(3.235.191.87) 您好!臺灣時間:2021/05/13 15:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林承佳
研究生(外文):Chen-Jia Lin
論文名稱:探討氧化鋅薄膜的光學、電性與奈米機械特性
論文名稱(外文):The optical, electrical, and nanomechanical properties of ZnO thin films
指導教授:劉文仁劉文仁引用關係
指導教授(外文):Wen-Jen Liu
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:119
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗,氧化鋅 (ZnO) 薄膜以射頻磁控濺鍍系統 (Radio frequency magnetic sputtering, RF) 在常溫 (Room Temperature, RT) 下製備。藉由改變不同的氧化鋅薄膜厚度,利用X光繞射儀 (X-ray diffraction) 、超微型光譜儀 (Spactra Smart) 和四點探針 (Four-point Probe) 來研究氧化鋅薄膜的特性。結果得到,在2θ約為34°角時皆有纖鋅礦 (Wurtzite) 結構(002)方向的繞射峰。當氧化鋅薄膜隨著厚度增加,晶粒尺寸而增大。由超微型光譜儀得到薄膜的穿透率在厚度500 Å時最高,約為85%,而其最小反射率約為15%。這表示氧化鋅的薄膜厚度與結晶程度在光學上有很重要的影響性。另外,測量電阻率 (ρ) 後得到,電阻率隨著氧化鋅薄膜厚度增加而減少,是由於晶界與薄膜表面的電子散射所影響,所以較薄的膜有著較好的電阻率。在晶粒尺寸與奈米壓痕得到,硬度的下降與楊氏模數可以合理的解釋與晶粒的增大有相關性,且和Hall-Petch理論與晶粒細化機制的關係一致。整合光學、電學與奈米機械性的結果,厚度為500 Å時的氧化鋅薄膜是適合於光電中的應用。

In this experiment, ZnO thin films were sputtered on a glass substrate by a radio frequency (RF) magnetron sputtering system at room temperature (RT). The thicknesses (tf) of the ZnO thin film were from 500 Å to 1000 Å. X-ray diffraction (XRD), ultra miniature spectrometer (Spactra Smart) and four-point probe measurements were used to investigate the characteristics of ZnO thin film with various thicknesses. The results exhibited that ZnO has a wurtzite structure with a (002) texture diffraction peak in the 2θ at 34° range. As the ZnO thin film thickness increases, the grain size becomes larger. A ZnO thin film thickness of 500 Å had a transmittance maximum of about 85% and a reflectance minimum of about 15%. That means that thickness and crystallinity of ZnO play an important role in the optical results. Additionally, the four-point probe measuring resistivity (ρ) found that the ρ is reduced as the ZnO thickness increases because grain boundaries and the surface of thin films scatter the electrons, so thinner films have a greater resistance. Between grain size and the nanoindentation results, the decline in the hardness and Young’s modulus can be reasonably concluded to be associated with an enlarged grain size, consistent with the “Hall-Petch” effect and the grain refinement mechanism. Based on the optical, electrical, and nanomechanical results, a thickness of 500 Å of ZnO is suitable for photoelectrical application.

