跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝佳倩
研究生(外文):Jia-Cian Hsieh
論文名稱:常壓電漿及水熱混成技術沉積三氧化鎢膜層於電致變色之應用研究
論文名稱(外文):Investigation of Electrochromic Properties of Novel Tungsten Trioxide Nano-structure Preparation Using Hydrothermal Process.
指導教授:劉文仁劉文仁引用關係
指導教授(外文):Wen-Jen Liu
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:266
相關次數:
  • 被引用被引用:0
  • 點閱點閱:383
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為利用種晶層輔助水熱法製備一維方向生長之六方晶體三氧化鎢奈米棒薄膜結構,應用於電致變色元件之變色層,並探討其微觀表面型態與電致變色元件之光學與化學性質測試。種晶層部分分別為利用旋鍍法將鎢酸溶液鍍於FTO玻璃基板上製備所需之種晶層,以及藉由本實驗自行開發之常壓電漿噴流(Atmospheric Pressure Plasma Jet)金屬電極沉積系統於FTO玻璃基板上製備種晶層。將已鍍有種晶層之FTO基板置入由鎢酸鈉(Sodium tungstate, Na2WO4)、鹽酸(Hydrochloric acid, HCl)、草酸(Oxalic acid, H2C2O4)及醋酸鈉(Sodium acetate, CH3COONa)所調配之水熱前驅溶液中,透過此四種藥品之濃度參數、水熱反應之溫度及時間的改變進行實驗,成長六方晶結構(Hexagonal structure)之三氧化鎢變色層膜層。在經過一系列研究中發現,於FTO玻璃基板上製備三氧化鎢膜層之最佳實驗參數為使用電漿沉積種晶層,採用水熱前驅液為鎢酸鈉濃度0.25M、PH值2.2、包覆劑濃度0.0075mol,成長溫度為190℃、時間為2小時。最佳實驗參數試片呈現最佳電致變色特性,主要為具備高比表面積及多孔結構,利於電解液中之鋰離子進行反應;同時,經由循環伏安2000次循環測試結果顯示穩定性相當優異。

The purpose of this study is to fabricate the one-dimension tungsten trioxide (WO3) nano-rod (WNRs) films by hydrothermal process and investigate the relationship between microstructure morphologies and electrochromic properties. A WO3 seed layer with monoclinic structure was deposited on a fluorine doped tin oxide (FTO) coated glass substrate by spin coating and atmospheric pressure plasma jet deposition system. The mixtures of sodium tungstate (Na2WO4), hydrochloric acid (HCl), oxalic acid (H2C2O4) and sodium acetate (CH3COONa, capping agent) were adopted to be the precursors of WO3 films for the hydrothermal process. By a series of experiments, it was found the optimal process parameters for synthesizing WO3 films on FTO substrates were seed layer prepared by atmospheric plasma and the hydrothermal precursors using Na2WO4 concentration of 0.25M, the pH of 2.2, the capping agent of 0.0075mol, the growth temperature of 190oC and the growth time of 2 hr. It revealed the optimal process parameters samples possessed best electrochromic properties is due to having high specific surface area and porous structure which resulted in more easily react with lithium ion (Li+) in the electrolyte. Meanwhile, the optimal process parameters samples also revealed very good reliability from the 2000 cycles of cyclic voltammetry (CV) test.

