemistry B, vol.104, 2000, pp.6-10.
[42].J. Ferber, R. Stangl, and J. Luther, “An electrical model of the dye-sensitized solar cell”, Sol. Energy Mater. Sol. Cells, vol.53, 1998, pp.29-54.
[43].S. Soedergren, A. Hagfeldt, J. Olsson, and S.E. Lindquist, “Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells”, Journal of Physical Chemistry, vol.98, 1994, pp.5552-5556.
[44].M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, “Conversion of light to electricity by Cis-X2B is (2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X=Cl−, Br−, I−, CN− and SCN−) on nanocrystalline TiO2 electrodes”, Journal of the American Chemical Society, vol.115, 1993, pp.6382-6390.
[45].L. Brus, “Model for carrier dynamics and photoluminescence quenching in wet and dry porous silicon thin films”, Physical Review B, vol.53, 1996, pp.4649-4656.
[46].J. Bisquert, “Theory of the impedance of electron diffusion and recombination in a thin layer”, Journal of Physical Chemistry B, vol.106, 2002, pp.325-333.
[47].M. Gratzel, “Photoelectrochemical cells”, Nature, vol.414, 2001, pp.338-344.
[48].C.G. Wu, L.F. Tzeng, Y.T. Kuo, and C. H. Shu, “Enhancement of the photocatalytic activity of TiO2 film via surface modification of the substrate”, Applied Catalysis A, vol.226, 2002, pp.199-211.
[49].A. D. Paola, G. Marci, L. Palmisano, M. Schiavello, M. K. Uosaki, S. Ikeda, and B. Ohtani, “Visible light photocatalytic activity of aromatic polyamide dendrimer/TiO2 composites functionalized with spirolactam-based molecular switch”, Journal of Physical Chemistry B, vol.106, 2002, pp. 178–185.
[50].W. Nasution, E. Purnama, K. Riyani, and J. Gunlazuardi, “Effect of Copper Species in a Photocatalytic Synthesis of Methanol from Carbon Dioxide over Copper-doped Titania Catalysts”, Applied Sciences J, vol.37, 2009, pp.112-122.
[51].G. Colon, M. C. Hidalgo, and J. A. Navio, “Effect of ZrO2 incorporation and calcination temperature on the photocatalytic activity of commercial TiO2 for salicylic acid and Cr(VI) photodegradation”, Applied Catalysis A, vol.231, 2002, pp.185-199.
[52].S. Goeringer, C. R. Chenthamarakshan, and K. Rajeshwar, “Synergistic photocatalysis mediated by TiO2: mutual rate enhancement in the photoreduction of Cr(VI) and Cu(II) in aqueous media”, Electrochem. Commun, vol.3, 2001, pp.290-292.
[53].U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports, vol.48, 2003, pp.53-229.
[54].A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chemical Reviews, vol.95, 1995, pp.735-758.
[55].V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. Mcevoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles”, Journal of Photochemistry and Photobiology A, vol.148, 2002, pp.233-245.
[56].賴永隆,以自製低溫常壓電漿系統製備奈米二氧化鈦光觸媒薄膜及氧化鋅薄膜光學特性之研究,義守大學,2006 年。
[57].賴耿陽編譯,電漿工學的基礎,復文書局,2002 年。
[58].呂國楷,常壓電漿噴流鍍膜系統沉積氧化鋅與二氧化鈦複合膜層於染料敏化太陽能電池之研究,義守大學,2011 年。
[59].M. Noeske, J. Degenhardt, S. Strudthoff, and U. Lommatzsch, “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion”, International Journal of Adhesion and Adhesives, vol.24, 2004, pp.171-177.
[60].盧志豪,低溫常壓電漿噴流系統沉積疏水性與類鑽碳薄膜之研究,義守大學,2008 年。
[61].林昇宏,以非熱電漿結合觸媒去除溫室效應氣體C3F8之探討,國立中央大學,2009 年。
[62].S. Wade, T. Suzuki, and T. Noma, “Role of lattice defects in the size effect of barium titanate fine particles: A new model”, Journal of the Ceramic Society of Japan, vol.104, 1996, pp.383-392.
[63].賴昱峰,低溫水熱法合成微米二氧化鈦晶相與形貌之研究,國立高雄應用科技大學,2008年。
[64].Brinker, C. J., Scherer, and G. W., “Sol-Gel Science”, Academic Press, New York, vol.5, 1990, pp.21-42.
[65].鄭智鴻,量身訂做的二氧化鈦光觸媒之合成及應用,國立成功大學化學工程學系,2006年。
[66].D. Wang, Q. Yang, Y. Guo, X. Liu, J. Shi, and J. Zhang, “One step growth of TiO2 crystal trees by atmospheric pressure plasma jet,” Materials Letters. Vol.65, May 2011, pp.2526-2529.
[67].Q.P. Liu, Y. Zhou, Y.D. duan, M. Wang, X.H. Zhao, and Y. Lin, “Enhanced conversion efficiency of dye-sensitized titanium dioxide solar cells by Ca-doping,” Journal of Alloys and Compounds, Volume 548, January 2013, pp. 161-165.
[68].W.X. Li, J.Y. Yang , J.Q. Zhang, S. Gao, Y. Luo, and M. Liu, “Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping,” Materials Research Bulletin, Volume 57, September 2014, pp. 177-183.
[69].M.Y. Liao, L. Fang , C.L. Xu , F. Wu, Q.L. Huang, and M. Saleem, “Effect of seed layer on the growth of rutile TiO2 nanorod arrays and their performance in dye-sensitized solar cells,” Materials Science in Semiconductor Processing, Volume 24, August 2014, pp. 1-8.
[70].W.Q. Wu, Y.F. Xu, C.Y. Su, and D.B. Kuang, “Ultra-long anatase TiO2 nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells,” Energy & Environmental Science, Jun. 2014, pp. 644-649.
[71].M. K. Parvez, G. M. Yoo, J. H. Kim, M. J. Ko, and S. R. Kim, “Comparative study of plasma and ion-beam treatment to reduce the oxygen vacancies in TiO2 and recombination reactions in dye-sensitized solar cells”, Chemical Physics Letters, vol.495, 2010, pp.69-72.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文