中文摘要 I
英文摘要 II
誌謝 III
總目錄 IV
表目錄 VIII
圖目錄 IX
第一章 簡介 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 射頻磁控濺鍍氧化鋅薄膜電性與光學特性之研究 3
2.1.1 射頻功率的影響 3
2.1.2 氧分壓的影響 4
2.1.3 基板溫度的影響 5
2.2 氧化鋅薄膜之微結構與奈米機械特性研究 19
2.2.1 表面形貌 19
2.2.2 結晶結構 20
2.2.3 奈米壓痕 21
2.2.4 奈米刮痕 23
第三章 實驗原理與基礎觀念 48
3.1 氧化鋅的介紹 48
3.1.1 氧化鋅的結構與特性 48
3.1.2 氧化鋅薄膜的光學特性 49
3.1.3 氧化鋅薄膜的電學特性 49
3.2 氧化鋅薄膜的沉積方法 50
3.2.1 薄膜沉積原理 50
3.2.2 化學氣相沉積法 51
3.2.3 電漿化學氣相沉積系統 52
3.2.4 射頻磁控式濺鍍法 52
3.3 氧化鋅薄膜的應用 53
3.3.1 透明導電薄膜 (TCO) 53
3.3.2 平面顯示器 (FPD) 54
3.3.3 表面聲能元件 (SAW) 55
3.4 奈米壓痕的介紹 56
3.4.1 奈米壓痕量測原理 56
3.4.2 硬度與彈性模數量測原理 56
3.4.3 影響奈米壓痕量測之因素 57
第四章 實驗步驟及方法 72
4.1 實驗材料 72
4.2 實驗簡介 73
4.3 樣品製備與流程 74
4.3.1 試片前處理 74
4.3.2 濺鍍設備系統 74
4.4...X射線繞射儀 (X-ray Diffractometer) 75
4.5 四點探針 (Four-point Probe) 76
4.6 微型光譜儀 (Spactra Smart) 77
4.7 奈米壓痕量測 (Nano Indenter XP System) 77
第五章 結果與討論 87
5.1 簡介 87
5.2 結構分析 87
5.3 半高寬值 87
5.4 晶粒尺寸 88
5.5 光學性質 88
5.5.1 穿透率量測 88
5.5.2 反射率量測 88
5.6 電學性質 89
5.7 機械性質 89
第六章 結論 95
第七章 參考文獻 96
歷年成果與發表 104

[1]. C.M. Mahajan and M.G. Takwale, “An influence of deposition temperature on structural, optical and electrical properties of sprayed ZnO thin films of identical thickness”, Current Applied Physics, vol.13, Nov.2013, pp.2109-2116.
[2]. J. Zhang, H. Yang, Q.L. Zhang, S.R. Dong and J.K. Luo, “Structural, optical, electrical and resistive switching properties of ZnO thin films deposited by thermal and plasma-enhanced atomic layer deposition”, Applied Surface Science, vol.282, Oct.2013, pp.390-395.
[3]. Y. Köseo˘glu, “A simple microwave-assisted combustion synthesis and structural, optical and magnetic characterization of ZnO nanoplatelets”, Ceramics International, vol.40, May 2014, pp.4673-4679.
[4].H.S. Kim, E.S. Jung, W.J. Lee, J.H. Kim, S.O. Ryu and S.Y. Choi, “Effects of oxygen concentration on the electrical properties of ZnO films”, Ceramics International, vol.34, May 2008, pp.1097-1101.
[5].W.J. Jeong, S.K. Kim and G.C. Park, “Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell”, Thin Solid Films, vol.506-507, May 2006, pp.180-183.
[6].S.S. Lin and J.L. Huang, “The effect of thickness on the properties of heavily Al-doped ZnO films by simultaneous RF and DC magnetron sputtering”, Ceramics International, vol.30, Mar.2004, pp.497-501.
[7].Y. Zhang and J. Han, “Microstructure and temperature coefficient of resistivity for ZnO ceramics doped with Al2O3”, Materials Letters, vol.60, Sep.2006, pp.2522-2525.
[8]. K. Tominaga, N. Umezu, I. Mori, T. Ushiro, T. Moriga and I. Nakabayashi, “Transparent conductive ZnO film preparation by alternating sputtering of ZnO:Al and Zn or Al targets”, Thin Solid Films, vol.334, Dec.1998, pp.35-39.
[9]. C. Besleaga, G.E. Stan, A.C. Galca, L. Ion and S. Antohe, “Double layer structure of ZnO thin films deposited by RF-magnetron sputtering on glass substrate”, Applied Surface Science, vol.258, Sep.2012, pp.8819-8824.
[10].D. Sivalingam, J.B. Gopalakrishnan and J.B.B. Rayappan, “Structural, morphological, electrical and vapour sensing properties of Mn doped nanostructured ZnO thin films”, Sensors and Actuators B, vol.166-167, May 2012, pp.624-631.
[11].A. Sáaedi, R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, A.K. Zak and N.M. Huang, “Optical and electrical properties of p-type Li-doped ZnO nanowires”, Superlattices and Microstructures, vol.61, Sep.2013, pp.91-96.
[12].Y.R. Sui, B. Yao, L. Xiao, L.L. Yang, J. Cao, X.F. Li, G.Z. Xing, J.H. Lang, X.Y. Li, S.Q.Lv, X.W. Meng, X.Y. Liu and J.H. Yang, “Fabrication and characterization of P–N dual acceptor doped p-type ZnO thin films”, Applied Surface Science, vol.287, Dec.2013, pp.484-489.