中文摘要 I
英文摘要 III
誌謝 IV
總目錄 VI
表目錄 VIII
圖目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 實驗動機與目的 5
第二章 理論基礎 7
2-1 智慧變色材料之種類 7
2-2 電致變色材料之種類[11] 12
2-3 電致變色元件之原理[16] 18
2-4 電致變色元件的種類 19
2-5 三氧化鎢之簡介 23
2-6 非晶之氧化鎢電致變色機制 27
2-7 結晶氧化鎢之電致變色機制 30
2-8 電漿基本原理 32
2-9 電漿之種類 42
2-10 水熱法 48
2-11 奈米材料之簡介[48] 49
2-12 一維奈米尺寸材料之優勢 53
第三章 文獻回顧 54
3-1 水熱製程之文獻 55
3-2 常壓電漿製程之文獻 74
3-3 熱絲化學氣相沉積法(Hot-wire chemical vapor deposition, HWCVD 76
3-4 溶膠-凝膠法(Sol-Gel)78
第四章 實驗製程 80
4-1 實驗材料與設備 80
4-2 實驗流程 83
4-3 分析與量測之儀器 95
4-4 電致變色薄膜性質之探討[84] 101
第五章 實驗結果與討論 108
5-1 旋鍍法製備三氧化鎢種晶層之膜層 110
5-2 旋鍍種晶層輔助水熱法生長三氧化鎢奈米棒 114
5-3 常壓電漿製備三氧化鎢種晶層之膜層 132
5-4 常壓電漿製備種晶層輔助水熱法生長三氧化鎢奈米棒 146
5-5 種晶層輔助水熱成長之最佳參數TEM結構分析 164
5-6 三氧化鎢薄膜之電致變色性質探討 172
5-7 常壓電漿輔助水熱法成長三氧化鎢奈米棒膜層之XPS分析 195
5-8 玻璃電極沉積非晶質之氧化鎢膜層 197
第六章 結論 221
第七章 未來努力方向 223
參考文獻 224

[01].郭博堯,“背景分析-京都議定書的爭議與妥協”,財團法人國家政策研究基金會國政研究報告,永續(研)090-024號,2011年,第1~9頁。
[02].賴明伸,“綠色探索-京都議定書正式生效與加強推廣綠色消費運動”,綠色消費電子報,第032期,2007年。
[03].程金保、游毓珈,“看我72變!——變色節能窗之應用簡介”,經濟部能源局能源報導,2006年1月。
[04].吳永豪,“智慧窗與玻璃塗層”,工業材料雜誌,第207期,民國93年3月,第136-149頁。
[05].陳志恆、楊顯整,“節能材料之開發與使用技術”,工業污染防治,第94期,2005年4月,第135-144頁。
[06].Y.C. Her and C.C. Chang, “Facile synthesis of one-dimensional crystalline/amorphous tungsten oxide core/shell heterostructures with balanced electrochromic properties”, Cryst Eng Comm. vol.16, April 2014, pp.5379-5386.
[07].F. Zheng, H. Lu, M. Guo and M. Zhang, “Effect of substrate pre-treatment on controllable synthesis of hexagonal WO3 nanorod arrays and their electrochromic properties”, Cryst Eng Comm, vol.15, 2013, pp.5828-5837.
[08].趙文軒、曾仕君,“組合化學應用在智慧變色材料之研發現況”,工業材料雜誌,第302期,2012年
[09].何國川、許桓誠、徐英展,“電變色智慧節能元件之開發”,行政院國家科學委員會專題研究計畫成果報告,個別型計畫,民國92年。
[10].經濟部能源會,變色節能玻璃可行性研究87年度工作報告
[11].龔宇睿、呂奇明,“電致變色材料發展趨勢”,工業材料雜誌,光電特刊,第330期,2014年,第120~129頁。
[12].J.R. Platt, The Journal of Chemical Physics, vol.34, 1961, pp.862-863
[13].S.K. Deb, Applied Optics, vol.8, 1969, pp.192-195.
[14].P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, “ Electrochromism: Fundamentals and Applications”, Dec. 2007.
[15]. G. Sonmez et al, Advanced Materials. vol.16, 2004, pp.1905-1908.
[16].A. Avendano, A. Azens, G. A. Niklasson and C. G. Granqvist, “Sputter deposited electrochromic films and devices based on these:Progress on Nickel-Oxide-Based Film”, Materials Science and Engineerimg:B, vol.138, 2007, pp.112-117.
[17].R. D. Rauh, “Electrochromic windows: an overview”, Electrochim. Acta, vol.44, 1999, pp. 3165-3176.
[18].K. Bange, “Colouration of tungsten oxide films: A model for optically active coatings”, Solar Energy Materials & Solar Cells, vol.58, 1999, pp.1-131.
[19].“Sol-gel technologies and their products”, http://www.chemat.com/, CHEMAT Technology, Inc.
[20].Lisa M. Kuti, Surinderjit Singh Bhella, and Venkataraman Thangadurai, Inorganic Chmistry, vol. 48, 2009, pp 6804-6811
[21].B.W. Faughnan, R.S. Crandall and P.M. Heyman, “Electrochromism in WO3 Amorphous Films”, RCA Review, vol.36, 1975, pp.177-197.
[22].S.H. Lee, H. M. Cheong, J. G. Zhang, A. Mascarenhas, D. K. Benson and S. K. Deb, “Electrochromic mechanism in a-WO3-y thin films”, Applied Physics Letters, vol.74, no.2, 1999, pp.242-244.
[23].S.K. Deb, “Optical and Photoelectric Properties and Color Centers in Thin Films of Tungsten Oxide”, Philosophical Magazine, vol.27, no.4, 1973, pp.801-822.
[24].J. M. Honig, Electrodes of Conductive Metallic Oxides, Elsevier, Amsterdam, 1980.
[25].O. F. Schirmer, V. Wittwer, G. Baur and G. Brandt, “Dependence of WO3 Electrochromic Absorption on Crystallinity”, Journal of the Electrochemical Society, vol.124, no.5, 1977, pp.749-753.
[26].C. G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo, 1995, pp.181.
[27].賴耿陽編譯,電漿工學的基礎,復文書局,2002年。
[28].賴永隆,以自製低溫常壓電漿系統製備奈米二氧化鈦光觸媒薄膜及氧化鋅薄膜光學特性之研究,義守大學材料與工程研究所碩士論文,2006年。
[29].賴耿陽編譯,電漿工學的基礎,復文書局,2002年。
[30].郭福升,大面積常壓電漿技術之研究,成功大學化學系研究所碩士論文,2003年。
[31].高正雄,超LSI 時代-電漿化學,復漢出版社,1984年。
[32].王瑞誠,二氧化矽與聚乙烯鍍膜之低溫常壓電漿噴流系統開發及製程研究,義守大學材料科學與工程學系碩士論文,2005年。
[33].董家齊、陳寬任,奇妙的物質第四態-電漿,第354期,科學發展 2002年6月。
[34].洪昭南,電漿反應器,化工技術第三卷,第三期。
[35].洪昭南、郭有斌,電漿反應器與原理,化工技術第九卷,第十期。
[36].曾煥華 譯,電漿的世界,銀禾文化事業有限公司,1987年7月。
[37].呂國楷,常壓電漿噴流鍍膜系統沉積氧化鋅與二氧化鈦複合膜層於染料敏化太陽能電池之研究,義守大學材料科學與工程研究所碩士論文,2011年。
[38].羅正中、張鼎張 譯,半導體製程技術導論,歐亞書局有限公司,2005年。
[39].盧志豪,低溫常壓電漿噴流系統沉積疏水性與類鑽碳薄膜之研究,義守大學材料科學與工程研究所碩士論文,2008年。
[40].林仕恆,常壓電漿噴流系統沉積二氧化鈦膜層於染料敏化太陽能電池之應用研究,義守大學材料科學與工程研究所碩士論文,2012年
[41].M. Noeske, J. Degenhardt, S. Strudthoff and U. Lommatzsch, “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion”, International Journal of Adhesion and Adhesives, vol.24, 2004, pp.171-177.
[42].許家瑋,低溫常壓電漿噴流系統沉積銦錫氧化透明導電薄膜之研究,義守大學材料科學與工程研究所碩士論文,2009年。
[43].林昇宏,以非熱電漿結合觸媒去除溫室效應氣體C3F8之探討,國立中央大學環境工程研究所碩士論文,2009年。
[44].G. W. Morey, “Hydrothermal synthesis”, Journal of the American Ceramic Society, vol.36, 1953, pp.279-285.
[45]. Duo Liu, “Microstructural Defects in Ferroelectrics and Their Scientific Implications”, Ferroelectrics - Characterization and Modeling, August, 2011, pp97-114.