[13].C.L. Hsu, K.C. Chen, T.Y. Tsai and T.J. Hsueh, “Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires”, Sensors and Actuators B, vol.182, June 2013, pp.190-196.
[14].劉文岳,射頻磁控濺鍍氧化鋅薄膜電性與光學特性之研究,國立成功大學材料科學與工程學系碩士論文,2000年。
[15].F. Shinoki and A. Itoh, “Mechanism of RF reactive sputtering”, Applied Physics, vol.46, 1975, pp.3381-3384.
[16].T. Minami, H. sato, H. Imamoto and S. Takata, “Substrate temperature dependence of transparent conducting Al-doped ZnO thin Film prepares by magnetron sputtering”, Applied Physics, vol.31, 1992, p.253.
[17].C. C. Chang, J. H. Chang and S. K. Fang, “The study of the Influence of Sputtering Parameterrs and Substrate to ZnO Thin Film Structure”, Journal of Materials Science, vol.26, 1994, pp.59-63.
[18].張家豪,氧化鋅薄膜之微結構與奈米機械特性研究,國立交通大學機械工程學系碩士論文,2008年。
[19].W. Water and S.Y. Chu, “Physical and structural properties of ZnO sputtered films”, Materials Letters, vol.55, July 2002, pp.67-72.
[20].C. Klingshirn, “ZnO: From basics towards applications”, Physic State Solid, vol.244, Sep.2007, pp.3027-3073.
[21].黃淑綺,以反應式濺鍍製備氧化鋅薄膜及其摻雜之研究,國立中山大學碩士論文,2006年。
[22].張尚豪,透明導電多層膜之光電特性研究,樹德科技大學電腦與通訊研究所碩士論文,2009年。
[23].S. Krishnamoorthy and A.A. Iliadis, “Development of high frequency ZnO/SiO2/Si Love mode surface acoustic wave devices”, Solid-State Electronics, vol.50, June 2006, pp.1113-1118.
[24].E.Burstein, “Anomalous optical absorption limit in InSb”, Physical Review, vol.93, 1954, p.632.
[25].T.S. Moss, “The interpretation of the properties of Indium Antimonide”, Physiological Society, vol.67, 1954, p.775.
[26].C.C. Lin, C.S. Hsiao, S.Y. Chen and S.Y. Cheng, “Ultraviolet emission in ZnO films controlled by point defects”, Journal of Electrochemical Society, vol.151, Mar.2004, p.282.
[27].Z. Fang, Y. Wang, X. Peng, X. Liu and C. Zhen, “Structural and optical properties of ZnO films grown on the AAO templates”, Materials Letters, vol.57, 2003, p.4187.
[28].L. Yi, Y. Hou, H. Zhao, D. He, Z. Xu, Y. Wang and X. Xu, “The photo-and electro-luminescence properties of ZnO:Zn thin film”, Displays, vol.21, 2000, p.147.
[29].W. Water and S.Y. Chu, “Physical and structural properties of ZnO sputter films”, Materials Letters, vol.55, 2002, p.67.
[30].S.Y Chu, W. Water and J.T. Liaw, “Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering”, European Ceramic Society, vol.23, 2003, p.1593.
[31].水瑞鐏,氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用,國立成功大學電機工程學系博士論文,2002年。
[32].P .Nunes, D. Costa, E. Fortunato and R. Martins, “Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering” , Vacuum, vol.64, 2002, p.293.
[33].Y. Igasaki and H. Saito, “The effects of Zinc diffusion the electrical and optical properties of ZnO:Al films prepared by RF reactive sputtering”, Thin Solid Films, vol.199, 1991, p.223.
[34].M.T. Young and S.D. Keun, “Effect of rapid thermal annealing on the morphology and electrical properties of ZnO/In Films”, Thin Solid Films, vol.410, 2002, p.8.
[35].王敬龍,以溶膠-凝膠法製備ITO薄膜之製程研究,國立成功大學材料科學及工程研究所碩士論文,1996年。
[36].許國銓,科技玻璃-高性能透明導電膜玻璃,材料與社會,1993年。
[37].游家豪,射頻濺鍍氧化鋅薄膜於鍺基板之研究,國立交通大學碩士論文,2005年。
[38].H. Kashani, “The significance of parallel electric field on the preferred orientation and surface morphology of ZnO thin films”, Materials Science Letters, vol.18, July 1999, pp.1043-1045.