[46].D.F. Chen, S.X. Zhang, M. Kozuka, Q.Z. Sun, J. Feng, Q. Wang, T. Mukainaka, Y. Nobukuni, H. Tokuda, H. Nishino, H.K. Wang, S. L. Morris-Natschke and K.H. Lee, “Interiotherins C and D, Two New Lignans from Kadsura interior and Antitumor-Promoting Effects of Related Neolignans on Epstein-Barr Virus Activation”, Chemistry Letters, vol.65, no.9, 2002, pp.1242-1245.
[47].林承賢,二氧化鈦摻雜釩的薄膜電極應用於染料敏化太陽能電池之研究,國立台南大學,2008年。
[48].黃琮偉,水熱法製備氧化鋅奈米柱與其對乙醇氣體感測研究,逢甲大學光電學系碩士論文,2011年
[49].S. Brunauer, P. H. Emmett and E.Teller, “Adsorption of Gases in Multimolecular Layers”, Journal of the American Chemical Society , vol.60, 1938, pp.309-319.
[50].V. P. Skripov, V. P. Koverda and V. N. Skokov, “Size effect on melting of small Particles”, Applications and Materials Science, vol.66, 1981, pp.109-118.
[51].P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold Particles”, Physical Review Letters A, vol.13, 1976, pp.2287-2298.
[52].N. Goldstein, C. M. Echer, and A. P. Alivisatos, “Melting in Semiconductor Nanocrystals”, Science, vol.256, 1992, pp.1425-1427.
[53].馮浩偉,利用水解法合成氮化鈦/氮化矽奈米複合材料之微結構及機械性質之研究,國立成功大學碩士論文,2009年
[54]. F. D. M. Haldane, “Fractional statistics in arbitrary dimensions:A generalization of the Pauli principle”, Physical Review Letters, vol.67, 1991, pp.937-940.
[55].Y. Wang and N. Herron, “Nanometer-Size semiconductor clusters: Materials synthesis, quantum size effects, Photophysical properties”, The Journal of Physical Chemistry, vol.95, 1991, pp.525-532.
[56].R. Kubo, “Electronic Properties of Metallic Fine Particles”, Journal of the Physical Society of Japan, vol.17, 1962, pp.975-986.
[57].陳志瑋,謝文宗,劉志宏,林春宏,“以常壓電漿輔助化學氣相沉積製備疏水薄膜”,機械工業雜誌,第287期,2007年。
[58].S. Rajagopal, D. Nataraj, D. Mangalaraj, Y. Djaoued, J. Robichaud and O. Y. Khyzhun, “Controlled Growth of WO3 Nanostructures with Three Different Morphologies and Their Structural, Optical, and Photodecomposition Studies”, Nanoscale Research Letters, vol.4, 2009, pp.1335-1342.
[59].J. Zhang, J.P. Tu, X.H. Xia, X.L. Wang and C.D. Gu, “Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance”, Journal of Materials Chemistry, vol.21, 2011, pp.5492-5498.
[60].Z.H. Jiao, X.W. Sun, J. Wang, L. Ke and H. Volkan Demir, “Hydrothermally grown nanostructured WO3 films and their electrochromic characteristics”, Journal of physics D, vol.43, 2010, pp.285501-285506.
[61].M. Altomare, O. Pfoch, A. Tighineanu, R. Kirchgeorg, K. Lee, E. Selli, and P. Schmuki, “Molten o-H3PO4: a New electrolyte for the anodic synthesis of self-organized oxide structures − WO3 nanochannel layers and others”, Journal of The American Chemical Society, vol.137, April 2015, pp.5646-5649.
[62].Z. Chen, H. Lv, X. Zhu, D. Li, S. Zhang, X. Chen, and Y. Song, “Electropolymerization of aniline onto anodic WO3 Film: an approach to extend polyaniline electroactivity beyond pH 7”, The Journal of Physical Chemistry C, vol.118 , November 2014, pp.27449-27458.
[63].N.V. Hieu, H.V. Vuong, N.V. Duy, N.D. Hoa, “A morphological control of tungsten oxide nanowires by thermal evaporation method for sub-ppm NO2 gas sensor applicatio”, Sensors and Actuators B: Chemical, vol.171–172, August–September 2012, pp.760-768.
[64].M. Bekri, N.M. Shaalan, A.S. Ahmed, “Thermal evaporated WO3 nanoparticles film under different evaporation pressures for NO2 sensing”, Digest Journal of Nanomaterials and Biostructures, vol.10, no.2, April - June 2015, pp.603-613.
[65].H. Kim, R.O. Bonsu, C. O’Donohue, R.Y. Korotkov, L. McElwee-White, and T.J. Anderson, “Aerosol-assisted chemical vapor deposition of tungsten oxide films and nanorods from oxo tungsten(VI) fluoroalkoxide precursors”, American Chemical Society Applied Materials & Interfaces, vol.7, January 2015, pp.2660-2667.
[66].W. Wu, Q. Yu, J. Lian, J. Bao, Z. Liu, S.S. Pei, “Tetragonal tungsten oxide nanobelts synthesized by chemical vapor deposition”, Journal of Crystal Growth, vol.312, iss.21, October 2010, pp.3147-3150.
[67].B. Zhao, X. Zhang, G. Dong, H. Wang, H. Yan, “Efficient electrochromic device based on sol–gel prepared WO3 films”, International Journal of Ionics The Science and Technology of Ionic Motion, vol.21, iss.10, June 2015, pp.2879-2887.
[68].H. Wei, X. Yan, Q. Wang, S. Wu, Y. Mao, Z. Luo, H. Chen, L. Sun, S. Wei, Z. Guo, “Electrochemical properties and electrochromic behaviors of the sol–gel derived tungsten trioxide thin films”, Energy and Environment Focus, vol.2, no.2, June 2013, pp.112-120.
[69].D. Susanti, R.N.D. Wibawa, L. Tananta, H. Purwaningsih, R. Fajarin, G.E. Kusuma, “The effect of calcination temperature on the capacitive properties of WO3-based electrochemical capacitors synthesized via a sol-gel method”, Frontiers of Materials Science, vol.7, iss.4, October 2013, pp.370-378.
[70].C.P. Li, C.A. Wolden, A.C. Dillon, R.C. Tenent, “Electrochromic films produced by ultrasonic spray deposition of tungsten oxide nanoparticles”, Solar Energy Materials and Solar Cells, vol.99, April 2012, pp.50-55.
[71].C.P. Li, F. Lin, R.M. Richards, C. Engtrakul, R.C. Tenent, C.A. Wolden, “The influence of sol–gel processing on the electrochromic properties of mesoporous WO3 films produced by ultrasonic spray deposition”, Solar Energy Materials and Solar Cells, vol.121, February 2014, pp.163-170.
[72].F. Zhang, H.Q. Wang, S. Wang, J.Y. Wang, Z.C. Zhong and Y.Jin, “Structures and optical properties of tungsten oxide thin films deposited by magnetron sputtering of WO3 bulk: Effects of annealing temperatures”, Chinese Physics B, vol.23, no.9, July 2014.
[73].M.B. Johansson1, B. Zietz, G.A. Niklasson and L. Österlund1, “Optical properties of nanocrystalline WO3 and WO3-x thin films prepared by DC magnetron sputtering”, Journal of Applied Physics, vol.115, no.21, 2014, pp.213510.
[74].M.H. Yaacob, M.Z. Ahmad, A.Z. Sadek, J.Z. Ou, J. Campbell, K. Kalantar-zadeh, W. Wlodarski, “Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration”, Sensors and Actuators B: Chemical, vol.177, February 2013, pp.981-988.
[75].C.J. Hung, Y.H. Huang, C.H. Chen, P.Lin, and T.Y. Tseng, “Hydrothermal Formation of Tungsten Trioxide Nanowire Networks on Seed-Free Substrates and Their Properties in Electrochromic Device”, IEEE transactions on components, packaging and manufacturing technology, vol.4, no.5, May 2014, pp.831-839.
[76].F.C. Guo, P.T. Jiang, Z. Ding, L. Li, J.H. Zhang, X.L. Wang and
C.D. Gu, “The direct growth of a WO3 nanosheet array on a transparent conducting substrate for highly efficient electrochromic and electrocatalytic applications”, CrystEngComm - Royal society of chemistry, vol.16, 2014, pp.6866-6872.