[39].陳文華,以射頻磁控濺鍍法成長氧化鋅透明導電薄膜,國立成功大學碩士論文,2005年。
[40].王一民,電漿輔助化學氣相沉積成長類鑽石薄膜之奈米磨潤性能與機械性質探討,國立中正大學碩士論文,2005年。
[41].J. Thurn and R.F. Cook, “Simplified Area Function for Sharp Indenter Tips in Depth-sensing Indentation”, Materials Research Society, vol.17, 2002, pp.1143-1146.
[42].J. Gong, H. Miao and Z. Peng, “Analysis of the nanoindentation data measured with a Berkovich indenter for brittle materials: effect of the residual contact stress”, Acta Materialia, vol.52, Feb.2004, pp.785-793.
[43].O. Uzun, U. Kolemen, S. Celebi and N. Guclu, “Modulus and hardness evaluation of polycrystalline superconductors by dynamic microindentation technique”, European Ceramic Society, vol.25, Mar.2005, pp.969-977.
[44].孫長恩,以奈米壓痕法及刮痕法探討蒸鍍薄膜之機械性質,聖約翰技術學院碩士論文,2005年。
[45].A.A. Elmustafa and D.S. Stone, “Indentation size effect in polycrystalline F.C.C. metals”, Acta Materialia, vol.50, Aug.2002, pp.3641-3650.
[46].Y.T. Cheng and C.M. Cheng, “What is indentation hardness? ”, Surface and Coatings Technology, vol.133-134, Nov.2000, pp.417-424.
[47].W.W. Gerberich, N.I. Tymiak, J.C. Grunlan, M.F. Horstemeyer and M.I. Baskes, “Interpretations of Indentation Size Effects”, Applied Mechanics, vol.69, June 2002, pp.433-442.
[48].J.G. Swadener, E.P. George and G.M. Pharr, “The correlation of the indentation size effect measured with indenters of various shapes”, Mechanics and Physics of Solids, vol.50, Apr.2002, pp.681-694.
[49].Q. Wang, J. Jin and S.T. Quek, “Propagation of a Shear Direction Acoustic Wave in Piezoelectric Coupled Cylinders”, Applied Mechanics, vol.69, May 2002, pp.391-394.
[50].S.P. Baker, “Between nanoindentation and scanning force microscopy: measuring mechanical properties in the nanometer regime”, Thin Solid Films, vol.308, Oct.1997, pp.289-296.
[51].M.S. Bobji and S.K. Biswas, “Estimation of hardness by nanoindentation of rough surfaces”, Materials Research, vol.13, 1998, pp.3227-3233.
[52].C.M. Lepienski, G.M. Pharr, Y.J. Park, T.R. Watkins, A. Misra and
X. Zhang, “Factors limiting the measurement of residual stresses in thin films by nanoindentation”, Thin Solid Films, vol.447, Jan.2004, pp.251-257.
[53].Danilatos G. D., “Foundations of environmental scanning electronmicroscopy”, Advances in Electronics and Electron Physics, vol.71, 1998, pp.109-250.
[54].施敏,半導體元件物理與製作技術,國立交通大學出版社,2002年。
[55].鄭浩奕,Fe40Pd40B20(XÅ)/ZnO(500Å)及ZnO(500Å) /Fe40Pd40B20(YÅ)在矽基板之低頻磁導率與電特性探討,義守大學材料科學與工程學系碩士論文,2013年。
[56].S. Ishibashi, Y Higuchi, Y. Ota and K. Nakamura, “Low resistivity indium-tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films”, Vacuum Science and Technology A, vol.8, 1990, p.1403.
[57].H. Ohta, M.Orita, M. Hirano, H. Tanji, H. Kawazoe and H. Hosono, “Highly electrically conductive indium–tin–oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition”, Applied Physics Letters, vol.76, 2000, p.2740.
[58].A. Suzuki, T. Matsushita, T. Aoki and Y. Yoneyama, “Pulsed Laser Deposition of Transparent Conducting Indium Tin Oxide Films in Magnetic Field Perpendicular to Plume”, Applied Physics, vol.40, 2001, p.401.
[59].A. Suzuki, T. Matsushita, T. Aoki and M. Okuda, “Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition”, Thin Solid Films, vol.411, May 2002, pp.23-27.
[60].R. Venkataman and J.C. Bravman, “Separation of film thickness and grain boundary strengthening effects in Al thin film on Si”, Materials Research, vol.7, 1992, pp.2040-2048.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