[77].W. Xiao, W. Liu, X. Mao, H. Zhu and D. Wang, “Na2SO4-assisted synthesis of hexagonal-phase WO3 nanosheet assemblies with applicable electrochromic and adsorption properties”, Journal of materials chemistry A, vol.1, 2013, pp.1261-1269.
[78].F. Zheng, M. Guo and M. Zhang, “Hydrothermal preparation and optical properties of orientation-controlled WO3 nanorod arrays on ITO
substrates”, CrystEngComm - RSC Publishing, vol.15, 2013, pp.277-
284.
[79].Y.C. Her and C.C. Chang, “Facile synthesis of one-dimensional crystalline/amorphous tungsten oxide core/shell heterostructures with balanced electrochromic properties”, CrystEngComm - Royal society of chemistry, vol.16, 2014, pp.5379-5386.
[80].Y.S. Lin , Y.C. Chen, P.S. Shie, “Enhanced lithium electrochromic performance of flexible tungsten oxide films by tantalum addition with an atmospheric pressure plasma jet”, Solar Energy Materials & Solar Cells, vol.122, 2013, pp.59-69.
[81].I. Kostis, M. Vasilopoulou, A. Soultati, P. Argitis, N. Konofaos, A.M. Douvas, N. Vourdas, G. Papadimitropoulos, D. Davazoglou, “Highly porous tungsten oxides for electrochromic applications”, Microelectronic engineering, vol.111, 2013, pp.149-153.
[82].C.L. Wu, C.K. Wang, C.K. Lin, S.C. Wang, J.L. Huang, “Electrochromic properties of nanostructured tungsten oxide films prepared by surfactant-assisted sol–gel process”, Surface & coatings technology, vol.231, 2013, pp.403-407.
[83].陳彥成,以常壓電漿合成可撓式氧化鉭薄膜之鋰離子電化學性質及其影響電致色變氧化鎢薄膜之研究,逢甲大學化學工程學系碩士論文,2011年,第35-48頁。
[84].S.H. Lee et al., American Institute of Physics, vol.76, 2000, 26.
[85].M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions”, Nace International(National Association of Corrous), 1974.
[86].張嘉純,以水熱法合成氧化鎢一維奈米核/殼結構及其電變色性質的探討,國立中興大學材料科學與工程學研究所碩士學位論文,2010年
[87].H.S. Shim, J.W. Kim, Y.E. Sung, W.B. Kim, Solar Energy Materials and Solar Cells, vol.93, iss.12, 2009, pp. 2062-2068.
[88].Z.J. Gu, Y. Ma, W.S. Yang, G.J. Zhang and J.N. Yao, Chemical Communications, 2005, pp. 3597-3599.
[89].M.S. Whittingham, Current Opinion in Solid State and Materials Science,vol.1, Iss.2, 1996, pp. 227-232.
[90].Z.J. Gu, T.Y. Zhai, B.F. Gao, X.H. Sheng, Y.B. Wang, H.B. Fu, Y. Ma, and J.N. Yao, The Journal of Physical Chemistry B, vol.110, 2006, pp.23829-23836.
[91].J.M. Wang, E.G. Khoo, P.S. Lee, and J. Ma, Journal of Physcial Chemistry C, vol.112, 2008, pp.14306-14312.
[92].J.M. Wang, E.G. Khoo, P.S. Lee, and J. Ma, Journal of Physcial Chemistry C, vol.113, 2009, pp.9655-9658.
[93].S. Adhikari, D. Sarkar, “High Efficient Electrochromic WO3 Nanofibers”, Electrochimica Acta , vol.138, 2014, pp.115-123.
[94].F. Zheng, M. Zhang, M. Guo, “Controllable preparation of WO3 nanorod arrays by hydrothermal method”, Thin Solid Films, vol.534, 2013, pp.45-53.
[95].H.J. Yuan, Y.Q. Chen, F. Yu, Y.H. Peng, X.W. He, D. Zhao, and D.S. Tang, “Hydrothermal synthesis and chromic properties of hexagonal WO3 nanowires”, Chinese Physics B, vol.20, no.3, 2011, pp. 036103-1~036103-6.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top